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Abstract: The development and promotion of biofortified foods plants are a sustainable strategy
for supplying essential micronutrients for human health and nutrition. We set out to identify
quantitative trait loci (QTL) associated with carotenoid content in cowpea sprouts. The contents of
carotenoids, including lutein, zeaxanthin, and β-carotene in sprouts of 125 accessions were quantified
via high-performance liquid chromatography. Significant variation existed in the profiles of the
different carotenoids. Lutein was the most abundant (58 ± 12.8 mg/100 g), followed by zeaxanthin
(14.7 ± 3.1 mg/100 g) and β-carotene (13.2 ± 2.9 mg/100 g). A strong positive correlation was
observed among the carotenoid compounds (r ≥ 0.87), indicating they can be improved concurrently.
The accessions were distributed into three groups, following their carotenoid profiles, with accession
C044 having the highest sprout carotenoid content in a single cluster. A total of 3120 genome-wide
SNPs were tested for association analysis, which revealed that carotenoid biosynthesis in cowpea
sprouts is a polygenic trait controlled by genes with additive and dominance effects. Seven loci
were significantly associated with the variation in carotenoid content. The evidence of variation in
carotenoid content and genomic regions controlling the trait creates an avenue for breeding cowpea
varieties with enhanced sprouts carotenoid content.

Keywords: biofortification; cowpea; carotenoid; genomics; grain legume; QTL

1. Introduction

A balanced and healthy diet is a global priority, especially in the low-income and
developing countries where hunger and malnutrition are more widespread [1–3]. Hidden
hunger or micronutrient deficiency affects more than two billion people worldwide, causing
mental impairment, poor health, low productivity, and death [4,5]. In sub-Saharan Africa,
vitamin-A deficiency, for instance, constitutes a serious public health and one of the major
causes of blindness and mortality among children under 5 years and pregnant women [6–8].
Biofortification as a strategy for increasing nutrients in food plant matrices is advocated to
alleviate the high burden of micronutrient deficiency in these regions [9,10].

Gain legumes, including cowpea (Vigna unguiculata L. Walp), are important sources of
micronutrients and amino acids, exceeding or complementing the profiles of cereals, mak-
ing them perfect target crops for addressing the global micronutrients deficiency [11,12].
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Carotenoids are among the micronutrients found in legumes, and they have a range of
benefits for humans [13]. They contribute to the human antioxidant defense system, and
their consumption has been proved to improve cellular differentiation and reproduction
and to reduce risks of vision impairment, cancer, cardiovascular diseases, and infant mortal-
ity [14,15]. The carotenoids found in legume crops include α-carotene and β-carotene, and
their hydroxylated forms (lutein, zeaxanthin, violaxanthin, etc.) [16]. Although carotenoids
are all composed of isoprene units [17], they differ in their structural and functional proper-
ties. Lutein and zeaxanthin possess hydroxyl group at both ends of the molecule, which
distinguishes them from β-carotene [18]. β–carotene has β-ionone groups at the two ends,
which represents a distinctive feature but also gives the molecule its ability to be converted
to retinol, a precursor of vitamin-A, after consumption [19]. Unlike lutein, β-carotene
and zeaxanthin belong to the same branch on the carotenoid biosynthesis pathway, with
zeaxanthin being the substrate or derivative of β-carotene [20].

Over the past decades, there have been a lot of efforts invested in the biofortification
of carotenoids, especially provitamin-A carotenoids, in maize, cassava, and sweet potato,
with limited attention paid to grain legume crops [21–23]. Cowpea is an important grain
legume on which millions of people depend for their daily nutrients needs in the trop-
ics [24–26]. It is a model grain legume for genomic studies [27] because of its relatively
small (~640.6 Mb) diploid (2n = 2x = 22 Chromosomes) genome [28], and a large portion of
the cowpea germplasm is conserved and easily accessible for research at IITA and USDA
GRIN gene banks [27,29–31]. Low carotenoid profiles are found in cowpea, dominated
(70%) by lutein [32]. However, knowledge about carotenoid biofortification in cowpea is
scanty. The level of carotenoid content in cowpea (0–0.1 mg/100 g) [33–37] is lower than the
reported values in seeds of other legume grain crops, including chickpeas (0.8–3 mg/100 g)
and peas (0.06–2.8 mg/100 g) [38]. Previous research showed the presence of genetic struc-
turation among cowpea germplasm [29,30,39], which constitutes an actionable potential for
exploring the natural variation of carotenoid in cowpea. Such information will guide the
selection of candidate genotypes and effective methods for increasing carotenoid in cowpea,
thereby contributing to the advancement of cowpea biofortification research, which has
only focused on zinc and iron [40].

