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Abstract: Pif1 helicases are a multifunctional family of DNA helicases that are important for many
aspects of genomic stability in the nucleus and mitochondria. Pif1 helicases are conserved from
bacteria to humans. Pif1 helicases play multiple roles at the replication fork, including promoting
replication through many barriers such as G-quadruplex DNA, the rDNA replication fork barrier,
tRNA genes, and R-loops. Pif1 helicases also regulate telomerase and promote replication termination,
Okazaki fragment maturation, and break-induced replication. This review highlights many of the
roles and regulations of Pif1 at the replication fork that promote cellular health and viability.
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1. Introduction to Pif1 Helicases

DNA helicases utilize the energy of NTP hydrolysis to translocate on and unwind
DNA for processes such as replication and repair. The Pif1 helicase family is part of helicase
superfamily 1B [1], which translocates on single-stranded DNA (ssDNA) and unwinds
duplex DNA in the 5′-to-3′ direction [2]. Pif1 is conserved in all eukaryotes and some
bacteria [1]. Saccharomyces cerevisiae Pif1 (ScPif1) is the prototypical member of the family.
ScPif1 was discovered when its deletion resulted in the loss of mitochondrial DNA and
respiratory-deficient (petite) cells, coining its name: petite integration frequency (Pif1) [3,4].

S. cerevisiae encodes two different Pif1 helicases, ScPif1 and Rrm3, which both localize
to the nucleus and mitochondria [5–7] Both isoforms of ScPif1 are encoded from a single
open reading frame, such that translation beginning at the first start codon (M1) results
in nuclear ScPif1 and translation beginning at the second start codon (M40) results in
mitochondrial ScPif1 [8]. In fact, many assays for either nuclear or mitochondrial ScPif1
will use pif1-m1 or pif1-m2 alleles with point mutations in the first or second start codon
that result in the expression of nuclear ScPif1 or mitochondrial ScPif1, respectively [9]. The
use of pif1-m2 cells to ascertain the function of nuclear ScPif1 without the mitochondrial
defects associated with ScPif1 loss is common, although nuclear effects are less drastic in
pif1-m2 cells than in pif1∆ cells, suggesting that a small amount of mitochondrial ScPif1
leaks into the nucleus [10]. In addition to S. cerevisiae, some other fungi also encode two
Pif1 helicases, but encoding two Pif1 proteins is not an innate trait of yeast genomes since
Schizosacchromyces pombe encodes for only one Pif1 helicase, Pfh1, which stabilizes both
mitochondrial and nuclear DNA [11]. Although Pif1 is nonessential in S. cerevisiae, Pfh1 is
essential in S. pombe [12]. Most multicellular organisms also encode only one Pif1 family
helicase. The human PIF1 (hPIF1) has two splice variants: one that localizes to the nucleus
and another that localizes to the mitochondria [13]. Regardless of the number, Pif1 family
helicases seem to localize to both the nucleus and the mitochondria [1].
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The Pif1 signature motif (DKLeXvARaiRKqXkPFGGIQli) between helicase motifs II
and III [14] differentiates Pif1 and other superfamily 1B helicases [15,16]. The first 10 amino
acids of the signature motif form an α-helix and the following 11 amino acids form an
extended loop [16]. While the signature motif is conserved through bacteria, yeast, and
humans, it is not always conserved in Pif1 in plants [16]. The signature motif stabilizes the
structure [17], is essential for the DNA binding and ATPase activities of ScPif1 [16,17], and is
essential for DNA unwinding and protein displacement by Pfh1 [18]. Not surprisingly, the
signature motif is required for many in vivo ScPif1 activities, including its mitochondrial
functions, the removal of telomerase from telomeres and double-stranded DNA breaks
(DSBs), and Okazaki fragment processing and maturation [16]. A point mutation in the
signature motif, L319P, in hPIF1 is associated with an increased risk of breast cancer [19]
and likely causes a kink in an α-helix that destabilizes the protein [17]. Mohammad et al.
engineered three point mutations in the corresponding amino acids of nuclear Pfh1 (L430P,
L430V, L430A) and found that the mutations L430P and L430V exhibited impaired ATP
hydrolysis [18]. Perhaps it is no wonder that a point mutation in the hPif1 signature motif
can increase the risk of breast cancer [19], since Pif1 and the Pif1 signature motif play a
major role in genetic stability.

2. Pif1 Structure

ScPif1, Rrm3, Pfh1, and hPIF1 have three domains: the N-terminal domain (NTD),
the central helicase domain, and the C-terminal domain (CTD) [20–23]. However, only the
helicase domain is conserved [20], and the ScPif1 and Rrm3 helicase domains are inter-
changeable [23]. They are responsible for binding and hydrolyzing ATP and binding and
translocating on ssDNA to unwind duplex DNA, unfold G-quadruplex DNA, and displace
proteins bound to DNA [17,24–26]. The NTDs of ScPif1, Rrm3, and Pfh1 all contain mito-
chondrial localization sequences [27], whereas hPIF1 contains a mitochondrial localization
sequence in the CTD [13]. The NTD and CTD accessory domains have been proposed to
function as sites of protein–protein interactions, [28], posttranslational modification [8],
and regulation [29], and as providers of secondary activities such as strand annealing [30].
Recent evidence suggests these domains may also directly modulate helicase activity [23].

