Antibacterial Activity of Rose Bengal Entrapped in Organically Modified Silica Matrices
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of RB@ORMOSIL Matrix and RB6 Immobilized onto LLDPE
2.2. FTIR Examination of Matrices
2.3. Spectroscopic Analysis of RB@ORMOSIL
2.4. Leaching of RB from RB@ORMOSIL and RB@OR@LLDPE Specimens
2.5. Antimicrobial Activity of RB@ORMOSIL and RB@OR@LLDPE Specimens
3. Materials and Methods
3.1. Materials
3.2. RB@ORMOSIL Synthesis via the Sol-Gel Route
3.3. Thermal Adhesion of RB@ORMOSIL onto the LLDPE Polymer
3.4. Bacterial Growth
3.5. Antimicrobial Activity Test
3.6. Testing RB Leakage from RB@ORMOSIL Matrices into Saline Solution and Bacterial Suspensions
3.7. FTIR Analysis
3.8. Spectroscopic Analysis
3.9. BET Analysis
3.10. SEM Analysis
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APTES | (3-aminopropyl)triethoxsylane |
BET | Brunauer–Emmett–Teller method |
BG | Bioactive glass |
BH | Brain–heart |
BJH | Barrett−Joyner−Halenda |
CFU | Colony-forming units |
EtOH | Ethanol |
HAIs | Healthcare-associated infections |
LB | Luria Bertani |
LLDPE | Linear low-density polyethylene |
MIC | Minimal inhibitory concentration |
MTMOS | Methyltrimethoxysilane |
OD | Optical density |
ORMOSIL | Organically modified silica |
PACT | Photodynamic antimicrobial chemotherapy |
PS | Photosensitizer |
RB | Rose Bengal |
ROS | Reactive oxygen species |
SEM | Scanning electron microscope |
TEOS | Tetraethylorthosilane |
WHO | World Health Organization |
References
- Murphy, F.; Tchetchik, A.; Furxhi, I. Reduction of Health Care-Associated Infections (HAIs) with Antimicrobial Inorganic Nanoparticles Incorporated in Medical Textiles: An Economic Assessment. Nanomaterials 2020, 10, 999. [Google Scholar] [CrossRef] [PubMed]
- Wylie, M.P.; Irwin, N.J.; Howard, D.; Heydon, K.; McCoy, C.P. Hot-melt extrusion of photodynamic antimicrobial polymers for prevention of microbial contamination. J. Photochem. Photobiol. B Biol. 2020, 214, 112098. [Google Scholar] [CrossRef] [PubMed]
- Gouda, M.; Hebeish, A. Preparation and Evaluation of CuO/Chitosan Nanocomposite for Antibacterial Finishing Cotton Fabric. J. Ind. Text. 2009, 39, 203–214. [Google Scholar] [CrossRef]
- Ferreira, A.M.; Carmagnola, I.; Chiono, V.; Gentile, P.; Fracchia, L.; Ceresa, C.; Georgiev, G.; Ciardelli, G. Surface modification of poly(dimethylsiloxane) by two-step plasma treatment for further grafting with chitosan–Rose Bengal photosensitizer. Surf. Coat. Technol. 2013, 223, 92–97. [Google Scholar] [CrossRef]
- Griesser, S.; Jasieniak, M.; Vasilev, K.; Griesser, H. Antimicrobial Peptides Grafted onto a Plasma Polymer Interlayer Platform: Performance upon Extended Bacterial Challenge. Coatings 2021, 11, 68. [Google Scholar] [CrossRef]
- Shi, Q.; Qian, Z.; Liu, D.; Liu, H. Surface Modification of Dental Titanium Implant by Layer-by-Layer Electrostatic Self-Assembly. Front. Physiol. 2017, 8, 574. [Google Scholar] [CrossRef] [Green Version]
- Escobar, A.; Muzzio, N.; Moya, S.E. Antibacterial Layer-by-Layer Coatings for Medical Implants. Pharmaceutics 2020, 13, 16. [Google Scholar] [CrossRef] [PubMed]
- Muszanska, A.K.; Rochford, E.T.J.; Gruszka, A.; Bastian, A.A.; Busscher, H.J.; Norde, W.; Van Der Mei, H.C.; Herrmann, A. Antiadhesive Polymer Brush Coating Functionalized with Antimicrobial and RGD Peptides to Reduce Biofilm Formation and Enhance Tissue Integration. Biomacromolecules 2014, 15, 2019–2026. [Google Scholar] [CrossRef]