Genome-wide association studies (GWAS) has been proven to be a cost-effective, time-
saving, and powerful tool for genetic dissection of complex traits [41]. GWAS involves
testing for association between each genotypic marker and a phenotype of interest that has
been scored across a large number of individuals [42]. It provides a valuable first insight
into trait architecture for subsequent validation, which enables detecting rare variants
of large effect or common variants of small effect for complex traits [42]. GWAS has
been applied to identify genomic regions or quantitative traits loci (QTLs) controlling
carotenoid content in some important food crops, including soybean [43], chickpeas [44],
maize [45], and cassava [46]. These studies reported that carotenoid content is a complex
trait, influenced by various genes with additive and dominance effects [47,48]. To date,
there has been no report of quantitative trait loci (QTL) controlling carotenoids biosynthesis
in cowpea. The identification of loci associated with carotenoid content in cowpea will help
in deciphering the architecture of the trait.

Sprouts of grain legume or pulses have been shown to increase carotenoid content
and overall antioxidant profiles, as well as to minimize the anti-nutritional factors of
the dry grains [12,49–51]. Recently, we assembled and genotyped a cowpea germplasm
collection using the diversity array technology (DArT) sequencing [31]. Here, we assessed
the variation of carotenoids, including lutein, zeaxanthin, and β-carotene contents, among
sprouts of a set of accessions from the germplasm collection and identified quantitative
trait loci (QTLs) associated with carotenoid biosynthesis to boost carotenoid biofortification
in cowpea.
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2. Results
2.1. Variation among Accessions for Sprouts Carotenoid Content

Carotenoid contents were quantified from sprouts of 125 cowpea accessions
(Tables S1 and S2). The variation in sprouts lutein, zeaxanthin, and β-carotene contents
among 125 cowpea accessions is summarized in Table 1. Significant differences (p < 0.001)
were observed among accessions for the carotenoid compounds. Lutein content varied from
3.7 mg/100 g in sprouts of accession C017 to 182.4 mg/100 g in accession C044, with an av-
erage value of 58 mg/100 g (Table 1 and Figure 1). Similarly, sprouts of accessions C017 and
C044 recorded, respectively, the lowest (2.2 mg/100 g) and highest (65.2 mg/100 g) values
for zeaxanthin content (Table 1 and Table S2). Sprouts of accessions C113 and C017 had the
highest (39.3 mg/100 g) and lowest (2.0 mg/100 g) β-carotene content, respectively, with
an average value of 13.2 mg/100 g. Lutein content had the highest average (58 mg/100 g)
across accessions, contributing to 67.5% of all carotenoids assessed, which is approximately
4-fold of the values of zeaxanthin and β-carotene (Table 1).

Table 1. Descriptive statistics of the variation of lutein, zeaxanthin, and β-carotene among sprouts of
125 cowpea accessions.

Parameters Min Max Mean ± SD p-Value Tukey’s HSD

Lutein 3.7 182.4 58.0 ± 12.8 <0.001 60.0
Zeaxanthin 2.2 65.2 14.7 ± 03.1 <0.001 18.5
β-carotene 2.0 39.3 13.2 ± 02.9 <0.001 13.2

S = Sprouts, c = mg/100 g; Tukey’s HSD = Tukey’s highly significant difference at α = 0.05.
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Figure 1. Lutein, zeaxanthin, and β-carotene content of sprouts of the top 10 (A); and bottom 10
(B) cowpea accessions.

