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Abstract: A facile and ingenious method to chemical etching-coordinating a metal-organic framework
(MOF) followed by an annealing treatment was proposed to prepare Co3O4 nanoparticles uniformly
dispersed in rational porous carbon nano-boxes (Co3O4@CNBs), which was further used to detect
H2O2 released from living cells. The Co3O4@CNBs H2O2 sensor delivers much higher sensitivity than
non-etching/coordinating Co3O4, offering a limit of detection of 2.32 nM. The wide working range
covers 10 nM-359 µM H2O2, while possessing good selectivity and excellent reproducibility. Moreover,
this biosensor was used to successfully real-time detect H2O2 released from living cells, including
both healthy and tumor cells. The excellent performance holds great promise for Co3O4@CNBs’s
applications in electrochemical biomimetic sensing, particularly real-time monitor H2O2 released
from living cells.

Keywords: nano-boxes; tannic acid; Co3O4@CNBs; hydrogen peroxide sensor; electrochemical
detection; living cell

1. Introduction

H2O2 is a reactive oxygen species (ROS) frequently used as a marker for oxidative
stress analysis. It is a by-product of reactions catalyzed by most oxidase enzymes [1],
and is also involved in numerous physiological processes including cell differentiation
and mediating immune responses [2,3]. Excess H2O2 will attack methionine residues and
cysteine, which will cause cell damage and cytotoxicity. Owing to its peculiar capability,
the concentration of H2O2 can be used as an indicator of several diseases diagnoses, such
as Parkinson’s disease [4,5], cancer [6,7], diabetes [8] and acute myocardial infarction [9].
Thus, the determination of H2O2 is of great significance in biomedical, industrial, and
academic applications. The H2O2 levels in the intracellular physiology range are from
0.001 to 0.7 µM [10]. Therefore, sensors with high sensitivity, specificity and broad working
range are needed to probe the intracellular H2O2. The excellent detection of H2O2 mainly
depends on the detection method and material two aspects. Among the technique for accu-
rate and reliable detection of cellular H2O2, such as colorimetry [11,12], fluorescence [13,14],
chromatography [15] and chemiluminescence [16], electrochemical techniques increasingly
attracted attention due to their high sensitivity, good selectivity, low cost, as well as rapid
response. For electrochemical detection, natural enzymes are usually the choice of sensing
materials due to their remarkable specificity and high sensitivity in catalyzing the decom-
position of H2O2. However, the inherent defect of natural enzymes, such as instability

Int. J. Mol. Sci. 2022, 23, 3799. https://doi.org/10.3390/ijms23073799 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms23073799
https://doi.org/10.3390/ijms23073799
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-6726-281X
https://orcid.org/0000-0002-4041-2574
https://doi.org/10.3390/ijms23073799
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms23073799?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 3799 2 of 15

and ease to reduce or even deactivate the activity, limited their further applications [17].
Thus, non-enzymatic electrochemical sensors were proposed to overcome the limitations of
natural enzyme sensing platforms [18]. Various nanomaterials have been used in H2O2 sen-
sors, including transition metals oxides (e.g., Fe3O4, Co3O4, NiO, CuO) [19–22]. Transition
metals have multiple oxidation states. They can absorb other substances onto their surface,
meanwhile activating them in the process. These good abilities make them an excellent
choice in synthesizing nanoenzymes [1]. Among these materials, Co3O4, a kind of intrinsic
p-type transition metal oxide, was reported in electrochemically detecting H2O2 because of
its high electrochemical stability, fair price, and environmentally friendly [23]. However,
the close-packed structures and poor electronic conductivity of Co3O4 could reduce their
specific surface area and deteriorate its performance in H2O2 detection.