Structures of the helicase domain of ScPif1 and hPIF1 and of two bacterial Pif1s which
consist of only a helicase domain, Bacteroides spp. (BsPif1) and Bacteroides sp. 2-1-16 (BaPif1),
are available [17,25,31,32]. All share a similar structure comprising two RecA-like domains
containing the conserved helicase motifs, an SH3 domain, and a wedge domain for separat-
ing the incoming duplex. The wedge is stabilized by the Pif1 signature motif (Figure 1) [17].

The mutation of the ATPase active site abolishes helicase activity but not its strand-
annealing ability [18,30,33]. The deletion of the ScPif1 NTD results in greater affinity for
ssDNA than full-length ScPif1, suggesting that the NTD inhibits binding to single-stranded
nucleic acids [29]. Full-length ScPif1 preferentially unwinds RNA-DNA hybrid duplexes
with the RNA in the displaced strand [34] due to increased processivity on the RNA-DNA
duplex [35], but this enhanced activity on RNA-DNA duplexes is lost when the NTD is
removed [29]. The NTD of ScPif1 is required in order for the mitochondrial single-stranded
binding protein, Rim1, to enhance the unwinding activity of ScPif1 [36], even though direct
interactions between the helicase domain of ScPif1 and Rim1 have been reported [37]. The
strand annealing activity of hPIF1 resides in the NTD [30]. The NTD of Rrm3 is required
for interaction with Orc5 [28] and PCNA [38] and is necessary in order for Rrm3 function
in vivo [27]. A chimeric protein containing the NTD of Rrm3 and the helicase domain of
ScPif1 or BaPif1 can substitute for Rrm3 in vivo [23].

A structure of a non-canonical PCNA-interacting protein (PIP) box in the CTD of ScPif1
interacting with PCNA has been solved [39]. The mutation of this sequence reduces strand
displacement synthesis by Polδ-PCNA-ScPif1 and results in defects in break-induced repli-
cation [39]. However, ScPif1 also has two canonical PIP boxes in the helicase domain [40].
The PIP box, which is present on the C-terminus of the helicase domain of ScPif1, also
interacts with PCNA and is important, but not required, for replication through lagging-
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strand G-quadruplex structures [40]. The non-canonical PIP box in the CTD has no effect on
replication through G-quadruplex structures. Whether the second PIP box in the helicase
domain interacts with PCNA and allows Pif1 to carry out some of its functions is unknown.
However, ScPif1 appears to interact with PCNA in at least two different sites. Pfh1 also
interacts with PCNA through a PIP box in its NTD [38].
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Figure 1. Structure of BaPif1 (PDB ID: 5FHE [17]). The Pif1 signature motif (blue) provides structural
support for the strand separation wedge (pink). The signature motif and wedge are insertions within
domain 1A (green). Domains 1A and 2A (gray) are RecA-like domains that are conserved in all
helicases. The SH3 domain (cyan) is an insertion within domain 2A. The bound DNA is yellow and
ADP-AlF4

− is orange.

The C-terminal domain of Thermotoga elfii Pif1 increases the affinity for ssDNA by
providing a secondary ssDNA binding site in addition to the DNA binding site in the
helicase domain [23]. This is critical for coupling ATP hydrolysis to DNA unwinding, as the
loss of the CTD domain ssDNA binding site leads to increased ATPase rates but reduced
DNA unwinding rates [23]. These observations suggest that, in addition to functions in
protein–protein interactions and oligomerization, the N- and C-terminal accessory domains
can modulate the enzymatic activity of Pif1 helicases.

Recently, a structure of BaPif1 bound to a forked duplex was reported [26]. Two BaPif1
molecules are bound, one to each arm of the fork (Figure 2A). Surprisingly, the BaPif1 on
the 3′-arm of the fork is positioned at the ssDNA–dsDNA junction, where it stabilizes a
separated base pair. As Pif1 helicases unwind DNA 5′-to-3′, this enzyme is not positioned
to unwind the duplex but instead appears to block access to the fork by the BaPif1 bound
to the 5′-arm of the fork that is positioned back from the junction (Figure 2A,B). However,
both BaPif1 molecules are active helicases and can unwind a substrate with two duplexes:
one to report on the activity of the 5′-Pif1 and one to simultaneously report on the activity of
the 3′-Pif1 [26]. The two BaPif1 molecules interact (Figure 2C) and appear to regulate each
other as both Pif1 molecules unwind duplex DNA faster and are more processive when
an electrostatic interaction at the interface between the molecules is interrupted by the
mutation of Glu323. This limitation of activity may serve to constrain Pif1 to local regions
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such as G-quadruplexes or protein-bound DNA, where it may repetitively resolve structures
present without unwinding large portions of the genome. Many helicases, including ScPif1,
have been shown through single-molecule FRET (smFRET) to repetitively and transiently
unwind duplexes, unfold G4 structures, and remove bound proteins [41–45]. ScPif1 has
also been observed to form DNA loops during translocation on ssDNA using magnetic
tweezers [46]. An interaction of two Pif1 molecules at the fork where each constrains the
activity of the other while repetitively looping DNA through to remove an obstacle at the
fork is an attractive model to describe how some Pif1 helicases may limit their activity to
local regions of the DNA. However, whether this structure is common to all Pif1 family
helicases or is specific to BaPif1 is unknown. It is difficult to imagine how this mechanism
could be beneficial for Rrm3 and Pfh1 because they travel with the replisome [47,48].
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Figure 2. Structure of BaPif1 bound to a forked DNA. (A) Two molecules of BaPif1 (tan and green)
are bound to the DNA fork (magenta). (B) The BaPif1 on the 3′-arm of the fork (green) is bound at the
junction. (C) The two BaPif1 molecules interact. PDB ID 6L3G. Images reproduced from reference [26]
Creative Commons CC BY.