There were variations in carotenoids content among sprouts following the origins of
the accessions (Table 2). The largest variation in lutein content was obtained in sprouts
of accessions from north Africa (106.5 ± 50.9 mg/100 g), followed by sprouts of ac-
cessions from east Africa (70.4 ± 45.5), Asia (53.8 ± 36.7 mg/100 g), and west Africa
(51.0 ± 34.4 mg/100 g). Sprouts of accessions from east Africa recorded the highest zeax-
anthin content (17.5 ± 12.1 mg/100 g), followed by sprouts of accessions from Asia and
west Africa, while accessions from north Africa showed the lowest content. β-carotene con-
tent was the highest in sprouts of accessions from east Africa (14.2 ± 9.1 mg/100 g),
followed by sprouts of accessions from Asia (13.4 ± 8.5 mg/100 g) and west Africa
(13.0 ± 7.1 mg/100 g). Similar variations were also obtained in β-carotene content among
accessions from these three regions.
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Table 2. Variation of lutein, zeaxanthin, and β-carotene contents following the regions of origin of
the cowpea accessions.

Regions Carotenoids Means ± SD Coefficient of
Variation

Number of
Accessions

Asia
Lutein 53.8 ± 36.7 1.5

29Zeaxanthin 13.7 ± 7.9 1.7
ß-Carotene 13.4 ± 8.5 1.6

East Africa
Lutein 70.4 ± 45.5 1.5

33Zeaxanthin 17.5 ± 12.1 1.4
ß-Carotene 14.2 ± 9.1 1.6

North Africa
Lutein 106.5 ± 50.9 2.1

3Zeaxanthin 11.5 ± 9.9 1.2
ß-Carotene 10.7 ± 13.1 0.8

West Africa
Lutein 51.0 ± 34.4 1.5

57Zeaxanthin 13.0 ± 7.1 1.8
ß-Carotene 11.6 ± 6.9 1.7

US–Oceania
Lutein 47.5 ± 35.4 1.3

3Zeaxanthin 12.3 ± 6.2 2
ß-Carotene 10.6 ± 6.5 1.6

2.2. Segregation of the Cowpea Accessions into Subgroups Based on the Carotenoid Profiles of
the Sprouts

A strong significant positive correlation (r ≥ 0.87) was observed among the quantified
carotenoid compounds (Figure S2). Hence, we assessed the most appropriate method
for grouping the accessions based on the variation observed in the sprout’s carotenoids
contents. Among the different combinations of dissimilarities matrices and clustering
methods, the combination of Euclidean distance matrix and neighbor-joining algorithm
had the highest cophenetic correlation coefficient value (CCC = 0.85) and was used for
grouping the accessions (Table 3). The phylogenetic tree built using this combination
grouped the accessions into three clusters (Figure 2 and Figure S2A).

Table 3. Cophenetic correlation coefficient (CCC) between distance matrices and clustering. Algo-
rithms for inferring clusters among cowpea accessions.

CCC
Carotenoid-Content-Based Clustering

Manhattan Euclidean

ward.D 0.71 0.59
UPMGA 0.83 0.84

NJ 0.84 0.85

Figure 2 shows the segregation of the accessions into subgroups based on their sprout
carotenoid contents, displayed as color gradient around the phylogenetic tree. Cluster
1 comprising accession C044 and Cluster 2 composed of 17 accessions are characterized
by accessions with high carotenoid content (Figure 2). Cluster 3, on the other hand, had
the largest size (107 accessions), and it was further divided into two sub-groups: one
sub-group made up of accessions with moderate carotenoid content (41 accessions) and
the second sub-group characterized by accessions with low carotenoid content accessions
(66 accessions).
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outermost track: β-carotene, zeaxanthin, and lutein.

