Leptosphaeria maculans-Brassica napus Battle: A Comparison of Incompatible vs. Compatible Interactions Using Dual RNASeq
Abstract
:1. Introduction
2. Results
2.1. Response of Rlm7 Line and Westar to Avirulent UMAvr7 and Virulent Umavr7 Isolates
2.2. Transcriptomic Study Results of Dual RNA-Seq
2.3. Expression of Avirulence Genes of L. Maculans in Planta
2.4. Differentially Expressed Genes at 1-, 3-, 7-, and 11-dpi
2.5. Differentially Expressed Virulence Genes in the Pathogen Isolates
2.6. Differentially Expressed Defense-Related Genes in the Host Plants
2.7. RNA-seq Data Validation by RT-qPCR
3. Discussion
4. Materials and Methods
4.1. The Plant Material
4.2. Wild-Type L. maculans Isolate UMAvr7 and AvrLm7 Mutant Isolate Umavr7
4.3. Sample Preparation for RNA-Seq
4.4. RNA-Seq Analysis
4.5. RNA-Seq Data Validation by RT-qPCR
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Canola Council of Canada. Industry Overview. 2020. Available online: http://www.canolacouncil.org/markets-stats/industry-overview/ (accessed on 1 September 2020).
- Zhai, C.; Liu, X.; Song, T.; Yu, F.; Peng, G. Genome-wide transcriptome reveals mechanisms underlying Rlm1-mediated blackleg resistance on canola. Sci. Rep. 2021, 11, 4407. [Google Scholar] [CrossRef] [PubMed]
- West, J.S.; Kharbanda, P.D.; Barbetti, M.J.; Fitt, B.D.L. Epidemiology and management of Leptosphaeria maculans (phoma stem canker) on oilseed rape in Australia, Canada and Europe. Plant Pathol. 2001, 50, 10–27. [Google Scholar] [CrossRef] [Green Version]
- Fitt, B.D.L.; Brun, H.; Barbetti, M.J.; Rimmer, S.R. World-wide importance of phoma stem canker (Leptosphaeria maculans and L. biglobosa) on oilseed rape (Brassica napus). Eur. J. Plant Pathol. 2006, 114, 3–15. [Google Scholar] [CrossRef]
- Fitt, B.D.; Hu, B.C.; Li, Z.Q.; Liu, S.Y.; Lange, R.M.; Kharbanda, P.D.; Butterworth, M.H.; White, R.P. Strategies to prevent spread of Leptosphaeria maculans (phoma stem canker) onto oilseed rape crops in China; costs and benefits. Plant Pathol. 2008, 57, 652–664. [Google Scholar] [CrossRef]
- Zhang, X.; Fernando, W.G.D. Insights into fighting against blackleg disease of Brassica napus in Canada. Crop Pasture Sci. 2018, 69, 40–47. [Google Scholar] [CrossRef]
- Flor, H.H. Current status of the gene-for-gene concept. Ann. Rev. Phytopathol. 1971, 9, 275–296. [Google Scholar] [CrossRef]
- Rimmer, S.R. Resistance genes to Leptosphaeria maculans in Brassica napus. Can. J. Plant Pathol. 2006, 28, 288–297. [Google Scholar] [CrossRef]
- Becker, M.G.; Zhang, X.; Walker, P.L.; Wan, J.C.; Millar, J.L.; Khan, D.; Granger, M.J.; Cavers, J.D.; Chan, A.C.; Fernando, D.W.; et al. Transcriptome analysis of the Brassica napus-Leptosphaeria maculans pathosystem identifies receptor, signaling and structural genes underlying plant resistance. Plant J. 2017, 90, 573–586. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Lydiate, D.J.; Rimmer, S.R. Identification of two novel genes for blackleg resistance in Brassica napus. Theor. Appl. Genet. 2005, 110, 969–979. [Google Scholar] [CrossRef]
- Yu, F.; Lydiate, D.J.; Hahn, K.; Kuzmicz, S.; Hammond, C.; Rimmer, S.R. Identification and mapping of a novel blackleg resistance locus LepR4 in the progenies from Brassica napus × B. rapa subsp. sylvestris. In Proceedings of the 12th Innovation in Rapeseed and Canola, Wuhan, China, 26–30 March 2007. [Google Scholar]
- Yu, F.; Lydiate, D.J.; Rimmer, S.R. Identification and mapping of a third blackleg resistance locus in Brassica napus derived from B. rapa subsp. Sylvestris. Genome 2008, 51, 64–72. [Google Scholar] [CrossRef]