Metal-organic framework (MOF) possesses the periodic network structures made by
the self-assembly of organic linkers and inorganic metal-containing nodes [24]. Recently,
the unique merits of crystalline porous structure, highly dispersed metal components,
and adjustable pore size of MOFs grant them outstanding performances in various ap-
plications [25]. In addition, MOF-derived carbon materials overcome the aggregation of
metal nanoparticles that is induced by a further pyrolysis process [26]. Hence, metal-
organic framework (MOF)-derived Co3O4 are promising in synthesis Co3O4 with uniform
morphology and good electronic conductivity.

Tannic acid (TA) is a plant polyphenol. The chemical structure of TA is usually a
decagalloyl glucose (C76H52O46) [27]. It widely exists in plant tissues such as tea, wood,
and wine [28]. Its adhesive and reduction capability have been demonstrated in materials
synthesis for lithium-ion batteries [29,30], dye remove [31], oil/water separation [32],
catalytic [33], cell proliferation [34] and drug delivery [35]. As a kind of phenolic acid,
TA is a weak organic acid and can release protons [36], which is applied in etching MOF
materials to synthesize hollow structured materials [37].

In this study, to achieve sensitive and specific H2O2 detection, we rationally designed
an ingenious method to synthesize ZIF-67 MOF-derived Co3O4 nanoparticles (NPs) dis-
persing in porous carbon nano-box (Co3O4 @CNBs) as a H2O2 nanozyme. The function
of TA is to etch ZIF-67 while preserving the overall cubic architectures during thermal
annealing process. The Co3O4 nanoparticles uniformly dispersed in porous carbon nano-
boxes (Co3O4@CNBs) was synthesized by delicately tuning TA concentration and thermal
annealing temperature. The sensing performance of Co3O4@CNBs in H2O2 sensing was
characterized. The dispersion of Co3O4 NPs in the porous carbon nano-boxes (CNBs) was
further investigated for its enhancement mechanism toward the specific reduction of H2O2.
Moreover, the application of the Co3O4@CNBs H2O2 sensor was demonstrated in detecting
H2O2 released from living cells.

2. Material and Methods
2.1. Chemicals

All of the chemicals were of analytical grade and used as received. The aqueous solu-
tions were prepared with ultra-pure water (>18.25 MΩ/cm) obtained from Q-Grad®1 sys-
tem (Millipore Corporation, Burlington, MA, USA). Cobalt nitrate hexahydrate
(Co(NO3)2•6H2O), cetyltrimethylammonium bromide (CTAB), 2-methylimidazole (2-MeIm),
tannic acid (TA), hydrogen peroxide (H2O2), glucose (Glu), cysteine (Cys), dopamine (DA),
uric acid (UA), ascorbic acid (AA), glycine(Gly), sucrose (SUC), glutathione (GSH), urea
and catalase from bovine liver were purchased from Aladdin (Shanghai, China). Phorbol
12-myristate-13-acetate (PMA) and Nafion (5%, wt %), were ordered from Sigma-Aldrich
(Shanghai, China). Phosphate buffered saline (PBS, pH 7.4) was purchased from Dingguo
(Beijing, China). Human non-small cell lung cancer A549, mouse breast cancer cells 4T1,
and human umbilical vein endothelial HUVEC cell lines were obtained from the Type Cul-
ture Collection of the Chinese Academy of Sciences (Shanghai, China). Dulbecco’s Modified
Eagle Medium (DMEM) medium, 10% fetal bovine serum (FBS), 1× antibiotic antimycotic
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were from Gibco (USA). Thiazolyl blue tetrazolium bromide (MTT) was purchased from
Beyotime Biotechnology (Beijing, China).