2.3. Genetic Structuration and Linkage Disequilibrium in the Cowpea Germplasm

A total of 3,120 SNPs (Table S3) distributed across the 11 chromosomes of cowpea
with higher marker densities on chromosomes 3 and 7 (Figure S3) were used to assess the
genetic structuration among the cowpea germplasm. Significant genetic differentiation
(Fst = 0.25, Table 4) was observed in the germplasm, suggesting the presence of population
structure characterized by extensive gene flow (Nm = 5.1) between subgroups. In line
with this, the structure analysis identified three subgroups, or clusters (Figure 3), in the
germplasm. Cluster 1 had the highest number of accessions (40 accessions), followed



Int. J. Mol. Sci. 2022, 23, 3696 6 of 17

by Cluster 2 (37 accessions) and Cluster 3 (32 accessions), with the rest of the accessions
(14 accessions) in admixture (Table S4).

Table 4. Genetic diversity indices among the cowpea accessions using Nei method.

Clusters Size Ho Hs Fis Fst Gst Nm

Total 125 0.04 0.23 0.84 0.25 0.23 5.71

Ho = Mean Observed Heterozygosity over k clusters, Hs = Mean Expected Heterozygosity He over k clusters,
Hs = pop allele frequency, Fis = Inbreeding coefficient within individuals, Fst = genetic differentiation among
clusters, Gst = Analog of Fst, adjusted for bias, Nm = gene flow between populations.
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cross-entropy versus the number of ancestral populations.



Int. J. Mol. Sci. 2022, 23, 3696 7 of 17

Results of DAPC analysis confirmed the grouping of the 125 accessions into three
clusters (Figure 4), as identified by the curve of Bayesian information criterion (BIC) values
versus the number of clusters (Figure S2B). The biplot based on the two detected linear
discriminant axes (DA) (Figure 4), which explained 86.2% and 13.8% of variation in the
data, assigned 33 accessions to Cluster 1, 50 accessions to Cluster 2, and 42 accessions to
Cluster 3. Cluster 1 had the largest variation for lutein (69.5 ± 41.0 mg/100 g), zeaxanthin
(17.1 ± 8.6 mg/100 g), and β-carotene (14.8 ± 8.7 mg/100 g), followed by Cluster 2 and
Cluster 3 (Figure 5).
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Furthermore, we examined the pattern of linkage disequilibrium (LD) across the
genome (Figure S4). LD was measured as the squared allele frequency correlations (r2)
between pairs of markers. The results showed that 11.4% (11,032) of pairs of comparisons
among 1957 markers with minor allele frequency of less than 0.1 were significantly (p < 0.01)
linked. The average r2 value across the genome was 0.47. The plot of LD estimates against
the physical distance between markers across the genome depicted a persistent LD, which
decayed below the critical r2 = 0.55 at a distance ~1.4 Mbp (Figure S4).

2.4. Analysis of Loci Associated with Carotenoid Biosynthesis

Out of the 3, 120 loci tested, 7 (Figure 6 and Table 5) showed significant association
[3.06 ≤ −log10 (p) ≤ 4.09] with the variation in carotenoid content among the cowpea
sprouts. These loci were distributed on chromosome 6 (S_Vung_CA1511, S_Vung_CA1513,
and S_Vung_CA1519), chromosome 7 (S_Vung_CA1838 and S_Vung_CA1840), chromosome
8 (S_Vung_CA2146), and chromosome 11 (S_Vung_CA3031). The loci explained 10.10 to
13.51% of the variation of carotenoid content, with locus S_Vung_CA1840 showing the
largest effect (13.51%) for the variation of β-carotene contents among cowpea sprouts
(Table 5).

Table 5. Significant loci associated with carotenoids biosynthesis in cowpea sprouts.

Loci Names Allele Chr Position (kb) Compounds R2 (%) −log 10(p) A_Effect D_Effect