- Delourme, R.; Chèvre, A.M.; Brun, H.; Rouxel, T.; Balesdent, M.H.; Dias, J.S.; Salisbury, P.; Renard, M.; Rimmer, S.R. Major gene and polygenic resistance to Leptosphaeria maculans in oilseed rape (Brassica napus). Eur. J. Plant. Pathol. 2006, 114, 41–52. [Google Scholar] [CrossRef]
- Long, Y.; Wang, Z.; Sun, Z.; Fernando, W.G.D.; McVetty, B.E.P.; Li, G. Identification of two blackleg resistance genes and fine mapping of one of these two genes in a Brassica napus canola variety ‘surpass 400’. Theor. Appl. Genet. 2011, 122, 1223–1231. [Google Scholar] [CrossRef] [PubMed]
- Larkan, N.J.; Lydiate, D.J.; Parkin, I.A.; Nelson, M.N.; Epp, D.J.; Cowling, W.A.; Rimmer, S.R.; Borhan, M.H. The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1. New Phytol. 2013, 197, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Larkan, N.J.; Ma, L.; Borhan, M.H. The Brassica napus receptor-like protein RLM2 is encoded by a second allele of the LepR3/Rlm2 blackleg resistance locus. Plant Biotechnol. J. 2015, 13, 983–992. [Google Scholar] [CrossRef]
- Yu, F.; Gugel, R.K.; Kutcher, H.R.; Peng, G.; Rimmer, S.R. Identification and mapping of a novel blackleg resistance locus LepR4 in the progenies from Brassica napus × B. rapa subsp. sylvestris. Theor. Appl. Genet. 2013, 126, 307–315. [Google Scholar] [CrossRef]
- Gout, L.; Fudal, I.; Kuhn, M.L.; Blaise, F.; Eckert, M.; Cattolico, L.; Balesdent, M.H.; Rouxel, T. Lost in the middle of nowhere: The AvrLm1 avirulence gene of the dothideomycete Leptosphaeria maculans. Mol. Microbiol. 2006, 60, 67–80. [Google Scholar] [CrossRef]
- Fudal, I.; Ross, S.; Gout, L.; Blaise, F.; Kuhn, M.L.; Eckert, M.R.; Cattolico, L.; Bernard-Samain, S.; Balesdent, M.H.; Rouxel, T. Heterochromatin-like regions as ecological niches for avirulence genes in the Leptosphaeria maculans genome: Map-based cloning of AvrLm6. Mol. Plant-Microbe Interact. 2007, 20, 459–470. [Google Scholar] [CrossRef] [Green Version]
- Parlange, F.; Daverdin, G.; Fudal, I.; Kuhn, M.L.; Balesdent, M.H.; Blaise, F.; Grezes-Besset, B.; Rouxel, T. Leptosphaeria maculans avirulence gene AvrLm4-7 confers a dual recognition specificity by the Rlm4 and Rlm7 resistance genes of oilseed rape, and circumvents Rlm4-mediated recognition through a single amino acid change. Mol. Microbiol. 2009, 71, 851–863. [Google Scholar] [CrossRef]
- Balesdent, M.H.; Fudal, I.; Ollivier, B.; Bally, P.; Grandaubert, J.; Eber, F.; Chèvre, A.M.; Leflon, M.; Rouxel, T. The dispensable chromosome of Leptosphaeria maculans shelters an effector gene conferring avirulence towards Brassica rapa. New Phytol. 2013, 198, 887–898. [Google Scholar] [CrossRef]
- Wouw, A.P.V.d.; Marcroft, S.J.; Ware, A.; Lindbeck, K.; Khangura, R.; Howlett, B.J. Breakdown of resistance to the fungal disease, blackleg, is averted in commercial canola (Brassica napus) crops in Australia. Field Crops Res. 2014, 166, 144–151. [Google Scholar] [CrossRef]
- Ghanbarnia, K.; Fudal, I.; Larkan, N.J.; Links, M.G.; Balesdent, M.H.; Profotova, B.; Fernando, W.D.; Rouxel, T.; Borhan, M.H. Rapid identification of the Leptosphaeria maculans avirulence gene AvrLm2, using an intraspecific comparative genomics approach. Mol. Plant. Pathol. 2015, 6, 699–709. [Google Scholar] [CrossRef] [PubMed]
- Ghanbarnia, K.; Ma, L.; Larkan, N.J.; Haddadi, P.; Fernando, W.G.D.; Borhan, M.H. Leptosphaeria maculans AvrLm9: A new player in the game of hide and seek with AvrLm4-7. Mol. Plant Pathol. 2018, 19, 1754–1764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plissonneau, C.; Hartmann, F.E.; Croll, D. Pangenome analyses of the wheat pathogen Zymoseptoria tritici reveal the structural basis of a highly plastic eukaryotic genome. BMC Biol. 2016, 16, 5. [Google Scholar] [CrossRef] [PubMed]