2.2. Characterizations

The morphologies of the synthesized materials were observed by field emitted scan-
ning electron microscopy (FESEM, JSM-7800 F, JEOL, Tokyo, Japan) and transmission
electron microscopy (TEM, JEM-2100, JEOL, Japan). HAADF-STEM characterization was
conducted with TEM (JEM-2100, JEOL, Japan). The surface properties of the materials
were characterized by X-ray photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo
Scientific, Waltham, MA, USA). The crystal structure was characterized by X-ray diffraction
(XRD, MAXima-X XRD-7000, Shimadzu, Tokyo, Japan). The chemical groups of the samples
were recorded by Fourier transform infrared spectroscopy (FTIR, Thermo-Nicolet 6700,
Thermo Scientific, MA, USA) with air as a reference. Thermogravimetric analysis (TGA, TA
Instruments Q50, TA Instruments, New Castle, DE, USA) was performed using a thermal
analyzer under airflow (10 ◦C min−1). JW-BK300C (JWGB SCI. & TECH., Beijing, China)
determined N2 adsorption-desorption isotherms and pore-size distributions. All electro-
chemical measurements were performed at room temperature on a CHI 760D (Chenhua
Instruments, Shanghai, China). PBS (0.01 M, pH = 7.4) was used as the electrolyte for all
electrochemical measures except in detection with cell viability.

2.3. Preparation Co3O4@CNBs from ZIF-67

Synthesis of Co3O4@CNBs involves the following three-steps:
Synthesis of ZIF-67 nanocubes (ZIF-67 NCs): ZIF-67 NCs were synthesized according to

the previous works [38]. 580 mg of Co(NO3)2•6H2O and 4 mg of etyltrimethylammonium
bromide (CTAB) were dissolved in 20 mL of deionized water and marked as solution
A. 9.08 g of 2-methyimidazole (2-MIM) was dissolved in 140 mL of deionized water, and
marked as a solution B. Then the 20 mL solution A was rapidly injected into 140 mL solution
B and stirred at room temperature for 20 min. The mixture was centrifuged at 10,000 rpm
for 10 min. The collected precipitate (ZIF-67 NCs) was washed with ethanol several times
and then dried in an oven at dried at 60 ◦C for 24 h.

Synthesis of TA-Co nano boxes (TA-Co NBs): The as-prepared ZIF-67 NCs were first
dispersed into 10 mL of ethanol, then poured into 150 mL of ethanol and deionized
water mixture solution (Volume ratio of H2O and ethanol = 1:1) containing different
concentration of TA solution (0 mg/mL, 0.5 mg/mL, 1 mg/mL, 2 mg/mL) and stirred at
room temperature for 5 min. The precipitate collected by centrifugation was washed with
ethanol and then dried in an oven at dried at 60 ◦C for 24 h. The TA etched ZIF-67 was
recorded as TA-Co nano boxes (TA-Co NBs).

Synthesis of Co3O4@CNBs: The as-prepared TA-Co NBs powder was first annealed
at 200 ◦C for 30 min and then further annealed at different temperatures (500 ◦C, 600 ◦C,
700 ◦C, 800 ◦C) for 1 h with a heating rate of 1 ◦C min−1 under N2 flow, and cooled down
to room temperature naturally. After that, the powder was annealed at 200 ◦C for 6 h in
air with a heating rate of 10 ◦C min−1. The obtained materials named as Co3O4@CNBs. In
comparison, pristine ZIF-67 without TA etching was thermally annealed with the same
condition and recorded as Co3O4@carbon (Co3O4@C).

2.4. Preparation of Co3O4@CNBs Modified Electrode

All electrochemical measurements were performed on a CHI 760D electrochemical
workstation (Chenhua Instruments, China). A conventional three-electrode cell was used
with a modified glass carbon electrode as the working electrode, Ag/AgCl (in saturated
KCl solution) as the reference electrode, and platinum wire as the counter electrode. Glassy
carbon electrodes (GCE) were polished with 0.3 and 0.05 µm alumina slurry on a polishing
cloth and cleaned sequentially through water and ethanol under sonication for 3 min
and dried in nitrogen flow for further use. Next, 7 µL 2 mg/mL Co3O4@CNBs aqueous
dispersion was dropped on it and dried for 3 h at room temperature. After that, 5 µL 0.05%
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Nafion were dropped on it successively and dried at room temperature. Nafion film acts as
a protective layer, preventing the falling of the loaded Co3O4@CNBs from the electrode.
The supporting electrolyte of PBS (0.01 M, pH = 7.4) was deoxygenated using nitrogen
before use and kept inside a nitrogen atmosphere. The prepared working electrodes were
activated by cyclic voltammetric (CV) scanning for 20 cycles in the potential range from
−1.0 to 1.0 V at a scan rate of 50 mV·s−1. Amperometric current-time curves (i-t) were
collected at −0.22 V in 0.01 M 10 mL PBS by successive injecting H2O2 at 50 s intervals.