3. Pif1 Resolves Replication Barriers

Pif1 helicases have multifunctional roles in the cell and at the replication fork. Pif1
helicases localize to and enhance the progression of the replication fork through many
types of structures that may disrupt replication and lead to DNA damage in the absence
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of Pif1, including G-quadruplex structures, R-loops, and protein-bound DNA. Some Pif1
family helicases such as Rrm3 and Pfh1 are associated with the replisome, where they aid
in progression of the fork [47,48].

3.1. G-Quadruplex Structures

G-quadruplexes (G4) are secondary structures in DNA that form from intra- or inter-
molecular guanosine hydrogen bonding, forming highly stable planar tetrads stabilized by
Hoogsteen hydrogen bonds [49]. G4 DNA structures regulate transcription, translation,
telomere maintenance, and immunoglobulin heavy chain isotype switching [50]. G4 DNA
is enriched in telomeres [51], meiotic and mitotic DSB hotspots [52], mitochondrial DNA
deletion breakpoints [53], gene promoters [54], ribosomal DNA (rDNA) [55], and untrans-
lated regions (UTRs) [56]. The difficulty experienced in unwinding and replicating these
regions makes them a source of genomic instability [57,58]. However, multiple Pif1 family
helicases can reduce genomic instability at G4 DNA motifs.

Pfh1 and ScPif1 preferentially bind to G4 sequences in the genome and promote ge-
nomic stability at these sites [59–62]. ScPif1, Pfh1, and hPIF1 all unfold G4 DNA structures
in vitro [42,43,63–65], and ScPif1 promotes DNA synthesis through G4 DNA structures
by Polδ, POLγ, and Mip1 (the S. cerevisiae POLγ homolog) [40,66,67]. In cells lacking
either ScPif1 or Pfh1, there is increased replication pausing and the breakage of forks at
G4 motifs [59,61]. In the absence of ScPif1, G4-containing microsatellites are unstable,
and mutations and gross chromosomal rearrangements accumulate around G4s [58,60–62].
DNA damage also accumulates around G4 motifs in Pfh1-deficient S. pombe as the phospho-
rylation of histone H2A, producing γ-H2A, occurs at G4 motifs but not at regions with only
a high GC content that could not form G4 secondary structures [59]. The ability of cells to
conduct DNA replication at sites with G4 DNA is dependent on the stability of the quadru-
plex [40,67,68], where shorter G4 structures tend to be more thermally stable [62,67–69]. G4
DNA can fold into parallel and antiparallel structures, where parallel structures are the
preferred form in S. cerevisiae and tend to also have greater thermal stability [70]. However,
because these structures are more stable, it is more difficult for Pif1 to unwind them [71].

Interestingly, Pif1 cooperates with the single-stranded binding protein replication
protein A (RPA) to resolve G4 structures on both the leading and lagging strand during
DNA replication [72]. Human RPA unfolds less stable G4 structures on its own, but
structures with loops less than three nucleotides long or with four or more tetrads are
resistant to unfolding by RPA [73]. ScPif1 is particularly important for replication through
lagging-strand G4 DNA sequences [40]. This stimulation of replication through G4 DNA
sequences requires the interaction of ScPif1 with PCNA through a canonical PIP box in
the helicase domain of ScPif1 [40]. The effect on the replication rate is seen only when
the G4 DNA sequence is on the lagging strand, suggesting that RPA may not prevent the
folding of G4 DNA structures in the ssDNA on the lagging strand. ScPif1 could then be
necessary in order to unfold the G4 DNA structure to allow synthesis by Polδ (Figure 3).
Since Pif1 moves in the 5′-to-3′ direction, a head-on collision with DNA polymerase δmay
occur as the polymerase translocates along the template in the 3′-to-5′ direction [67]. After
a head-on collision between Pif1 helicase and a polymerase, the polymerase’s exonuclease
activity may become active. However, single-strand binding proteins may act as a bumper
to prevent primer degradation from the polymerase’s exonuclease activity [67].

hPIF1 interacts with BRCA1 to facilitate the resection of G4 sequences during DSB
repair by homologous recombination [74]. Rrm3 is required for the repair of DSBs that form
due to replication fork breakage [75]. Although it is possible that, like hPIF1, Rrm3 promotes
resection across G4 sequences, this seems unlikely because Rrm3 has not been reported to
have G4 DNA unfolding activity. Drosophila PIF1 is critical for genome maintenance and
the survival of embryos exposed to the replication stalling agent hydroxyurea [76]. As G4
structures contribute to replication fork stalling, this suggests that Pif1 family helicases
may also respond to replication fork stalling at G4 structures in addition to promoting
replication through these structures.
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Figure 3. ScPif1 stimulates replication through lagging-strand G-quadruplexes. The leading strand is
synthesized by Polε (yellow) in complex with PCNA (purple) at the same time as duplex unwinding
by CMG (green). RPA (brown) may not be able to prevent G4 structures from forming on the lagging
strand, so Pif1 (orange) may unfold G4 structures so that Polδ (pink) can synthesize the lagging
strand in complex with PCNA. Since Polδ translocates 3′-to-5′ on the template and Pif1 translocates
5′-to-3′, Pif1 would approach the G4 structure from the opposite side to that of Polδ.