S_Vung_CA1511 G/A 6 18444146
Lutein 12.14 3.72 0.42 1.15

Zeaxanthin 11.60 3.47 0.51 1.10
β-Carotene 11.00 3.40 0.47 1.09

S_Vung_CA1513 G/A 6 18455640
Lutein 12.06 3.70 0.42 1.12

Zeaxanthin 11.14 3.33 0.51 1.05
β-Carotene 11.12 3.31 0.47 1.06

S_Vung_CA1519 A/T 6 18955912
Lutein 12.39 3.81 0.58 1.69

Zeaxanthin 11.12 3.32 0.48 1.56

S_Vung_CA1838 C/T 7 22819466 β-Carotene 10.30 3.06 0.55 0.97

S_Vung_CA1840 G/T 7 22946212
Lutein 11.42 3.49 0.49 0.95

β-Carotene 13.51 4.09 0.55 1.02

S_Vung_CA2146 T/C 8 6425230
Lutein 10.10 3.06 0.43 0.74

Zeaxanthin 11.48 3.43 0.43 0.81

S_Vung_CA3031 C/T 11 34652559
Lutein 11.25 3.43 0.05 1.11

Zeaxanthin 11.77 3.53 0.06 1.11

Chr = Chromosome; A_Effect = additive effect; D_Effect = Dominance effect, R2 = R-squared for the marker.

The identified loci showed pleiotropic effects influencing more than one carotenoid
compound, except for S_Vung_CA1838, which was solely associated with β-carotene
(Table 5 and Figure 7). Loci S_Vung_CA1511 and S_Vung_CA1513 were associated with all
assessed carotenoid compounds. Loci S_Vung_CA1519, S_Vung_CA2146, and S_Vung_CA3031
were associated with the variation in lutein and zeaxanthin contents, whereas locus
S_Vung_CA1840 was associated with both lutein and β-carotene. Both additive and dom-
inance genetic effects were important; however, the dominance effects were higher than
additive effects for all significant loci (Table 4). The favorable alleles of the seven loci
were the most common alleles contributing to the increasing accumulation of the screened
carotenoid compounds in the cowpea sprouts (Figure S5).
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3. Discussion
3.1. Genetic Diversity among the Cowpea for Sprouts Carotenoids Contents

Genetic diversity in widely consumed food plant species is important to address
global food and nutrition security challenges [52]. In this study, we assessed the profiles
of carotenoids, including lutein, β-carotene, and zeaxanthin, in sprouts of 125 cowpea
accessions. Significant variations were observed among sprouts of the cowpea accessions
for the contents of lutein (3.7 to 182.4 mg/100 g), zeaxanthin (2.2 to 65.2 mg/100 g), and β-
carotene (2.0 to 39.3 mg/100 g), suggesting that there is genetic variability in the germplasm
for enhancing carotenoids biosynthesis. The results, in line with previous findings [32],
confirmed that lutein is the most abundant (~70%) carotenoid compound in cowpea. Hence,
the biofortification of carotenoids in cowpea can be very beneficial due to the critical role of
lutein in human vision, immunity, and anti-inflammatory system [18]. In the present study,
we found evidence of variability in carotenoid content following the origins of the cowpea
accessions. Sprouts of accessions from major cowpea growing regions, including Africa and
Asia, exhibited significant variations in the screened carotenoid compounds, especially in
lutein content. This also showed that there is a great potential at the regional level that can
be harnessed for carotenoid biofortification, which could be of great interest considering
the high consumption of cowpea and the need for food fortification in these regions [10,26].
The average contents of lutein (58.0 mg/100 g), β-carotene (13.2 mg/100 g), and zeaxanthin
(14.7 mg/100 g) in the 5-day-old cowpea sprouts were higher than the values reported in
cowpea seeds [35], as well as in the 2-day-old average contents of cowpea sprouts [37]. Such
changes are expected, since carotenoids, as photosynthetic plants’ pigments, can increase in
content upon germination and plant growth as a result of expansion of chloroplast tissues,
the main source of carotenoids [53]. These findings strongly suggest that producing and
promoting cowpea sprouts, especially five-day-old sprouts-based diets, can help prevent
carotenoid deficiency, which is more prevalent in areas where cowpea is a staple food
crop [32,54]. Some of the accessions used in this study, including C044, C113, C115, C097,
and C095, showed high profiles of carotenoid content and could be used for the purpose.