- Cuervo-Rodríguez, R.; López-Fabal, F.; Gómez-Garcés, J.L.; Muñoz-Bonilla, A.; Fernández-García, M. Contact Active Antimicrobial Coatings Prepared by Polymer Blending. Macromol. Biosci. 2017, 17, 1700258. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Jang, J. Antimicrobial polymer nanostructures: Synthetic route, mechanism of action and perspective. Adv. Colloid Interface Sci. 2014, 203, 37–50. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, V.S.; Kandimalla, V.B.; Ju, H. Preparation of ormosil and its applications in the immobilizing biomolecules. Sensors Actuators B Chem. 2006, 114, 1071–1082. [Google Scholar] [CrossRef]
- Goh, Y.-F.; Alshemary, A.Z.; Akram, M.; Kadir, M.R.A.; Hussain, R. Bioactive Glass: AnIn-VitroComparative Study of Doping with Nanoscale Copper and Silver Particles. Int. J. Appl. Glas. Sci. 2014, 5, 255–266. [Google Scholar] [CrossRef]
- Trabelsi, K.; Ciriminna, R.; Albo, Y.; Pagliaro, M. SilverSil: A New Class of Antibacterial Materials of Broad Scope. ChemistryOpen 2020, 9, 459–463. [Google Scholar] [CrossRef]
- Mahltig, B.; Soltmann, U.; Haase, H. Modification of algae with zinc, copper and silver ions for usage as natural composite for antibacterial applications. Mater. Sci. Eng. C 2013, 33, 979–983. [Google Scholar] [CrossRef]
- Spagnul, C.; Turner, L.C.; Boyle, R.W. Immobilized photosensitizers for antimicrobial applications. J. Photochem. Photobiol. B Biol. 2015, 150, 11–30. [Google Scholar] [CrossRef]
- Nisnevitch, M.; Nakonechny, F.; Nitzan, Y. Photodynamic antimicrobial chemotherapy by liposome-encapsulated water-soluble photosensitizers. Russ. J. Bioorg. Chem. 2010, 36, 363–369. [Google Scholar] [CrossRef]
- Handoko, Y.A.; Rondonuwu, F.S.; Limantara, L. The Photosensitizer Stabilities of Tookad® on Aggregation, Acidification, and Day-light Irradiation. Procedia Chem. 2015, 14, 474–483. [Google Scholar] [CrossRef] [Green Version]
- Konaté, K.; Mavoungou, J.F.; Lepengué, A.N.; Aworet-Samseny, R.R.; Hilou, A.; Souza, A.; Dicko, M.H.; M’Batchi, B. Antibacterial activity against β- lactamase producing Methicillin and Ampicillin-resistants Staphylococcus aureus: Fractional Inhibitory Concentration Index (FICI) determination. Ann. Clin. Microbiol. Antimicrob. 2012, 11, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassidy, C.M.; Donnelly, R.; Elborn, J.; Magee, N.D.; Tunney, M. Photodynamic Antimicrobial Chemotherapy (PACT) in combination with antibiotics for treatment of Burkholderia cepacia complex infection. J. Photochem. Photobiol. B Biol. 2012, 106, 95–100. [Google Scholar] [CrossRef]
- Schäfer, M.; Schmitz, C.; Facius, R.; Horneck, G.; Milow, B.; Funken, K.-H.; Ortner, J. Systematic Study of Parameters Influencing the Action of Rose Bengal with Visible Light on Bacterial Cells: Comparison Between the Biological Effect and Singlet-Oxygen Production. Photochem. Photobiol. 2007, 71, 514–523. [Google Scholar] [CrossRef]
- Baptista, M.S.; Cadet, J.; Greer, A.; Thomas, A.H. Photosensitization Reactions of Biomolecules: Definition, Targets and Mechanisms. Photochem. Photobiol. 2021, 97, 1456–1483. [Google Scholar] [CrossRef]
- Cieplik, F.; Deng, D.; Crielaard, W.; Buchalla, W.; Hellwig, E.; Al-Ahmad, A.; Maisch, T. Antimicrobial photodynamic therapy—What we know and what we don’t. Crit. Rev. Microbiol. 2018, 44, 571–589. [Google Scholar] [CrossRef] [Green Version]
- Nakonechny, F.; Barel, M.; David, A.; Koretz, S.; Litvak, B.; Ragozin, E.; Etinger, A.; Livne, O.; Pinhasi, Y.; Gellerman, G.; et al. Dark Antibacterial Activity of Rose Bengal. Int. J. Mol. Sci. 2019, 20, 3196. [Google Scholar] [CrossRef] [Green Version]
- Valkov, A.; Zinigrad, M.; Nisnevitch, M. Photodynamic Eradication of Trichophyton rubrum and Candida albicans. Pathogens 2021, 10, 263. [Google Scholar] [CrossRef]