3.2. R-Loops

The formation of RNA:DNA hybrids within duplex DNA during transcription re-
sults in the formation of structures called R-loops that can potentially cause genetic
instability [77,78]. Their formation is normally transient, as they can be resolved by RNase
H that degrades the RNA in RNA:DNA hybrids. R-loops can form between newly tran-
scribed RNA and the template DNA strand. In addition to formation at actively transcribed
genes, R-loops also form at telomeres when the G-rich telomere repeat-containing RNA
(TERRA) base pairs with telomeric DNA [79]. These telomeric R-loops increase chromo-
some fragility [80]. In the case of telomeric R-loops, both the R-loop and the potential
for G-quadruplex formation on the displaced G-rich strand (Figure 4A) have the poten-
tial to stall replication forks [79]. Since G-quadruplexes and R-loops can both promote
the formation of each other, they may cooperate to increase the rate of replication fork
stalling [81–84]. G4 formation in the displaced strand of the R-loop (Figure 4B) results in
an increase in markers of DNA damage and can cause replication stress [81]. Conflicts
between the transcription and replication machinery can allow G4 structures to form on
the non-template strand, leading to the stalling of the leading strand polymerase and a
gap in the lagging strand [85]. ScPif1 reduces the formation of lagging-strand gaps at
co-directional R-loops in the presence of RNase H1 [85]. RNase H1 is sufficient to resolve
R-loops and ScPif1 does not enhance fork progression through co-directional R-loops, likely
because the limited processivity of ScPif1 prevents it from resolving the long RNA:DNA
hybrids that form during transcription [85]. Although the processivity of ScPif1 is greater
in RNA:DNA hybrid duplexes than in DNA:DNA duplexes, ScPif1 is only able to unwind
15–20 base pairs of a RNA:DNA duplex in a single binding event [35]. This suggests that
the role of ScPif1 at R-loops may be to resolve the G4 DNA structures that form on the
displaced (non-template) strand as opposed to a direct effect on the R-loop (Figure 4).

Catalytically dead Cas9 (dCas9) in complex with a guide RNA (gRNA) forms a stable
R-loop with a tightly bound protein that is a barrier to the progression of the replica-
tion fork, which serves as a model of an RNA polymerase-stalled R-loop barrier [86,87].
The dCas9–gRNA complex arrests replisomes in vitro on both the leading and lagging
strand [88]. ScPif1 can work with the CMG-Polε complex to bypass or eject the dCas9–
gRNA complex [88]. Surprisingly, neither the replisome nor ScPif1 is efficient at bypassing
a dCas9-R-loop block alone, but the combination results in efficient bypass, indicating that
ScPif1 does not bypass the block alone [88].
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3.3. Pif1 Promotes Genomic Stability at Protein Barriers
3.3.1. Pif1 Inhibits Telomerase

Telomere homeostasis is important for mammalian cells, which have a species-specific
length. Telomeres shorten with aging, but are preserved in tumors and immortalized
cell lines through extension by telomerase to prevent genetic instability and the loss of
genetic information [89]. In single-celled eukaryotes such as yeast, telomerase continually
maintains telomere length [90]. However, in multicellular eukaryotes, telomere length
shortens with each cell division in somatic tissues [91], and the rate of telomere shortening
correlates with life-span [92]. This limits tumor formation but also proliferation [93]. A
loss of Pif1 is known to result in longer telomeres in a telomerase-dependent manner [8,79],
which could be a factor in the increased risk of cancer from a point mutation in hPIF1 [19].
The two important parts of telomerase are the telomerase reverse transcriptase [94] and
the RNA component, which acts as a template for the reverse transcriptase to lengthen
the telomeres.

ScPif1 is a catalytic inhibitor of telomerase at both telomeres and DSBs [9,10,95],
which suppresses gross chromosomal rearrangements [96]. The DNA damage resulting at
telomeres from the overexpression of ScPif1 can be rescued by telomerase [97]. The Zakian
lab has shown that this occurs because ScPif1 removes telomerase from both telomeric DNA
and DSBs [98,99]. However, ScPif1 also promotes the localization of the budding yeast
telomerase RNA component, TLC1, to the nucleolus, which segregates it from sites of DNA
repair [100]. This represses de novo telomere addition, in which telomerase adds a new
telomere at a DSB, potentially causing genomic instability and chromosomal aberrations [8].
Preventing the over-extension of telomeres is necessary, but the overexpression of Pif1 often
results in a phenotype with telomeres that are too short [9].
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Whether Pif1 inhibits telomerase in a telomere length-dependent [99,101] or indepen-
dent fashion [102] is debatable. ScPif1 binds more efficiently to normal-length telomeres
than to short telomeres, resulting in increased telomerase inhibition on normal-length
telomeres compared to short telomeres [99]. This suggests that telomere length may be
maintained by the preferential lengthening of short telomeres [99]. Telomerase processivity
is also enhanced at short telomeres in a Tel1 (ATM) -dependent manner [103]. pif1-m2
cells exhibit similar phenotypes of telomere elongation to wild-type cells when the telom-
ere length is at least 125 base pairs but increased elongation when the telomere is less
than 125 base pairs [102]. However, the frequency of telomere extension was increased at
telomeres of all lengths in pif1-m2 cells, suggesting that ScPif1 inhibits telomerase in a length-
independent manner [102]. Telomerase binds preferentially to short telomeres [104,105],
suggesting that ScPif1 may reduce telomere length by reducing the frequency of telomere
addition at all telomeres and that the preferential extension of short telomeres may be due
to the increased association of telomerase with short telomeres.