- Plissonneau, C.; Benevenuto, J.; Mohd-Assaad, N.; Fouché, S.; Hartmann, F.E.; Croll, D. Using population and comparative genomics to understand the genetic basis of effector-driven fungal pathogen evolution. Front. Plant Sci. 2017, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Petit-Houdent, Y.; Degrave, A.; Meyer, M.; Blaise, F.; Ollivier, B.; Marais, C.L.; Jauneau, A.; Audran, C.; Rivas, S.; Veneault-Fourrey, C.; et al. A two genes-for-one gene interaction between Leptosphearia maculans and Brassica napus. New Phytol. 2019, 223, 397–411. [Google Scholar] [CrossRef]
- Rouxel, T.; Penaud, A.; Pinochet, X.; Brun, H.; Gout, L. A 10-year survey of populations of Leptosphaeria maculans in France indicates a rapid adaptation towards the Rlm1 resistance gene of oilseed rape. Eur. J. Plant Pathol. 2003, 109, 871–881. [Google Scholar] [CrossRef]
- Wouw, A.P.V.d.; Cozijnsen, A.J.; Hane, J.K.; Brunner, P.C.; McDonald, B.A.; Oliver, R.P.; Howlett, B.J. Evolution of linked avirulence effectors in Leptosphaeria maculans is affected by genomic environment and exposure to resistance genes in host plants. PLoS Pathog. 2010, 6, e1001180. [Google Scholar]
- Zhang, X.; Peng, G.; Kutcher, H.R.; Balesdent, M.H.; Delourme, R.; Fernando, W.G. Breakdown of Rlm3 resistance in the Brassica napus–Leptosphaeria maculans pathosystem in western Canada. Eur. J. Plant Pathol. 2016, 145, 659–674. [Google Scholar] [CrossRef]
- Liban, S.H.; Cross, D.J.; Kutcher, H.R.; Peng, G.; Fernando, W.G.D. Race structure and frequency of avirulence genes in the western Canadian Leptosphaeria maculans pathogen population, the causal agent of blackleg in Brassica species. Plant Pathol. 2016, 65, 1161–1169. [Google Scholar] [CrossRef] [Green Version]
- Fernando, W.G.D.; Zhang, X.; Selin, C.; Zou, Z.; Liban, S.H.; McLaren, D.L.; Kubinec, A.; Parks, P.S.; Rashid, M.H.; Padmathilake, K.R.E.; et al. A six-year investigation of the dynamics of Avirulence allele profiles, blackleg incidence, and mating type alleles of Leptosphaeria maculans population associated with canola crops in Manitoba, Canada. Plant Dis. 2018, 12, 790–798. [Google Scholar] [CrossRef] [Green Version]
- Mitrousia, G.K.; Huang, Y.J.; Qi, A.; Sidique, S.; Fitt, B. Effectiveness of Rlm7 resistance against Leptosphaeria maculans (phoma stem canker) in UK winter oilseed rape cultivars. Plant Pathol. 2018, 67, 1339–1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, S.; Basu, A.; Kundu, S. Biotrophy-necrotrophy switch in pathogen evoke differential response in resistant and susceptible sesame involving multiple signaling pathways at different phases. Sci. Rep. 2017, 7, 17251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pieterse, C.M.J.; Leon-Reyes, A.; Ent, S.V.d.; Wees, S.C.M.V. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 2009, 5, 308–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuda, K.; Sato, M.; Stoddard, T.; Glazebrook, J.; Katagiri, F. Network properties of robust immunity in plants. PLoS Genet. 2009, 5, e1000772. [Google Scholar] [CrossRef] [Green Version]
- Tsuda, K.; Mine, A.; Bethke, G.; Igarashi, D.; Botanga, C.; Tsuda, Y.; Glazebrook, J.; Sato, M.; Katagiri, F. Dual regulation of gene expression mediated by extended MAPK activation and salicylic acid contributes to robust innate immunity in Arabidopsis thaliana. PLoS Genet. 2013, 9, e1004015. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zhang, X.; Fernando, W.G.D. Directing Trophic Divergence in Plant-Pathogen Interactions: Antagonistic Phytohormones with No Doubt? Front. Plant Sci. 2020, 11, 600063. [Google Scholar] [CrossRef]