- Panzarini, E.; Inguscio, V.; Dini, L. Overview of Cell Death Mechanisms Induced by Rose Bengal Acetate-Photodynamic Therapy. Int. J. Photoenergy 2011, 2011, 713726. [Google Scholar] [CrossRef]
- Vanerio, N.; Stijnen, M.; De Mol, B.A.; Kock, L.M. Biomedical Applications of Photo- and Sono-Activated Rose Bengal: A Review. Photobiomodulat. Photomed. Laser Surg. 2019, 37, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Martins Estevão, B.; Cucinotta, F.; Hioka, N.; Cossi, M.; Argeri, M.; Paul, G.; Marchese, L.; Gianotti, E. Rose Bengal incorporated in mesostructured silica nanoparticles: Structural characterization, theoretical modeling and singlet oxygen delivery. Phys. Chem. Chem. Phys. 2015, 17, 26804–26812. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Rogelj, S.; Zhang, P. Rose Bengal-decorated silica nanoparticles as photosensitizers for inactivation of gram-positive bacteria. Nanotechnology 2010, 21, 065102. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Alothman, Z.A. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Materials 2012, 5, 2874–2902. [Google Scholar] [CrossRef] [Green Version]
- Grosman, A.; Ortega, C. Capillary Condensation in Porous Materials. Hysteresis and Interaction Mechanism without Pore Blocking/Percolation Process. Langmuir 2008, 24, 3977–3986. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.M.M.; Vasconcelos, W.L. Obtention of nanostructured silica glass by sol-gel process with incorporation of lead compounds. Mater. Res. 1999, 2, 201–204. [Google Scholar] [CrossRef]
- Lenza, R.; Vasconcelos, W. Preparation of silica by sol-gel method using formamide. Mater. Res. 2001, 4, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-X.; Lin, W.; Zheng, J.; Sun, Y.; Xia, B.; Yan, L.; Jiang, B. Insight into the Organic–Inorganic Hybrid and Microstructure Tailor Mechanism of Sol–Gel ORMOSIL Antireflective Coatings. J. Phys. Chem. C 2018, 122, 596–603. [Google Scholar] [CrossRef]
- Adhikary, J.; Meistelman, M.; Burg, A.; Shamir, D.; Meyerstein, D.; Albo, Y. Reductive Dehalogenation of Monobromo- and Tribromoacetic Acid by Sodium Borohydride Catalyzed by Gold Nanoparticles Entrapped in Sol–Gel Matrices Follows Different Pathways. Eur. J. Inorg. Chem. 2017, 2017, 1510–1515. [Google Scholar] [CrossRef]
- Alarcon, E.I.; Poblete, H.; Roh, H.; Couture, J.-F.; Comer, J.; Kochevar, I.E. Rose Bengal Binding to Collagen and Tissue Photobonding. ACS Omega 2017, 2, 6646–6657. [Google Scholar] [CrossRef] [PubMed]
- Nakonechny, F.; Pinkus, A.; Hai, S.; Yehosha, O.; Nitzan, Y.; Nisnevitch, M. Eradication of Gram-Positive and Gram-Negative Bacteria by Photosensitizers Immobilized in Polystyrene. Photochem. Photobiol. 2012, 89, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Valkov, A.; Nakonechny, F.; Nisnevitch, M. Polymer-Immobilized Photosensitizers for Continuous Eradication of Bacteria. Int. J. Mol. Sci. 2014, 15, 14984–14996. [Google Scholar] [CrossRef] [Green Version]
- Valkov, A.; Raik, K.A.; Mualem-Sinai, Y.; Nakonechny, F.; Nisnevitch, M. Water Disinfection by Immobilized Photosensitizers. Water 2018, 11, 26. [Google Scholar] [CrossRef] [Green Version]
- Semenova, O.; Kobzev, D.; Yazbak, F.; Nakonechny, F.; Kolosova, O.; Tatarets, A.; Gellerman, G.; Patsenker, L. Unexpected effect of iodine atoms in heptamethine cyanine dyes on the photodynamic eradication of Gram-positive and Gram-negative pathogens. Dyes Pigm. 2021, 195, 109745. [Google Scholar] [CrossRef]
- Valkov, A.; Nakonechny, F.; Nisnevitch, M. Antibacterial Properties of Rose Bengal Immobilized in Polymer Supports. Appl. Mech. Mater. 2015, 719–720, 21–24. [Google Scholar] [CrossRef]