Interestingly, while the deletion of the NTD on ScPif1 results in a better in vitro
inhibition of telomerase in comparison to full-length ScPif1 [29], the overexpression of
ScPif1 without the NTD did not cause a telomere length crisis in vivo and was a weaker
inhibitor of telomerase in vivo compared to wild-type ScPif1 [29]. The expression of ScPif1
without the NTD also resulted in less telomere shortening than the expression of wild-type
ScPif1 [29]. The deletion of the Pif1 signature motif from ScPif1 results in long telomeres,
indicating that these residues are important in maintaining proper telomere length and
inhibiting telomerase [16].

Like the deletion of ScPif1, the deletion of Rrm3 also results in longer telomeres, but the
mechanisms appear to be different. pif1∆ yeast have shorter telomeres than rrm3∆ yeast, but
pif1∆ rrm3∆ yeast have a similar telomere length to that of rrm3∆ yeast [24]. While ScPif1
inhibits telomerase [9,10,95], Rrm3 associates with telomeric DNA and is involved in fork
progression through telomeric and subtelomeric DNA [24]. Rrm3 also does not affect de
novo telomere addition in cells with ScPif1, although in cells lacking ScPif1, Rrm3 reduces
the de novo telomere addition that occurs in the absence of ScPif1 [24]. ScPif1 inhibits
telomeric replication, but Rrm3 promotes semi-conservative replication at telomeres [24],
illustrating that these two helicases play different roles at the replication fork and within
the cell. Like Rrm3, Pfh1 binds to telomeric DNA [59] and promotes replication through
telomeric DNA [106]. Telomere length is decreased in pfh1∆ cells (which only survive
for a few generations) and increased in cells overexpressing Pfh1 [12,79,106]. Similar
to Rrm3, Pfh1 is thought to promote semi-conservative replication through telomeric
regions because cells depleted of Pfh1 exhibit fork slowing within telomeric DNA [106,107].
Both Rrm3 and Pfh1 promote replication fork progression through tightly bound protein
complexes [107,108]. This could explain why Pfh1 and Rrm3 are needed for replication
through telomeric DNA, since telomeric DNA is protected by the protein complexes.

In yeast lacking ScPif1, the de novo telomere addition at DSBs increases dramati-
cally [10,24]. Some evidence suggests ScPif1 is able to distinguish between DSBs and
critically short telomeres, which must be processed differently by the cell. DSBs should be
repaired without telomerase generating a new telomere at the break, while critically short
telomeres must be protected from DSB repair pathways and extended by telomerase. The ac-
tion of ScPif1 appears to provide at least some discrimination of these structures. It inhibits
telomerase at DSBs with short telomeric sequences (less than 34 bp), but not DSBs with
long telomeric sequences [109,110]. Mec1 and Rad53, the yeast ATR and CHK2 homologs,
respectively, phosphorylate nuclear Pif1 in the presence of a DSB [8]. The phosphorylation
of the ScPif1 CTD by Rad53 in response to DNA damage is required for the ScPif1-mediated
inhibition of the de novo telomere addition at DSBs but not at telomeres [8].

3.3.2. rDNA Replication Fork Barrier

At the S. cerevisiae rDNA locus on chromosome XII, 150–200 repeating units of 35S
and 5S rDNA are separated by intergenic spacers containing autonomously replicating
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sequence (ARS) replication origins between the 5S and 35S loci and a replication fork barrier
(RFB) proximal to the 3′ end of the 35S rDNA. The RFB creates a unidirectional 5′-3′ block to
the replication fork to prevent head-on collisions between the RNA polymerase I-mediated
transcription of the 35S rDNA and the replication fork; thus, 35S rDNA is replicated by
replication forks initiated from an ARS in a nearby rDNA repeat in the same direction as
transcription [111]. Replication fork stalling at the RFB also serves as an initiator of recom-
bination events between rDNA repeats as a mechanism of maintaining the proper rDNA
copy number and identity of rDNA repeats [112,113]. The S. cerevisiae RFB is maintained by
the binding of Fob1 [112,114]. Fob1 abundance maintains the efficacy of the RFB [115], but
Fob1 also serves as a scaffold to recruit Tof1, Csm3 (the S. cerevisiae homologs of H. sapiens
TIMELESS and TIPIN and S. pombe Swi1 and Swi3), and DNA topoisomerase I to promote
replication fork slowing, transcriptional silencing, and recombination at the RFB [116–120].

Knowledge of the mechanistic role of ScPif1 at the S. cerevisiae RFB is limited, but pif1
mutants lose RFB efficacy and have decreased rDNA recombination events compared to
wild-type S. cerevisiae [121], suggesting that ScPif1 maintains the RFB through an as-of-yet
undescribed mechanism. In contrast, Rrm3 promotes 3′–5′ replication fork progression
through the RFB by displacing Fob1 bound at the RFB [108,121,122]. In an Rrm3 N-terminal
deletion screen, a lack of residues 134–196 displayed a Fob1-dependent perturbation of
rDNA replication, with a broader area of RFB pausing when compared to rrm3 mutants,
suggesting that these N-terminal residues of Rrm3 may be involved in RFB bypass through
the replication fork [27]. Notably, it was shown that Rrm3 was not required for replication
fork progression through the similar unidirectional replication-blocking Escherichia coli Ter
replication barrier with bound Tus protein when inserted into the S. cerevisiae genome,
indicating that Rrm3 does not aid fork progression through all unidirectional protein-
bound fork barriers [123]. Rrm3 involvement at the RFB is also associated with the proper
replication termination of progressing 3′–5′ forks at the RFB alongside topoisomerase III,
Sgs1, and topoisomerase II [124,125]. Further studies of the roles and regulations of Rrm3
and ScPif1 at the S. cerevisiae RFB could utilize in vitro replisome progression assays with
purified RFB barrier and replisome proteins, as performed previously [126].