- Vlot, A.C.; Dempsey, D.A.; Klessig, D.F. Salicylic Acid, a multi-faceted hormone to combat disease. Annu. Rev. Phytopathol. 2009, 47, 177–206. [Google Scholar] [CrossRef] [Green Version]
- Farmer, E.E.; Alme´ras, E.; Krishnamurthy, V. Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr. Opin. Plant Biol 2003, 6, 372–378. [Google Scholar] [CrossRef]
- Does, D.V.d.; Leon-Reyes, A.; Koornneef, A.; Verk, M.C.V.; Rodenburg, N.; Pauwels, L.; Goossens, A.; Körbes, A.P.; Memelink, J.; Ritsema, T.; et al. Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell 2013, 25, 744–761. [Google Scholar] [CrossRef] [Green Version]
- Dangl, J.L.; Horvath, D.M.; Staskawicz, B.J. Pivoting the plant immune system from dissection to deployment. Science 2013, 341, 746–751. [Google Scholar] [CrossRef] [Green Version]
- Oliva, R.; Win, J.; Raffaele, S.; Boutemy, L.; Bozkurt, T.O.; Chaparro-Garcia, A.; Segretin, M.E.; Stam, R.; Schornack, S.; Cano, L.M.; et al. Recent developments in effector biology of filamentous plant pathogens. Cell. Microbiol. 2010, 12, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Petit-Houdenot, Y.; Fudal, I. Complex Interactions between Fungal Avirulence Genes and Their Corresponding Plant Resistance Genes and Consequences for Disease Resistance Management. Front. Plant Sci. 2017, 8, 1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castel, B.; Ngou, P.M.; Cevik, V.; Redkar, A.; Kim, D.S.; Yang, Y.; Ding, P.; Jones, J.D.G. Diverse NLR immune receptors activate defence via the RPW8-NLR NRG1. New Phytol. 2019, 222, 966–980. [Google Scholar] [CrossRef] [PubMed]
- Mur, L.A.; Kenton, P.; Atzorn, R.; Miersch, O.; Wasternack, C. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol. 2016, 140, 249–262. [Google Scholar] [CrossRef] [Green Version]
- Spoel, S.H.; Johnson, J.S.; Dong, X. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc. Natl. Acad. Sci. USA 2007, 104, 18842–18847. [Google Scholar] [CrossRef] [Green Version]
- Haddadi, P.; Ma, L.; Wang, H.; Borhan, M.H. Genome wide transcriptomic analyses provide insights into lifestyle transition and effector repertoire of Leptosphaeria maculans during the colonization of Brassica napus seedlings. Mol. Plant Pathol. 2016, 17, 1196–1210. [Google Scholar] [CrossRef] [Green Version]
- Becker, M.G.; Haddadi, P.; Wan, J.; Adam, L.; Walker, P.; Larkan, N.J.; Daayf, F.; Borhan, M.H.; Belmonte, M.F. Transcriptome analysis of Rlm2-mediated host immunity in the Brassica napus–Leptosphaeria maculans pathosystem. Mol. Plant Microbe Interact. 2019, 32, 1001–1012. [Google Scholar] [CrossRef]
- Zou, Z.; Liu, F.; Selin, C.; Fernando, W.G.D. Generation and Characterization of a Virulent Leptosphaeria maculans Isolate Carrying a Mutated AvrLm7 Gene Using the CRISPR/Cas9 System. Front. Microbiol. 2020, 11, 1969. [Google Scholar] [CrossRef]
- Kloppholz, S.; Kuhn, H.; Requena, N. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr. Biol. 2021, 21, 1204–1209. [Google Scholar] [CrossRef] [Green Version]
- Stergiopoulos, I.; Wit, P.J.G.M.d. Fungal effector proteins. Annu. Rev. Phytopathol. 2009, 47, 233–263. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.C.; Oliver, R.P.; Solomon, P.S.; Moffat, C.S. Proteinaceous necrotrophic effectors in fungal virulence. Funct. Plant Biol. 2010, 37, 907–912. [Google Scholar] [CrossRef] [Green Version]