- del Valle, C.A.; Pérez-Laguna, V.; Resta, I.M.; Gavara, R.; Felip-León, C.; Miravet, J.F.; Rezusta, A.; Galindo, F. A cost-effective combination of Rose Bengal and off-the-shelf cationic polystyrene for the photodynamic inactivation of Pseudomonas aeruginosa. Mater. Sci. Eng. C 2020, 117, 111302. [Google Scholar] [CrossRef] [PubMed]
- Gavara, R.; de Llanos, R.; Pérez-Laguna, V.; del Valle, C.A.; Miravet, J.F.; Rezusta, A.; Galindo, F. Broad-Spectrum Photo-Antimicrobial Polymers Based on Cationic Polystyrene and Rose Bengal. Front. Med. 2021, 8, 494. [Google Scholar] [CrossRef] [PubMed]
- Nakonieczna, J.; Wolnikowska, K.; Ogonowska, P.; Neubauer, D.; Bernat, A.; Kamysz, W. Rose Bengal-Mediated Photoinactivation of Multidrug Resistant Pseudomonas aeruginosa Is Enhanced in the Presence of Antimicrobial Peptides. Front. Microbiol. 2018, 9, 1949. [Google Scholar] [CrossRef] [PubMed]
- Kurosu, M.; Mitachi, K.; Yang, J.; Pershing, E.V.; Horowitz, B.D.; Wachter, E.A.; Lacey, J.W.; Ji, Y.; Rodrigues, D.J. Antibacterial Activity of Pharmaceutical-Grade Rose Bengal: An Application of a Synthetic Dye in Antibacterial Therapies. Molecules 2022, 27, 322. [Google Scholar] [CrossRef] [PubMed]
- Gurianov, Y.; Nakonechny, F.; Albo, Y.; Nisnevitch, M. LLDPE Composites with Nanosized Copper and Copper Oxides for Water Disinfection. Polymers 2020, 12, 1713. [Google Scholar] [CrossRef]
- Meistelman, M.; Meyerstein, D.; Burg, A.; Shamir, D.; Albo, Y. “Doing More with Less”: Ni(II)@ORMOSIL, a Novel Sol-Gel Pre-Catalyst for the Reduction of Nitrobenzene. Catalysts 2021, 11, 1391. [Google Scholar] [CrossRef]
Sample | BET Surface Area, m2/g | Average Pore Volume, cm3/g | Average Pore Diameter, nm |
---|---|---|---|
BL1 | 311 | 2.8 | 3.6 |
RB4 | 279 | 3.0 | 3.7 |
RB6 | 225 | 2.2 | 4.1 |
Specimen * | Amount of Leached RB, µmol ** | RB Leaching, % | Actual Loading of RB in Matrices, µmol/g |
---|---|---|---|
RB1 | 19.1 | 45.2 | 5.47 |
RB2 | 22.0 | 52.0 | 4.67 |
RB3 | 8.6 | 20.4 | 7.83 |
RB4 | 18.7 | 44.3 | 5.45 |
RB5 | 15.5 | 36.7 | 6.37 |
RB6 | 16.9 | 40.0 | 5.94 |
Specimen | Molar Ratio TEOS:MTMOS:APTES | APTES, Mole % * | RB, 0.073 Mole % * |
---|---|---|---|
BL1 | 20.3:2.2:1 | 4.44 | - |
BL2 | 13.7:1.5:1 | 6.65 | - |
BL3 | 10.2:1.1:1 | 8.89 | - |
BL4 | 8.1:0.9:1 | 11.11 | - |
RB1 | 20.3:2.2:1 | 4.44 | Immediately after the addition of APTES |
RB2 | 13.7:1.5:1 | 6.65 | Immediately after the addition of APTES |
RB3 | 10.2:1.1:1 | 8.89 | Immediately after the addition of APTES |
RB4 | 8.1:0.9:1 | 11.11 | Immediately after the addition of APTES |
RB5 | 20.3:2.2:1 | 4.44 | Before the addition of APTES |
RB6 | 20.3:2.2:1 | 4.44 | Parallel to the addition of APTES |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurianov, Y.; Meistelman, M.; Albo, Y.; Nisnevitch, M.; Nakonechny, F. Antibacterial Activity of Rose Bengal Entrapped in Organically Modified Silica Matrices. Int. J. Mol. Sci. 2022, 23, 3716. https://doi.org/10.3390/ijms23073716
Gurianov Y, Meistelman M, Albo Y, Nisnevitch M, Nakonechny F. Antibacterial Activity of Rose Bengal Entrapped in Organically Modified Silica Matrices. International Journal of Molecular Sciences. 2022; 23(7):3716. https://doi.org/10.3390/ijms23073716
Chicago/Turabian StyleGurianov, Yanna, Michael Meistelman, Yael Albo, Marina Nisnevitch, and Faina Nakonechny. 2022. "Antibacterial Activity of Rose Bengal Entrapped in Organically Modified Silica Matrices" International Journal of Molecular Sciences 23, no. 7: 3716. https://doi.org/10.3390/ijms23073716
APA StyleGurianov, Y., Meistelman, M., Albo, Y., Nisnevitch, M., & Nakonechny, F. (2022). Antibacterial Activity of Rose Bengal Entrapped in Organically Modified Silica Matrices. International Journal of Molecular Sciences, 23(7), 3716. https://doi.org/10.3390/ijms23073716