2.5. Detection of H2O2 Released from Living Cells

In this work, three types of living human cells, A549, 4T1 and HUVEC cell were
cultured in DMEM containing 10% FBS, 1 × antibiotic antimycotic. All the cells were
supplemented with 10% FBS in a humidified incubator (with 5% CO2 atmosphere) at
37 ◦C and grown in polystyrene-coated T25 (25 cm2) cell culture flasks. Cells were washed
three times with 0.01 M PBS (pH 7.4), detached by 1% Trypsin, collected by centrifugation,
and the number was calculated using a cell counter. The response of H2O2 released from
approximately 1.0 × 105 cells was measured by Co3O4@CNBs modified GCE at −0.22 V in
2 mL DMEM medium.

3. Results and Discussion
3.1. Co3O4 NPs Dispersed in Porous Carbon Nano Boxes by TA Assisted Etchings

Synthesis of Co3O4@CNBs involves the following three-step reaction (Scheme 1). First,
ZIF-67 was synthesized by using the co-precipitation method [38]. Next, TA was used
to etch the ZIF-67 to form the unique Co3O4 NBs. Last, the Co3O4 NBs were thermal
annealed to carbonize the TA and subsequent low-temperature oxidation in the air to form
Co3O4@CNBs. The FESEM characterization found that the co-precipitation method synthe-
sized ZIF-67 is uniform regular cubic with a smooth surface (Supplementary Information
Figure S1). The size of the cubic is about 760 nm. In our approach, TA functions as green
and facile etching agent to etch ZIF-67 directly without extra procedures and chemicals.
We found that TA (0.5 mg/mL, 1.0 mg/mL, 2.0 mg/mL) treatment did not change the
overall size and the surface morphology of the ZIF-67 cubic. As compared in in FESEM
characterization (Figure 1A), TA treated ZIF-67 cubic has a size of 760 nm with a smooth
surface. However, TEM characterization (Figure 1B) reveals that the cubic’s inner structure
changes significantly after treated by TA with different concentrations. Though TA etched
the inside of ZIF-67 cubic, the wall thickness of the cubic had no significant difference
as TA concentration changed. The main effect of TA concentration influences the degree
of etching reaction inside the cubic. As shown in Figure 1B, with the TA concentration
increase from 0 to 2 mg/mL TA, the inside of ZIF-67 was solid at first and then showed
the yolk-shelled heterogeneous structure. Finally, the ZIF-67 cubic was completely etched
to form hollow interior TA-Co NBs (Figure 1B). Incubating ZIF-67 cubic in 2 mg/mL TA
solution for 5 min resulted in a ZIF-67 NB with a wall thickness of about 80 nm.

The TA etching reaction is illustrated in Supplementary Information Figure S2. First,
the protons released from TA etch the ZIF-67, releasing the Co2+ and 2-MIM simultaneously.
At the same time, Co2+ and TA coordinate together quickly to form the TA-Co shell.
The attached TA block the exposed surface of ZIF-67, thus protecting the outer parts of
MOFs from further etching, resulting in internal etching of the ZIF-67 to form TA-Co
NBs [29,37,39].