- Stotz, H.U.; Harvey, P.J.; Haddadi, P.; Mashanova, A.; Kukol, A.; Larkan, N.J.; Borhan, M.H.; Fitt, B.D.L. Genomic evidence for genes encoding leucine-rich repeat receptors linked to resistance against the eukaryotic extra- and intracellular Brassica napus pathogens Leptosphaeria maculans and Plasmodiophora brassicae. PLoS ONE 2018, 13, e0198201. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, R.J.; Thon, M.R.; Hacquard, S.; Amyotte, S.G.; Kleemann, J.; Torres, M.F.; Damm, U.; Buiate, E.A.; Epstein, L.; Alkan, N.; et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat. Genet. 2012, 44, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- Jashni, M.K.; Mehrabi, R.; Collemare, J.; Mesarich, C.H.; Wit, P.J.d. The battle in the apoplast: Further insights into the roles of proteases and their inhibitors in plant-pathogen interactions. Front. Plant Sci. 2015, 6, 584. [Google Scholar] [CrossRef] [Green Version]
- Ohm, R.A.; Feau, N.; Henrissat, B.; Schoch, C.L.; Horwitz, B.A.; Barry, K.W.; Condon, B.J.; Copeland, A.C.; Dhillon, B.; Glaser, F.; et al. Diverse lifestyles and strategies of plant pathogenesis encoded in the genomes of eighteen Dothideomycetes fungi. PLoS Pathog. 2012, 8, e1003037. [Google Scholar] [CrossRef] [Green Version]
- Garg, H.; Li, H.; Sivasithamparam, K.; Barbetti, M.J. Differentially expressed proteins and associated histological and disease progression changes in cotyledon tissue of a resistant and susceptible genotype of Brassica napus infected with Sclerotinia sclerotiorum. PLoS ONE 2013, 8, e65205. [Google Scholar] [CrossRef] [Green Version]
- An, C.; Mou, Z. Salicylic acid and its function in plant immunity. J. Integr. Plant Biol. 2011, 53, 412–428. [Google Scholar] [CrossRef]
- Fu, Z.Q.; Dong, X. Systemic acquired resistance: Turning local infection into global defense. Annu. Rev. Plant Biol. 2013, 64, 839–863. [Google Scholar] [CrossRef] [Green Version]
- Durrant, W.E.; Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol. 2004, 42, 185–209. [Google Scholar] [CrossRef]
- Akbudak, M.A.; Yildiz, S.; Filiz, E. Pathogenesis related protein-1 (PR-1) genes in tomato (Solanum lycopersicum L.): Bioinformatics analyses and expression profiles in response to drought stress. Genomics 2020, 112, 4089–4099. [Google Scholar] [CrossRef]
- Wang, P.; Yang, C.; Chen, H.; Song, C.; Zhang, X.; Wang, D. Transcriptomic basis for drought-resistance in Brassica napus L. Sci. Rep. 2017, 7, 40532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summanwar, A.; Basu, U.; Kav, N.N.; Rahman, H. Identification of lncRNAs in response to infection by Plasmodiophora brassicae in Brassica napus and development of lncRNA-based SSR markers. Genome 2021, 64, 547–566. [Google Scholar] [CrossRef] [PubMed]
- Padder, S.A.; Prasad, R.; Shah, A.H. Quorum sensing: A less known mode of communication among fungi. Microbiol. Res. 2018, 210, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Fernando, W.G.D. Hormonal Responses to Susceptible, Intermediate, and Resistant Interactions in the Brassica napus–Leptosphaeria maculans Pathosystem. Int. J. Mol. Sci. 2021, 22, 4714. [Google Scholar] [CrossRef]
- Vlot, A.C.; Klessig, D.F.; Park, S.W. Systemic acquired resistance: The elusive signal(s). Curr. Opin. Plant Biol. 2008, 11, 436–442. [Google Scholar] [CrossRef] [Green Version]
- Mohr, P.G.; Cahill, D.M. Suppression by ABA of salicylic acid and lignin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv. tomato. Funct. Integr. Genomics 2007, 7, 181–191. [Google Scholar] [CrossRef]
- Berens, M.L.; Berry, H.M.; Mine, A.; Argueso, C.T.; Tsuda, K. Evolution of hormone signaling networks in plant defense. Annu. Rev. Phytopathol. 2017, 55, 401–425. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Leptosphaeria maculans—Genome Assembly—Ensembl Fungi. Available online: https://fungi.ensembl.org/Leptosphaeria_maculans/Info/Annotation/ (accessed on 1 September 2015).