There has been limited research on carotenoid biofortification in cowpea. The current
study is very promising because it established carotenoid profiles of sprouts in a wide
range of cowpea germplasm. The analysis of the relationship among accessions based on
the carotenoid content in their sprouts showed the presence of subgroups, indicating there
are possibilities of hybridization between accessions for increased carotenoid biosynthesis.
Furthermore, the high positive correlation among the profiles of the screened carotenoid
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compounds suggests that they can be improved concurrently. The level of zeaxanthin
was, in general, higher than β-carotene content. This can be attributed to the conversion
of β-carotene into zeaxanthin. The correlation between these compounds (β-carotene
and zeaxanthin), although positive, was the lowest among the three pairs of comparisons
among compounds (Figure S1), confirming the possible oxygenation of β-carotene to
form zeaxanthin.

3.2. Prospects of Marker-Assisted Selection for Nutrient Enhanced Cowpea Sprouts

Carotenoid content in plants is an important trait for human health and nutrition [47,55].
The discovery of markers associated with this trait can help in fast tracking, selection,
and breeding of cowpea varieties with high carotenoid content in the sprouts. The results
showed that the 125 accessions can be distributed into three groups, which corroborates our
previous findings in the population of origin of the accessions [31]. Although the presence
of population structure within the germplasm is a positive indication of genetic potential
for improvement, it can be a confounding factor in testing the associations between markers
and phenotypic variation [56,57]. This was considered in the GWAS model used.

The analysis of association between loci revealed a strong LD pattern in the germplasm,
as reflected by the high mean of correlations between (r2 = 0.47) pairs of markers across
the genome. Notably, high LD decay distance (1.4 Mbp) was obtained in the germplasm,
which is within the range of ~500 kb to 1.88 Mb, previously reported in V. unguiculata
subspecies [58,59]. This further suggests that there is a possibility of detecting genetic
markers associated with carotenoid biosynthesis in the germplasm [60]. In line with that,
the genome-wide association analysis identified seven major loci (R2 > 10%) [61] that sig-
nificantly explained the variation in carotenoid content among the cowpea sprouts. These
results suggest that carotenoid content in cowpea is a polygenic trait [62], and the identified
markers can support marker-assisted selection. These markers showed pleiotropic effects,
suggesting their usefulness in selection of parental lines with high sprouts carotenoids
content. The pleiotropic effect also substantiated that screened carotenoid compounds
belong to the same pathway and may be under the influence of a similar genes network.
Furthermore, both dominance and additive gene effects were important in explaining the
observed variation in the content of the specific carotenoid compounds among sprouts
of the cowpea germplasm, with a high influence of the dominance effects over the ad-
ditive effects. High influence of dominance gene effects in carotenoid biosynthesis was
also reported in the African marigold [63]. Similarly, Kandianis, et al. [64] showed that
the variation of β-carotene content in maize was fully explained by additive and dom-
inance gene effects, rather than additive genes effects only. These results demonstrate
that carotenoid content is a quantitative trait, and there are chances of heterosis and/or
transgressive segregation, resulting in increased content in sprouts of progenies of crosses
among superior individuals [63,65].

Sprouts of grain legume crops can be improved through varietal selection [66]. There
has been extensive research conducted on soybean sprouts improvement, including breed-
ing and genetic improvement [66–68]. To our knowledge, this is the first study reporting
on genomic regions associated with carotenoid content in cowpea sprouts. Hence, the
identified markers will be very useful and can be validated in a biparental population
for effective use in a breeding program. Since low genetic diversity was observed in the
germplasm, the use of recombinant inbred lines (RILs) population may be more appropriate
for validation [69]. The use of RILs population can also help to broaden the genetic variation
of the trait amenable for the discovery of more quantitative trait loci [70]. Additionally,
testing the effectiveness of these loci in sprouts of cowpea seeds from replicated trials in
time and space can be more informative to account for the interaction effects of quantitative
trait loci and environments on carotenoid content, as well as other characteristics, such as
seed size, seed coat, and color, that can influence sprouts yield and quality [66,71].
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4. Materials and Methods
4.1. Plant Materials