A lack of fork progression through the RFB in the absence of Rrm3 has negative
consequences on the genomic stability. Stalled replication forks at the RFB increase
the ssDNA gaps in rrm3 mutants [127], and lethality is observed in S. cerevisiae with
mutations in Rrm3 alongside mutations of other DNA repair and recombination pro-
teins [128–130]. Intriguingly, both Rrm3 and ScPif1 have synthetic lethal interactions with
the F-box E3 ubiquitin-ligase component Dia2, and given that dia2 mutants increases
rDNA recombination, this suggests an interaction between RFB maintenance, bypass, and
protein ubiquitination [128].

Pfh1 also functions at the S. pombe RFB. The S. pombe rDNA loci are located at both
ends of chromosome III and contain 100–150 copies of each rDNA repeat, with an RFB
intervening between each repeat [131]. Additionally, the S. pombe rDNA loci have four
separate repeats, and the repeats are bound by either Sap1 (at the Ter1 site) or Reb1 (at the
Ter2 and Ter3 sites) or have unknown protein requirements (at the RBF4 site) [132,133]. The
depletion of Pfh1 increases fork stalling at the RFBs [107,134], while the deletion of Swi1,
a Sap-1 bound protein required for RFB fork stalling [135,136], prevents replication fork
stalling at these barriers (Steinacher et al., 2012). This suggests that Pfh1, similar to Rrm3
and unlike ScPif1, may disrupt Sap1 and Reb1 or other protein binding at the S. pombe RFBs
to promote replication fork progression through the rDNA loci [107,134].

3.3.3. Highly Transcribed Genes

Additionally, conflicts between the replication and transcription machineries may
cause replication fork stalling [47]. tRNA genes (tDNAs) are highly transcribed, and the
stalling of DNA replication occurs in rrm3 S. cerevisiae, irrespective of the relative orienta-
tions of the complexes (co-directional and head-on collisions) [47,122,137,138]. In rrm3 mu-
tants, ScPif1 promotes the progression of the replisome through tRNA genes [47,137,138].
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Highly transcribed RNA polymerase II genes also cause the pausing of the replication fork,
but this is not enhanced in rrm3 S. cerevisiae [47]. Although head-on and co-directional
collisions can both cause replication fork pausing, head-on collisions induce replication
fork arrest more frequently, and Rrm3 and ScPif1 appear to affect fork pausing in both
orientations equally [137]. However, the specific roles of Rrm3 and ScPif1 during collisions
with the transcriptional machinery are under debate. Data from one group indicate that
Rrm3, and, to a lesser degree, ScPif1 decrease the pausing of the replication fork at tRNA
genes by resolving R-loops [138]. However, another group found that replication forks
lacking Rrm3 arrest at tRNA genes in an R-loop-independent manner [137]. The reasons
for these discrepancies are unclear, so the role of R-loops in pausing at tRNA genes is still
an open question. S. pombe lacking Pfh1 also show increased pausing at tDNAs [107]. A
mutation in the promoter of tDNAs that prevents transcription abolishes fork pausing in
both WT and rrm3∆ cells [122]. While replication fork pausing during transcription occurs
naturally [139], it is more pronounced in cells depleted of Pfh1 [107] and at certain sites in
rrm3∆ cells [122].

4. Lagging-Strand Synthesis

During the synthesis of the lagging strand, DNA polymerase α-primase synthesizes
an RNA primer to form an RNA/DNA hybrid [140]. The lagging-strand polymerase, DNA
polymerase δ, in complex with PCNA extends the primers to produce short daughter
strands called Okazaki fragments from the RNA primers, which vary from ~100 nt in hu-
mans to ~250 nt in S. cerevisiae [141]. Okazaki fragments have short 5′-flaps of ssDNA/RNA
that overhang and are cleaved by FEN1 then ligated by DNA ligase I. Pif1 has been shown
to interact with predominantly DNA polymerase δ, which extends Okazaki fragments
initiated by polymerase α-primase [142].

Rarely, strand displacement synthesis by the ScPif1-PCNA-Polδ complex extends the
flap before cleavage (Figure 5) [143]. These long flaps can be cleaved by FEN1 before the
binding of RPA, but if they are lengthened sufficiently to allow RPA binding, they are
resistant to cleavage by FEN1 [143–145] but can be cleaved by Dna2 [146–148]. In this two-
nuclease pathway of Okazaki fragment processing, Dna2 cleaves the long flap generated
by ScPif1-Polδ, producing a short flap which RPA cannot bind to [143] and FEN1 can then
cleave [144,145,149].
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The deletion of Dna2 is lethal [150] and activates the DNA damage response [151].
pif1∆ rescues the lethality of dna2∆, suggesting that the requirement for Dna2 results
from the action of Pif1 [152]. Similarly, pfh1 mutations suppress the temperature-sensitive
phenotype of a dna2 mutant in S. pombe [153]. Dna2-depleted S. cerevisiae accumulate
ssDNA flaps that likely result from strand displacement synthesis by Polδ and ScPif1 [151].
This suggests that the accumulation of long flaps generated by ScPif1-Polδ during Okazaki
fragment processing is toxic, and the processing of these long flaps is an essential activity
of Dna2.