- Brassica napus Genome Resources. Available online: https://www.genoscope.cns.fr/brassicanapus/ (accessed on 15 October 2015).
- Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25, 1105–1111. [Google Scholar] [CrossRef]
- OmicsBox—Bioinformatics Made Easy. BioBam Bioinformatics, 3 March 2019. Available online: https://www.biobam.com/omicsbox (accessed on 5 May 2019).
- Love, M.; Anders, S.; Huber, W. Differential analysis of count data–the DESeq2 package. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
Leptosphaeria maculans locus | Gene Name | UMAvr7 | Umavr7 | ||
Rlm7 | Westar | Rlm7 | Westar | ||
Lema_P007750 | hypothetical protein LEMA_P007750.1 | 7.32 | 12.81 | 11.79 | 12.74 |
Lema_P038230 | predicted protein | 7.22 | 15.15 | 13.09 | 13.66 |
Lema_P108620 | hypothetical protein LEMA_P108620.1 | 7.04 | 12.44 | ||
Lema_P103890 | hypothetical protein LEMA_P103890.1 | 6.87 | 14.31 | 11.24 | 13.83 |
Lema_P073150 | hypothetical protein LEMA_P073150.1 | 6.17 | 2.95 | ||
Lema_P101380 | predicted protein | 6.07 | 14.91 | 3.31 | |
Lema_P081900 | hypothetical protein LEMA_P081900.1 | 6.00 | 14.57 | 14.69 | 5.72 |
Lema_P065720 | hypothetical protein LEMA_P065720.1 | 5.83 | 14.05 | 3.36 | 13.46 |
Lema_P023410 | predicted protein | 4.38 | 15.83 | 6.47 | 15.77 |
Lema_P105100 | hypothetical protein LEMA_P105100.1 | 3.76 | 2.31 | ||
Lema_P006460 | similar to secreted protein | 3.66 | 12.77 | ||
Lema_P054290 | hypothetical protein LEMA_P054290.1 | 3.65 | 3.11 | ||
Lema_P007760 | predicted protein | 3.23 | 13.47 | ||
Lema_P100530 | predicted protein | 3.02 | 4.28 | ||
Lema_P048250 | predicted protein | 14.24 | 14.39 | ||
Lema_P103680 | hypothetical protein LEMA_P103680.1 | 3.07 | 12.91 | ||
Lema_P103880 | hypothetical protein LEMA_P103880.1 | 10.73 | 12.90 | ||
Lema_P018540 | hypothetical protein LEMA_P018540.1 | 12.49 | |||
Lema_P056750 | hypothetical protein LEMA_P056750.1 | 11.99 | 12.26 | ||
Lema_P121470 | predicted protein | 11.67 | 12.25 | ||
Lema_P058240 | predicted protein | 11.27 | 12.23 | ||
Lema_P086760 | predicted protein | 11.34 | 12.15 | ||
Lema_P062600 | hypothetical protein LEMA_P062600.1 | 11.37 | 11.83 | ||
Lema_P055050 | hypothetical protein LEMA_P055050.1 | 10.96 | 11.30 | ||
Lema_P109050 | predicted protein | 10.11 | 10.94 | ||
Lema_P119660 | hypothetical protein LEMA_P119660.1 | 10.59 | 10.74 | ||
Lema_P086880 | hypothetical protein LEMA_P086880.1 | 10.05 | 10.53 | ||
Lema_P111950 | hypothetical protein LEMA_P111950.1 | 10.17 | 10.51 | ||
Lema_P053640 | predicted protein | 10.39 | 10.51 | ||
Lema_P092370 | predicted protein | 10.17 | 10.35 | ||
Lema_P055250 | hypothetical protein LEMA_P055250.1 | 9.90 | 10.30 | ||
Lema_P084030 | predicted protein | 9.74 | 10.29 | ||