The cowpea diversity panel comprises 125 accessions from Africa (93 accessions),
Asia (29 accessions), America (2 accessions), and 1 Oceania (1 accession) (Table S1). Seeds
of the accessions were obtained from a cowpea collection of the Laboratory of Applied
Ecology (LEA) of the University of Abomey-Calavi (UAC; Abomey-Calavi, Benin). Ethanol
analytical grade and sodium hypochlorite were purchased from Sigma Aldrich, Seoul,
Korea. The seeds were surface sterilized with 70% Ethanol (v/v) for 30s and 0.5% sodium
hypochlorite (NaOCl) solution for 2 min and washed twice with distilled water. Seeds were
soaked in distilled water for 12 h and germinated in sprouts plastic trays (Figure S1) in a
growth chamber, 16h of light and 8 h of dark cycle. The temperature and relative humidity
(RH) in the growth chamber was kept at 24 ± 1 ◦C and 80%, respectively. The seeds were
moistened with distilled water every 8 h for 5 days. Sprouts were harvested 5 days after
germination. Sprouts samples were frozen in liquid nitrogen and freeze dried overnight for
carotenoid analysis.

4.2. Carotenoids Profiling
4.2.1. Sample Extraction

Profiles of carotenoids, including lutein, zeaxanthin, and β-carotene in the sprouts
of each cowpea accession, were assessed. Standards of lutein, zeaxanthin, and β-carotene
and reagents/solvents, including acetone, hexane, ethanol (ETOH), methanol (MeOH),
potassium hydroxide (KOH), and Methyl tert-butyl Ether (MTBE), were purchased from
Sigma Aldrich, Seoul, Korea. Fifty milligrams (50 mg) of finely ground freeze-dried sprouts
samples were extracted with 50 µL of 1 N potassium hydroxide in 1 mL mixture solution
of Acetone/Ethanol/Hexane (1:1:2, v/v/v). The mixture was vortexed for 20 s, sonicated
(Vibra-cell™, Sonics, Newtown, CT, USA) at 40 ◦C for 30 min, and centrifuged (Labogene
1248 R, Seoul, Korea) for 5 min, 1200 rpm at 4 ◦C. The upper hexane layer of each sample
was collected and passed through a membrane filter (PVDF syringe filter, hydrophobic,
13 mm diameter, 0.22 µm pore size, Whatman International, Maidstone, UK). The extraction
process was repeated twice, and the resulting extracts were mixed and passed through
a stream of nitrogen gas for removal of the hexane using nitrogen evaporator (Allsheng
MD 200, Hangzhou Allsheng Instrument Co., LTD, Hangzhou, China). The extracts were
dissolved in acetone for high-performance liquid chromatography (HPLC) analysis.

4.2.2. HPLC Analysis of Carotenoids

Carotenoids were analyzed in a Dionex ultimate 3000 LC machine equipped with a
standard auto-sampler, a binary gradient pump, and a variable wavelength detector (VAD).
Specific carotenoid compounds were separated on a reverse phase C30 YMC carotenoid
column, (5 µm, 250 × 4.6 mmL.D.mm) using mobile phases consisting of MTBE: MeOH
(90:10 v/v, solvent A) and MeOH: H2O (95:5 v/v, solvent B) in a linear gradient. The
gradient elution was 20% A and 80% B from 0 to 7 min, followed by 25% A and 75% B
to 15–25 min, 100% A to 40 min, and 20% A and 80% B to 45–50 min. The flow rate was
0.7 mL/min, and the column temperature was maintained at 35 ◦C. The eluting peaks
were monitored at 450 nm wavelength (Figure S2). Lutein, β-carotene, and zeaxanthin
contents were estimated based on the calibration curve of lutein standard (Y = 48.9X + 2.2,
R2 = 0.997), β-carotene standard (Y = 30.3X − 0.7, R2 = 0.999), and zeaxanthin (Y = 12.2X − 0.4;
R2 = 0.999), respectively.