Both ScPif1 and Rrm3 enhance the processivity of Polδ, such that it synthesizes to the
midpoint of the nucleosome as opposed to the proximal edge of the nucleosome, suggesting
that these helicases remove or reposition the nucleosome or partially unwrap the DNA
from the nucleosome to allow synthesis to continue [137]. The transcription factors Rap1,
Abf1, and Reb1 interact with the DNA at positions that coincide with Okazaki fragment
ends, suggesting that their binding induces Polδ dissociation and Okazaki fragment termi-
nation [154]. Rap1 binds to telomere replication forks and slow them in a sequence- and
concentration-dependent manner, as well as inhibiting lagging-strand replication behind
the fork in vitro [155]. Rap1 inhibits strand displacement synthesis by Pol δ and ScPif1, but
not RPA or Dna2, and stimulates Pol δ to extend the 5′ flap and bypass Rap1 [156]. Douglas
and Diffley revealed that Pif1 promotes the bypass of Rap1 in a Pol δ-independent manner,
and the authors suggest that Pif1 displaces Rap1 in front of the replication fork [155].

Reb1 is also a block to Pol δ strand displacement synthesis, even with RPA stimulating
Pol δ synthesis [157]. While the forward orientation of Reb1 is a greater block to replication
than its reverse orientation, Pif1 can remove Reb1 downstream of Pol δ [157]. Similar to the
protein blocks in Okazaki fragment processing, nucleosomes produce a barrier that Pif1
and not RPA can resolve for Pol δ synthesis [157]. In vitro assays conducted by the Galletto
lab suggest that Pif1 removes the nucleosomal barrier rather than the barrier being pushed
off the end of the dsDNA substrate [157].

5. Break-Induced Replication

Break-induced replication (BIR) is a type of homologous recombination involved in
the repair of one-ended double-strand DNA breaks at collapsed replication forks. BIR is
also responsible for the alternative lengthening of telomeres (ALT) [158–160], mitotic DNA
synthesis (MiDAS) [161], and the maintenance of the mitochondrial DNA networks in the
human heart [162]. BIR begins with processing the DNA end into 3′-ssDNA tails onto
which Rad51 recombinase is loaded [163]. Then, Rad51 initiates the strand invasion of the
3′-tail to form a displacement loop (D-loop). Unlike canonical S-phase DNA synthesis, BIR
involves conservative DNA synthesis by Polδ in a migrating D-loop [164]. Yeast, drosophila,
and human cells depleted of Pif1 are deficient in BIR, but the depletion of Rrm3 does not
affect BIR [76,142,165]. It is possible that two Pif1 molecules participate in BIR, with one at
the leading edge of the migrating D-loop, which stimulates strand displacement synthesis
by Polδ through its interaction with PCNA [39]. A second Pif1 at the back of the migrating
D-loop may release the nascent strand to alleviate topological constraint [142] (Figure 6).
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Hundreds of kilobases of DNA can be synthesized in BIR [166], but this promotes
genomic instability [167]. The synthesis of the leading and lagging strands is asynchronous
in BIR, which leads to the accumulation of mutation-prone ssDNA [164]. The mechanism
of BIR also leads to a loss of heterozygosity. Copy number variations, translocations,
and the expansion of repetitive elements can also result from BIR due to out-of-register
strand invasion after replication fork stalling [168–170]. Thus, BIR allows cells to survive
replication-induced DSBs, but it results in an accumulation of genomic anomalies that are
hallmarks of cancer genomes. Overall, BIR appears to protect the genome because the
localization of hPIF1 to common fragile sites that are prone to replication stalling induces
BIR and reduces genomic instability [165]. In addition, a cancer-associated hPIF1 mutation
(L319P) defective in BIR is associated with increased DNA damage [165]. Thus, the effects
of BIR on genome stability are not straightforward.

6. Fork Convergence during Replication Termination

ScPif1 and Rrm3 aid in the fork convergence of budding yeast replication machinery
in vitro; thus, the depletion of either ScPif1 or Rrm3 results in delayed fork convergence
independent of type II topoisomerase activity [171]. The two Pif1 helicases likely unwind
the lagging strand template, aiding the CMG (Cdc45-MCM-GINS) helicase, which moves
in the 3′-to-5′ direction and unwinds the leading strand template [171]. How ScPif1 and
Rrm3 promote fork convergence is not clear. It is possible that ScPif1 and Rrm3 enhance the
ability of the CMG helicases of converging replisomes to pass each other to allow synthesis
to complete, although this seems unlikely because the converging CMG would be bound
to opposite strands, and CMG can bypass blocks on the other strand [172,173]. ScPif1 and
Rrm3 may also promote fork convergence by removing inactive Mcm2-7 double hexamers
from the region of fork convergence; however, ScPif1 and Rrm3 reduce the formation of
late replication intermediates even when only one Mcm2-7 double hexamer is loaded on
the template [171]. It is also possible that ScPif1 and Rrm3 relieve the torsional strain
generated by converging replisomes and prevent the stalling of replication termination
by late termination intermediates [171]. Why this would be a function of ScPif1 and Rrm3
instead of topoisomerases is unclear.