Lema_P038270 | predicted protein | 9.38 | 10.25 | ||
Lema_P003630 | predicted protein | 4.89 | 4.91 | ||
Lema_P023340 | hypothetical protein LEMA_P023340.1 | 15.05 | 3.61 | ||
Lema_P079720 | similar to female reproductive tract protease GLEANR_897 | 13.95 | 3.47 | ||
Lema_P102730 | hypothetical protein LEMA_P102730.1 | 12.58 | 2.60 |
Gene | Full Name | Defense Signaling Pathway | Forward Primer (5′3′) | Reverse Primer (5′3′) |
---|---|---|---|---|
WRKY70 | WRKY transcription factor 70 | SA signaling pathway | ACATACATAGGAAACCACACG | ACTTGGACTATCTTCAGAA TGC |
PR1 | Pathogenesis-related protein 1 | SA pathway | GGCTAACTATAACCACGATTC | GTTCCACCATTGTTACACC |
WRKY33 | WRKY transcription factor 33 | JA signaling pathway | TGTCGGACAGCTTGGGAAAG | AGAGGACGGTTACAACTG GAGAAA |
PDF1.2 | Plant defensin 1.2 | Ethylene and JA pathway | AAATGCTTCCTGCGACAACG | AGTCCACGTCTCCGATCT CT |
RbohD | Respiratory burst oxidase homolog protein D | ROS production | TATCCTCAAGGACATCATCAG | TATCCTCAAGGACATCATCAG |
APX6 | Ascorbate peroxidase | ROS scavenging | AGTTCGTAGCTGCTAAATATT | GGAGTTGTTATTACCAAGAAA |
CHI | Chitinase | Pathogen chitin degradation | TGCTACATAGAAGAAATAAACGG | TTCCATGATAGTTGAATC GG |
COMT | Caffeic acid O-methyltransferase | Lignin biosynthesis | TCTTCAAGAATTTCACGCAGTG | CGTCCCTAAAGGTGATGCTATT |
AOS | Allene oxide synthase | Involved in JA biosynthesis | CGCCACCAAAACAA CAAA | GGGAGGAAGGAGAGAGG TTG |
ICS1 | Isochorismate synthase 1 | Involved in SA biosynthesis | AGCGTGACTTACTAACCAG | CAAACTCATCATCTTCCCTC |
Act | Actin | Reference gene | CTGGAATTGCTGACCGTATGAG | GTTGGAAAGTGCTGAGG GATG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padmathilake, K.R.E.; Fernando, W.G.D. Leptosphaeria maculans-Brassica napus Battle: A Comparison of Incompatible vs. Compatible Interactions Using Dual RNASeq. Int. J. Mol. Sci. 2022, 23, 3964. https://doi.org/10.3390/ijms23073964
Padmathilake KRE, Fernando WGD. Leptosphaeria maculans-Brassica napus Battle: A Comparison of Incompatible vs. Compatible Interactions Using Dual RNASeq. International Journal of Molecular Sciences. 2022; 23(7):3964. https://doi.org/10.3390/ijms23073964
Chicago/Turabian StylePadmathilake, Kaluhannadige R. E., and Wannakuwattewaduge Gerard Dilantha Fernando. 2022. "Leptosphaeria maculans-Brassica napus Battle: A Comparison of Incompatible vs. Compatible Interactions Using Dual RNASeq" International Journal of Molecular Sciences 23, no. 7: 3964. https://doi.org/10.3390/ijms23073964
APA StylePadmathilake, K. R. E., & Fernando, W. G. D. (2022). Leptosphaeria maculans-Brassica napus Battle: A Comparison of Incompatible vs. Compatible Interactions Using Dual RNASeq. International Journal of Molecular Sciences, 23(7), 3964. https://doi.org/10.3390/ijms23073964