4.2.3. Data Analysis

All measurements were performed in triplicates. Analysis of variance of the perfor-
mance of the cowpea accessions for sprouts carotenoids contents was computed in the
agricolae R package [72]. Means were separated using the Tukey’s honestly significant
difference (α = 0.05) in the car R package [73]. Correlation analysis among the parameters
was performed in factoextra R package [74].
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Clustering analysis was performed to assess the relationship among accessions based
on the carotenoid content in their sprouts. For this purpose, we computed the cophenetic
correlation coefficient (CCC) of different combinations of dissimilarities matrices (Euclidean
and Manhattan) and clustering methods (Ward. D, neighbor-joining, and the unweighted
pair group method with arithmetic mean method). The combination with the highest
CCC value was used to perform the hierarchical clustering analysis, and the optimal
number of clusters was inferred in the NbClust R package [75]. The resulting phylogenetic
tree was exported using the ape R package [76] for graphical annotation and annotation,
with the contents of lutein, zeaxanthin, and β-carotene in the sprouts of each accession
depicted around the phylogenetic tree using the graphical phylogenetic analysis (GraPhlAn
v1.1.4) [77].

4.3. Genome-Wide Association Studies (GWAS)

The genomic data used in this study consisted of 3,120 SNPs markers (Table S3), previ-
ously reported among a diversity panel of cowpea [31], which includes the 125 accessions
used in the present study. The genetic diversity parameters of the germplasm were esti-
mated in GenAlex [78]. To control false positives association, the population structure of
the germplasm was assessed.

4.3.1. Population Structure

A genetic population structure analysis was performed in LEA R package [79]. In this
method, the optimal number of clusters (K) is determined using the cross-entropy criterion,
which is based on the prediction of a fraction of masked genotypes and cross-validation
approach [79]. Ten repetitions were performed for each value of K (K = 1:5) and the optimal
K value selected. The membership of the accessions in a specific cluster was depicted
using the barplot function, with the critical coancestry coefficient set at 0.55. To confirm
the optimal number of clusters in the germplasm, we performed a discriminant analysis of
principal components (DAPC) in the adgenet R package [80].

4.3.2. Linkage Disequilibrium (LD) Analysis

LD within the cowpea germplasm was estimated in Tassel v5.2.60 [81]. SNPs markers
with minor allele frequency above 0.1 were included in the LD analysis. LD was mea-
sured as the squared allele frequency correlations (r2) between pairs of markers across the
genome [58]. LD decay pattern was depicted as a function of r2 along physical distance (kb)
in ggplot2 R package [82], where only r2 with p < 0.01 were included. The critical r2 for LD
decay was estimated as the 95th percentile of distribution of the square root transformed of
the correlations values between unlinked markers [83].

4.3.3. GWAS Analysis

GWAS was performed using Tassel v5.2.60 [81] and rMPV R package [84]. The pheno-
typic variation represented herein by the carotenoid content of the accessions was subjected
to a rank-based transformation, a method reported to give the best and consistent perfor-
mance in identifying the causal polymorphism among other transformation approaches [85]
in the bestNormalize R package [86]. A general linear model (GLM) approach [57] was
used for the association analysis, and the coefficients of coancestry of the accessions were
incorporated in the model as covariates (Q matrix) to correct for false positives. Manhattan
plots were used for the visualization of the GWAS results. Markers that passed the sig-
nificance threshold p < 0.001 [i.e., −log10 (p) > 3] were defined as genomic regions or loci
associated with carotenoid biosynthesis in cowpea sprouts [87,88].

5. Conclusions

This study revealed that the level of carotenoid content varied among sprouts of cow-
pea accessions. The accessions were grouped into three clusters based on their carotenoid
contents, with some of them exhibiting high profiles of carotenoids, and they can be rec-
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ommended for production and promotion of high integration of cowpea sprouts in the
daily diet consumption in food-insecure regions. The presence of subgroups in the popu-
lation was also confirmed by analysis of the genetic structure. However, the germplasm
had low genetic diversity, which calls for more research efforts to broaden the genetic
basis of cowpea for high carotenoids content, as well as other important characteristics
of cowpea sprouting varieties. Seven candidate loci, S_Vung_CA1511, S_Vung_CA1513,
S_Vung_CA1519, S_Vung_CA1838, S_Vung_CA1840, S_Vung_CA2146, and S_Vung_CA3031,
were identified to support molecular breeding for sprouting cowpea varieties with en-
hanced carotenoids contents.
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