Fabrication, DFT Calculation, and Molecular Docking of Two Fe(III) Imine Chelates as Anti-COVID-19 and Pharmaceutical Drug Candidate
Abstract
:1. Introduction
2. Results and Discussion
2.1. NMR Spectra of PDBS and CPBS Imine Ligands
2.2. Preliminary Investigation of the Prepared PDBSFe and CPBSFe Chelates
2.3. Vibrational Spectral Analysis
2.4. Molecular Electronic Spectra and Magnetic Susceptibility Observations
2.5. Thermal Analysis and Kinetics
2.6. Stoichiometry, Formation Constants, and pH Range of Stability
2.7. Molecular Optimization of the Prepared PDBS and CPBS Imine Ligands and Their Fe3+ Chelates
2.7.1. Molecular DFT Calculation of PDBS and CPBS Imine Ligands
2.7.2. Molecular DFT Calculation of [FePDBS(H2O)NO3] and [FeCPBS(H2O)NO3]
2.7.3. Physical Characteristics for the Prepared Compounds
2.8. Pharmacological Studies
2.8.1. Antimicrobial Activity
Determination of Minimum Inhibition Concentration
2.8.2. Anti-Cancer Activity
2.8.3. Antioxidant Activities
2.9. Molecular Docking Insights of the Compounds under Investigation against Escherichia coli Bacteria
2.10. Docking Studies of the Prepared Compounds against COVID-19
3. Materials and Methods
3.1. Materials
3.2. Instruments
3.3. Preparation of PDBS and CPBS Imine Ligands
3.4. Synthesis of PDBSFe and CPBSFe Imine Chelates
3.5. Kinetic Studies of Prepared MABS Fe and NABS Fe Imine Complexes
3.6. Complexation Nature in Solution
3.7. DFT Calculation
3.8. Bioactivity
3.8.1. Anti-Pathogenic Activity
3.8.2. Anticancer Activity
3.8.3. Antioxidant Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dilruba, S.; Kalayda, G.V. Platinum-based drugs: Past, present and future. Cancer Chemother. Pharmacol. 2016, 77, 1103–1124. [Google Scholar] [CrossRef]
- Ambika, S.; Manojkumar, Y.; Arunachalam, S.; Gowdhami, B.; Sundaram, K.K.M.; Solomon, R.V.; Venuvanalingam, P.; Akbarsha, M.A.; Sundararaman, M. Biomolecular Interaction, Anti-Cancer and Anti-Angiogenic Properties of Cobalt(III) Schiff Base Complexes. Sci. Rep. 2019, 9, 1–14. [Google Scholar]
- Abdel-Rahman, L.H.; Abu-Dief, A.M.; Mostafa, H.; Hamdan, S.K. Ni (II) and Cu (II) complexes with ONNO asymmetric tetradentate Schiff base ligand: Synthesis, spectroscopic characterization, theoretical calculations, DNA interaction and antimicrobial studies. Appl. Organomet. Chem. 2017, 31, e3555. [Google Scholar] [CrossRef]
- Abdel-Rahman, L.H.; Abu-Dief, A.M.; Abdel-Mawgoud, A.A.H. Development, structural investigation, DNA binding, anti-microbial screening and anticancer activities of two novel quari-dentate VO (II) and Mn (II) mononuclear complexes. J. King Saud Univ.-Sci. 2019, 31, 52–60. [Google Scholar] [CrossRef]
- Golbedaghi, R.; Fausto, R. Coordination aspects in Schiff bases cocrystals. Polyhedron 2018, 155, 1–12. [Google Scholar] [CrossRef]
- Chen, Y.; Guan, R.; Zhang, C.; Huang, J.; Ji, L.; Chao, H. Two-photon luminescent metal complexes for bioimaging and cancer phototherapy. Coord. Chem. Rev. 2016, 310, 16–40. [Google Scholar] [CrossRef]
- Guptaand, K.C.; Sutar, A.K. Catalytic activities of Schiff base Transition metal complexes. Coord. Chem. Rev. 2008, 252, 1420–1450. [Google Scholar]
- Kim, H.; Lee, Y.S. Quantum chemical analysis of salen–aluminum complexes for organic light emitting diodes. Chem. Phys. Lett. 2013, 585, 143–148. [Google Scholar] [CrossRef]