Next, TA-Co NBs were carbonized in an N2 atmosphere to synthesize the Co3O4@CNBs.
First, the thermal carbonization and subsequent low-temperature oxidation in air at 200 ◦C
were conducted with ZIF-67 cubic without TA treatment. From the SEM images in Figure 2,
we found that even though the ZIF-67 is solid cubic, the thermal annealing still caused the
shrink towards the inner side at the middle portion of each side. The morphology and
structure have undergone apparent changes to a certain extent. This phenomenon is in
line with previous studies in which ZIF-67 crystals obtained by direct annealing methods
usually have a rough surface because of the aggregation of the nanoparticles [20,40–42].
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However, as the FESEM images shown in Figure 2, the TA-Co NBs lost their structural
integrity when the thermal carbonization was conducted at 500 ◦C, 600 ◦C, and 800 ◦C.
Uniform cubic structures were observed from the products obtained at 700 ◦C. The SEM
characterized morphology in Figure 2 confirms that TA-assisted etching successfully avoids
the high-temperature carbonization induced cubic shrink. We speculated that the ther-
mal carbonization caused structure changes could be induced by the partial collapse
of pores on the nano-boxes. We examined the porosity of the products obtained from
different temperatures. From the N2 adsorption-desorption isotherms curves shown in
Figure 3, the porosity of Co3O4@CNBs obtained at 500, 600, 700, and 800 ◦C was 18.9 m2/g,
255.9 m2/g, 297.2 m2/g, 107.6 m2/g, respectively. The highest BET surface area is from the
Co3O4@CNBs obtained at 700 ◦C. According to the N2 adsorption-desorption isotherms,
the adsorption isotherm for 500 ◦C and 600 ◦C were similar to a BET type II isotherm.
While 700 ◦C and 800 ◦C appears the BET type IV shape adsorption according to BET
classification. It is worth noting that, as shown in Figure 2, materials at 800 ◦C has shown
the collapse of the cubics. Collectively, the SEM (Figure 2) and BET results suggested
that the intact cubic after annealing at 700 ◦C benefit the preserving of nano-pores on the
nano box.
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The structures of Co3O4@C and Co3O4@CNBs were further compared through TEM
characterization. Thermal annealing action caused the shrink of ZIF-67, resulting in a
quadrangular star shape (Figure 4A). From the HRTEM characterization, the (111) planes of
the metallic Co can be differentiated from the packed Co3O4 NPs (Figure 4B). The HAADF-
STEM images (Figure 4C) and the corresponding elemental mapping images of C, Co, O,
N elements in Co3O4@C (Figure 4D) clearly show the shrinking towards the inside at the
four corners, and the inside of the cubic packed with dense and aggregated Co3O4 NPs.
In comparison, with the action of TA, the dispersed Co3O4 was preserved nicely within
the nano box (Figure 4E). HRTEM image of Co3O4@CNBs in Figure 4F shows the lattice
fringe spacing is about 0.20 nm, corresponding to the (111) planes of Co3O4. The HAADF-
STEM images of Co3O4@CNBs (Figure 4G) and the corresponding elemental mapping
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images of C, Co, O, N elements in Co3O4@CNBs (Figure 4H) confirmed that the Co3O4
NPs are highly dispersed in nano box. The evenly distributed C element would ensure
electron transfer during electrochemical detection. The C, Co, O, N elements mapping
images of Co3O4@CNBs thermal annealed at 500 ◦C, 600 ◦C, and 800 ◦C were shown
in Supplementary Information Figure S3. From the FESEM and elements mapping, we
confirmed that the C and Co are evenly distributed on the cubic. As the temperature
increases, the structure gradually collapses at 800 ◦C.
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Figure 4. (A) TEM images of Co3O4@C; (B)HRTEM images of Co3O4@C; (C) HAADF-STEM images of
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Apart from tracking the reaction by morphological characterization (Figures 1–4),
the crystalline materials were characterized by XRD, FTIR, and XPS. First, the C 1s, Co
2p peaks can be observed from the XRD spectra, confirming the success in synthesis ZIF-
67 (Figure 5A). The ZIF-67 precursor completely disappears after TA etching, indicating
the completion of chemical transformation. Diffraction peaks of Co3O4@CNBs in XRD
characterization perfectly match with the standard patterns of Co3O4 (PDF # 42-1467).
The FTIR spectrum also supports the formation of Co3O4 (Figure 5B). FTIR spectrum
shows that the prominent peaks at 3400 cm−1 are attributed to the vibration and stretch-
ing bands of functional groups of TA, which on account of TA complete substitution of
2-methylimidazole during the etching process [37]. Another strong bands at 667 cm−1 is
attributed to the stretching vibration mode of Co-O with Co2+ [40].