7. Mitochondrial DNA Replication

Pif1 localizes to the mitochondria and the nucleus in both human and yeast cells [4,174]
and was initially identified due to defects in the recombination of ρ− (petite mutant)
Saccharomyces cerevisiae [3]. The importance of Pif1 for mitochondrial DNA (mtDNA) re-
pair [3,175] and for the mitochondrial DNA (mtDNA) maintenance at elevated temper-
atures [4] in S. cerevisiae have been known for quite some time. More recently, mice
lacking PIF1 have been shown to develop mitochondrial myopathy due to respiratory
chain deficiency and mtDNA deletions, indicating that mPIF1 is also critical for mtDNA
maintenance [176].

In addition to its roles in mtDNA repair, ScPif1 has been suggested to be part of
the mitochondrial replisome, where it could aid in replication of G4s in mitochondrial
DNA [15]. Synthesis by the yeast and human mitochondrial replicative polymerases,
Mip1 and POLγ, is blocked by G4s in vitro [66,67]. However, Pif1 stimulates synthesis
by Mip1; POLγ; and another mitochondrial polymerase, PRIMPOL, at G4 sequences,
suggesting that Pif1 promotes the progression of the mitochondrial replication fork through
G4 structures [66,67]. The mechanism of this stimulation is unknown but, based on the 5′-to-
3′ directionality of Pif1 and the movement of the polymerase 3′-to-5′ along the template, Pif1
is likely to unfold the G4 structure from the opposite direction of the replisome progression
(Figure 7). This is consistent with the design of in vitro synthesis experiments with Pif1 and
POLγ [66], Pif1 and Mip1 [67], and Pif1 and Polδ [40,67] and is similar to the mechanism
proposed by FANCJ for the unfolding of G4s that form between MCM and the polymerase
during nuclear replication [177].
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8. Regulation of Pif1 Activity

Regulation of Pif1 expression and activity is important, since the DNA helicase is
involved in many aspects of replication [178] and has been linked to breast cancer [19] and
obesity [179]. Each of the three domains (NTD, helicase, CTD) of ScPif1 contains at least
one lysine acetylation site regulated by the acetyltransferase NuA4 and the deacetylase
Rpd3 [2], which may cause a conformational change in the protein [2]. Interestingly,
the overexpression of ScPif1 is toxic [4,97] and the acetylation of the NTD intensifies its
toxicity [2]. In contrast, the deletion of the NTD alleviates the toxicity [29]. The mutation
of NuA4 decreases the toxicity of Pif1 overexpression, and S. cerevisiae without Rpd3
experienced higher levels of toxicity with Pif1 overexpression [2]. This is likely due to the
improved helicase-catalyzed unwinding of acetylated ScPif1 for both forked and tailed
substrates [2]. This improvement of unwinding occurs due to an increase in the processivity
and not an increase in the rate.

In S. cerevisiae strains with impaired replication, telomere lengthening occurs in a
telomerase- and BIR-dependent manner [180]. DNA damage signaling results in the phos-
phorylation of ScPif1 by Mec1 and Rad53, the yeast ATR and Chk2 homologs, respectively,
to phosphorylate nuclear Pif1 at the sequence TLSSAES (T763-S769) [180]. Interestingly, the
phosphorylation of the same site in response to DNA damage is required for ScPif1 to in-
hibit de novo telomere addition at DSBs [8]. The replacement of the serines and threonines
in the phosphorylated motif with the unphosphorylatable alanines or phosphomimetic
aspartic acid had no effect on telomere length, but the alanine mutant increased de novo
telomere addition, similar to that seen in pif1-m2 cells [8].

In pif1-m2 yeast, which have no nuclear Pif1, and pif1-C-18A, where all the serines
and threonines from T763 to the end are mutated to prevent phosphorylation, a greater
frequency of de novo telomere addition was found, suggesting that the phosphorylation of
the ScPif1 C-terminus plays a role in inhibiting telomerase at DSBs [8]. This study created
two other mutant strains, replacing all of the threonines and serines from T763-S769 with
either non-phosphorylatable residues (pif1-4A) or the phosphomimetic residues pif1-4D [8].
Both were able to inhibit telomerase at telomeres, but the pif1-4A strain could not inhibit de
novo telomere addition at DSBs and was shown by chromatin immunoprecipitation (ChIP)
to localize to DSBs, indicating that this motif is necessary for the proper Pif1 inhibition
of telomerase at DSBs [8]. Additionally, Mec1 and Rad53 phosphorylate nuclear Pif1 in
the presence of a DSB [8], but the DNA damage produced by the overexpression of ScPif1
in telomeres can be rescued by telomerase [97]. This illustrates the complex checks-and-
balance system used for telomere maintenance.
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9. Conclusions

The Pif1 family helicases are conserved from bacteria to yeast and humans. The
helicase plays a major role in maintaining cellular survival and fitness due to its roles in
resolving replication barriers, facilitating proper lagging-strand synthesis, and promoting
break-induced replication. The unique role of Pif1 in cellular health highlights the over-
whelming number of regulatory pathways and mechanisms the cell uses for proper DNA
replication and transcription. While the mutation of the signature motif of Pif1 results in a
phenotype leading to a higher risk of cancer, many studies indicate that the depletion of
Pif1 also results in higher genomic instability and mutations that could lead to cancer.
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