- Freire, C.; Nunes, M.; Pereira, C.; Fernandes, D.M.; Peixoto, A.; Rocha, M. Metallo(salen) complexes as versatile building blocks for the fabrication of molecular materials and devices with tuned properties. Coord. Chem. Rev. 2019, 394, 104–134. [Google Scholar] [CrossRef]
- Erxleben, A. Transition metal salen complexes in bioinorganic and medicinal chemistry. Inorg. Chim. Acta 2018, 472, 40–57. [Google Scholar] [CrossRef]
- Mir, J.M.; Jain, N.; Malik, B.A.; Chourasia, R.; Vishwakarma, P.K.; Rajak, D.K.; Maurya, R.C. Urinary tract infection fighting potential of newly synthesized ruthenium carbonyl complex of N-dehydroacetic acid-N′-o-vanillin-ethylenediamine. Inorg. Chim. Acta 2017, 467, 80–92. [Google Scholar] [CrossRef]
- Aljohani, E.T.; Shehata, M.R.; Abu-Dief, A.M. Design, synthesis, structural inspection of Pd2+, VO2+, Mn2+, and Zn2+ chelates incorporating ferrocenyl thiophenol ligand: DNA interaction and pharmaceutical studies. Appl. Organomet. Chem. 2021, 35, e6169. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; El-Khatib, R.M.; Aljohani, F.S.; Al-Abdulkarim, H.A.; Alzahrani, S.; El-Sarrag, G.; Ismael, M. Synthesis, structural elucidation, DFT calculation, biological studies and DNA inter-action of some aryl hydrazone Cr3+, Fe3+, and Cu2+ chelates. Comput. Biol. Chem. 2022, 97, 107643. [Google Scholar] [CrossRef] [PubMed]
- Sathe, B.S.; Jayachandran, E.; Jagtap, V.A.; Sreenivasa, G.M. Synthesis and antibacterial, antifungal activity of novel analogs of fluoro benzothiazole Schiff bases. J. Chem. Pharm. Sci. 2010, 3, 216–217. [Google Scholar]
- Mir, J.M.; Majid, S.A.; Shalla, A.H. Enhancement of Schiff base biological efficacy by metal coordination and introduction of metallic compounds as anticovid candidates: A simple overview. Rev. Inorg. Chem. 2021, 41, 199–211. [Google Scholar] [CrossRef]
- Cirri, D.; Pratesi, A.; Marzo, T.; Messori, L. Metallo therapeutics for COVID-19. Exploiting metal-based compounds for the discovery of new antiviral drugs. Expert Opin. Drug Discov. 2021, 16, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Vlasiou, M.C.; Pafti, K.S. Screening possible drug molecules for COVID-19. The example of vanadium (III/IV/V) complex molecules with computational chemistry and molecular docking. Comput. Toxicol. 2021, 18, 100157. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Abdel-Rahman, L.H.; Abdel-Mawgoud, A.A.H. A robust in vitro anticancer, antioxidant and antimicrobial agents based on new metal-azomethine chelates incorporating Ag (I), Pd (II) and VO (II) cations: Probing the aspects of DNA interaction. Appl. Organomet. Chem. 2020, 34, e5373. [Google Scholar] [CrossRef]
- Abdel-Rahman, L.H.; Abu-Dief, A.M.; El-Khatib, R.M.; Abdel-Fatah, S.M.; Adam, A.M.; Ibrahim, E.M.M. Sonochemical synthesis, structural inspection and semiconductor behavior of three new nano sized Cu (II), Co (II) and Ni (II) chelates based on tri-dentate NOO imine ligand as precursors for metal oxides. Appl. Organomet. Chem. 2018, 32, e4174. [Google Scholar] [CrossRef]