XPS analysis was applied to reveal the elemental valence state of the Co3O4@CNBs.
Compared with ZIF-67, TA-Co NBs present observable changes in C and Co’s contents,
which are attributed to the introduction of TA and pyrolysis of organic ligands. As shown
in Figure 5C, the spectrum of Co 2p can be best-fitted with two prominent peaks at
binding energies by Co 2p3/2 and Co 2p1/2 peaks located at around 780.3 and 795.1 eV,
corresponding to the state of Co3O4 phase. According to the XPS analysis (Figure 5D), the
appearance of C=O, C-O, and C-C in a high-resolution spectrum of C 1 s are caused by the
structure of TA [41]. As shown in Supplementary Information Figure S4, the TGA analysis
reveals the weight content of Co3O4 in the composite is about 46.3 wt%. The weight loss
under 250 ◦C is attributed to the evaporation of water molecules and air absorbed by the
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sample surface [42]. By analyzing FESEM, TEM, XRD, XPS, and FTIR results, we confirmed
that Co3O4 nanoparticles well dispersed in Co3O4@CNBs synthesized from 2 mg/mL
TA etching.
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3.2. Dispersed Co3O4 NPs in Porous Carbon Nano Box Facilitate the Sensitive Electrochemical
Detection of H2O2

CV measurements were conducted to compare the electrochemical performance
of carbonized ZIF-67 (Co3O4@C) and Co3O4@CNBs modified glassy carbon electrode
(Co3O4@C/GCE and Co3O4@CNBs/GCE) in H2O2 detection. In Figure 6A, the dotted line
and solid line represent the Co3O4@C/GCE and Co3O4@CNBs/GCE, respectively. The
blue and purple lines represent the absence and addition of H2O2, respectively. With the
addition of 2 mM H2O2, a cathode current around the potential of −0.22 V can be observed
clearly from Co3O4@CNBs/GCE. In contrast, as shown in Figure 6A, no noticeable change
was observed from Co3O4@C/GCE, indicating that Co3O4@C is inactive for electrooxi-
dation of H2O2. Figure 6B displays the cyclic voltammetry (CV) curves of Co3O4@CNBs
modified GCE in 10 mL 0.01 M PBS solution (pH 7.4) in the absence and presence of
different concentrations of H2O2 (0.5, 1, 2, 3, 4, 5, and 6 mM). With the increasing concentra-
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tions of H2O2, a noticeable reduction peak current around −0.22 V dramatically increased.
According to the previous reports, the electrocatalysis of H2O2 on the Co3O4@CNBs can be
expressed by the following equation [43]:

2Co(II) + H2O2 + H2O→ 2Co(III) + 2OH− + H2O
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Figure 6. (A) CVs of Co3O4@CNBs/GCE and Co3O4@CNBs/GCE in the presence (purple line) and
absence (blue line) of 2 mM H2O2 in 0.01 M PBS; (B) CVs of Co3O4@CNBs/GCE in the absence
and presence of different concentrations (from 0 to 6 mM) of H2O2 in 0.01 M PBS; (C) CVs of
Co3O4@CNBs/GCE in 0.01 M PBS at different scan rate (from 20 to 200 mV/s); (D) Linear relationship
between the peak currents and the scan rates.

The obvious reduction current indicated that Co3O4@CNBs nanocomposite have an
excellent electrocatalytic activity for H2O2. The CV curves of Co3O4@CNBs/GCE were
collected at different scan rates between −0.8 and 0.2 V in 0.01 M PBS (pH = 7.4). The
reduction peak currents were enhanced with increasing scan rates. The current was in
good linear with the scan rates (Figure 6C), suggesting that the H2O2 reduction on the
Co3O4@CNBs/GCE’s surface was a typical adsorption control process.

The different performance between Co3O4@C and Co3O4@CNBs towards H2O2 sens-
ing is discussed. The thermal annealing and subsequent low-temperature oxidation will
cause the four edges to shrink inward pristine ZIF-67 (Figure 4A,C). The structural changes
are accompanied by the decrease of porosity (Supplementary Information Figure S5) be-
cause the porosity of Co3O4@C is 149.5 m2/g which is significantly smaller than that of
Co3O4@CNBs (297.2 m2/g). Furthermore, the obvious aggregated Co3O4 nanoparticles
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in Co3O4@C (Figure 4A–C) impact the available sites of Co3O4 to react with H2O2 and
potentially reduce the specific reaction area contributing to the electrochemical reduction of
H2O2 (Scheme 2A). For the Co3O4@CNBs obtained from TA etching, the TA layer balanced
the shrinkage stresses at different directions applied on the cubic during the annealing
process. The architecture integrity avoids pore-collapse induced Co3O4 NPs aggregation
(BET data in Figure 3 and TEM data in Figure 4). The porous structures would facilitate
the transportation of H2O2 into the Co3O4@CNBs during electrochemical measurement. In
addition, the TA protective layer alleviated the “stresses induced orientation contraction”,
ensuring the uniform disperse of Co3O4 in CNBs to react with H2O2 (Scheme 2B).
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3.3. Analytical Performance of Co3O4@CNBs Based H2O2 Sensors

To construct a sensitive H2O2 sensors, the electrochemical testing condition was
optimized. The electrochemical behavior of Co3O4@CNBs/GCE was analyzed in 10 mL
0.01 M PBS (pH = 7.4). It is noted that the CV signal to H2O2 is affected by the concentration
of Co3O4@CNBs and the adding volume. Supplementary Information Figure S6A,B show
that 7 µL, 2 mg/mL Co3O4@CNBs leads to the highest signal. Hence, 7 µL 2 mg/mL
Co3O4@CNBs were employed in the following study. The amperometric technique was
employed to measure the response of Co3O4@CNBs modified electrode. The optimal
working potential for detecting H2O2 was −0.22 V.

With the optimized Co3O4@CNBs loading and electrochemical working voltage, the
sensitivity and working range of the Co3O4@CNBs H2O2 sensor were characterized. The
electrochemical response was recorded when successive adding varying H2O2 concen-
trations into 10 mL 0.01 M PBS (pH 7.4) solution. As shown in Figure 7A, the response
was linear with H2O2 concentrations from 0.01 to 359 µM with a correlation coefficient of
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R2 = 0.995 (insert picture), and the regression equation was I (µA) = −5.42 × 10−6 − 1.28 ×
10−6C (µM). The detection limit calculated was 2.32 nM (ratio of signal-to-noise (S/N) = 3).
Comparison of Co3O4@CNBs based H2O2 detection with other H2O2 biosensors (Table 1)
showed that our electrocatalytic performance of Co3O4@CNBs was satisfactory and even
better than previous sensors.
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for H2O2 in the occurrence of other substances.

Table 1. Comparison the sensing performance of Co3O4@CNBs reported with other H2O2 sensor
in literatures.

Electrode Materials Working Range/µM Detection Limit/nM Reference

Pt@Co3O4 NPs 10–300 100 [17]
Hollow Co3O4 0.4–2200 105 [20]
Au/Co@HNCF 25–2500 23 [44]

Au@C-Co3O4 NPs - 19 [45]
Co3O4/NCNTs 5–11,000 1 [46]

Co3O4 NPs - 21.7 [47]
Co3O4@H-CNBs 0.01–358.9 2.32 This work

Anti-interference ability is one of the critical analytical indicators for nonenzymatic
biosensors. The amperometric method was adopted to study the interference of major
interfering substances on Co3O4@CNBs based H2O2 detecting. As shown in Figure 7B,
there are negligible signal responding to 0.15 mM glucose (Glu), cysteine (Cys), dopamine
(DA), uric acid (UA), ascorbic acid (AA), glycine (Gly), sucrose (SUC), glutathione (GSH),
and urea. While 0.05 mM H2O2 can induce a significantly larger signal, suggesting good
selectivity for reducing H2O2.

The stability and reproducibility of the Co3O4@CNBs-based sensor were also tested.
Supplementary Information Figure S7 shows the amperometric electrochemical response of
five modified independent electrodes from different batches. After statistical analysis of the
test results, the relative standard deviation (RSD) obtained by five parallel tests was 2.4%,
demonstrating a good reproducibility. The actual concentration of H2O2 present and the
detected concentration were further tested, and the results in Supplementary Information
Table S1 showed that the recovery rate of the Co3O4@CNBs-based sensor is from 95.62% to
105.78%. For the stability experiment, the modified electrode was stored at 4 ◦C for 15 days,
and the current response to H2O2 (2 mM) was recorded every three days. It can be seen
that after 15 days of storage, the current response of the sensor is maintained at 92% of the
initial current.
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3.4. Real-Time Detection of H2O2 Secreted from Living Cells by Co3O4@CNBs

To investigate the capability in actual samples application, Co3O4@CNBs H2O2 sensor
was explored to real-time detect H2O2 from the living cell in a culture medium. The
response of human epithelial cell HUVEC, mouse breast cancer cell 4T1, and human
lung cancer cell A549 to PMA, a diester of phorbol, which can activate many cell types
to produce H2O2, was studied. First, the potential cytotoxicity of Co3O4@CNBs was
evaluated by the standard MTT assay. Supplementary Information Figure S8 reveals that
no significant decrease in cell viability was observed from 10 to 50 µg·mL−1 Co3O4@CNBs-
treated HUVEC cells and HeLa cells, demonstrating its good biocompatibility. The response
of cells to PMA stimulation was measured by amperometric signal recorded in DMEM
at −0.22 V. PMA is an activator widely used in in vitro experiments, which can stimulate
cells to produce H2O2. As shown in Figure 8, the current has no obvious change when
only cells exist. A promote and sharp increase of current peak was observed from all three
cells challenged by 2.5 µg/mL PMA. In contrast, injecting PMA and catalase (CAT), an
enzyme that catalyzes the decomposition of H2O2 into water and oxygen, at the same time
will demolish the current change, which was observed in only PMA stimulation. Since
CAT will decomposite the H2O2 released by PMA treated cells, by adding the PMA and
CAT, we confirmed the current changes observed from cell stimulated by PMA only were
induced by cell-released H2O2. The amperometric signal (Figure 8) recorded from the cells
proves that the Co3O4@CNBs H2O2 sensor can detect the H2O2 released by living cells,
highlighting its potential in studying cell metabolism. Next, the actual amount of H2O2
released from living cells was calculated according to the current and the calibration curve
shown in Figure 7B. First, the current of the point reaching the plateau was read from the
reaction curve. Then the H2O2 amount was calculated by placing the current value into the
calibration curve equation. As shown in Figure 8, according to the current change and the
calibration curve, the amount from three different cells was calculated at 0.16 µM (HUVEC),
0.26 µM (A549) and 0.19 µM (4T1), respectively.
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4. Conclusions

In conclusion, Co3O4@CNBs nanocomposites have been prepared using a facile and
green method. Their application in the determination of H2O2 has been explored. The
used TA improves the materials’ specific surface area and provides more active sites,
further enhancing its electrocatalysis to reduce H2O2. The Co3O4@CNBs/GCE exhibits
a good selectivity and high sensitivity for the determination of H2O2. Furthermore, the
Co3O4@CNBs H2O2 sensor can detect the H2O2 secreted by HUVEC cells and 4T1, A549
cancer cells, highlighting its potential in biosensing and catalysis and biomedicine.
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