- Abdel-Rahman, L.H.; Abu-Dief, A.M.; Adam, M.S.S.; Hamdan, S.K. Some New Nano-sized Mononuclear Cu(II) Schiff Base Complexes: Design, Characterization, Molecular Modeling and Catalytic Potentials in Benzyl Alcohol Oxidation. Catal. Lett. 2016, 146, 1373–1396. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; El-Khatib, R.M.; Aljohani, F.S.; Alzahrani, S.O.; Khalifa, A.M.; Mohamed, E.; El-Metwaly, N.M. Synthesis and intensive characterization for novel Zn (II), Pd (II), Cr (III) and VO (II)-Schiff base complexes; DNA-interaction, DFT, drug-likeness and molecular docking studies. J. Mol. Struct. 2021, 1242, 130693. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; El-Sagher, H.M.; Shehata, M.R. Fabrication, spectroscopic characterization, calf thymus DNA binding investigation, antioxidant and anticancer activities of some antibiotic azomethine Cu (II), Pd (II), Zn (II) and Cr (III) complexes. Appl. Organomet. Chem. 2019, 33, e4943. [Google Scholar] [CrossRef]
- Geary, W.J. The Use of Conductivity Measurements in Organic Solvents for the Characterisation of Coordination Compounds. Coord. Chem. Rev. 1971, 7, 81–122. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Abdel-Rahman, L.H.; Shehata, M.R.; Abdel-Mawgoud, A.A.H. Novel azomethine Pd (II)-and VO (II)-based metallo-pharmaceuticals as anticancer, antimicrobial, and antioxidant agents: Design, structural inspection, DFT investigation, and DNA interaction. J. Phys. Org. Chem. 2019, 32, e4009. [Google Scholar] [CrossRef]
- Neelakantan, M.A.; Marriappan, S.S.; Dharmaraja, J.; Jeyakumar, T.; Muthukumaran, K. Spectral, XRD, SEM and biological activities of transition metal complexes of polydentate ligands containing thiazole moiety. Spectrochim. Acta A 2008, 71, 628. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, L.H.; Adam, M.S.; Abu-Dief, A.M.; Moustafa, H.; Basha, M.T.; Aboraia, A.S.; Al-Farhan, B.S.; El-Sayed Ahmed, H. Synthesis, theoretical investigations, biocidal screening, DNA binding, in vitro cytotoxicity and molecular docking of novel Cu (II), Pd (II) and Ag (I) complexes of chlorobenzylidene Schiff base: Promising antibiotic and anticancer agents. Appl. Organomet. Chem. 2018, 32, e4527. [Google Scholar] [CrossRef]
- Al-Qahtani, S.D.; Alharbi, A.; Abualnaj, M.M.; Hossan, A.; Alhasani, M.; Abu-Dief, A.M.; Khalif, M.E.; El-Metwaly, N.M. Synthesis and elucidation of binuclear thiazole-based complexes from Co (II) and Cu (II) ions: Conductometry, cytotoxicity and computational implementations for various verifications. J. Mol. Liq. 2022, 349, 118100. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, 5th ed.; Wiley: New York, NY, USA, 1985; p. 87. [Google Scholar]
- Abu-Dief, A.M.; El-Khatib, R.M.; Salah, M.E.; Alzahrani, S.; Alkhatib, F.; El-Sarrag, G.; Ismael, M. Synthesis and intensive characterization for novel Zn (II), Pd (II), Cr (III) and VO (II)-Schiff base complexes; DNA-interaction, DFT, drug-likeness and molecular docking studies. J. Mol. Struct. 2021, 1244, 131017. [Google Scholar] [CrossRef]
- Elanchezhian, V.S.; Kandaswamy, M. A ferrocene-based multi-signaling sensor molecule functions as a molecular switch Inorg. Chem. Commun. 2009, 12, 161. [Google Scholar]
- Abu-Dief, A.M.; El-Metwaly, N.M.; Alzahrani, S.O.; Alkhatib, F.M.; Abualnaja, M.; El-Dabea, T.; Ali, M.A.A. Synthesis and characterization of Fe (III), Pd (II) and Cu (II)-thiazole complexes; DFT, pharmacophore modeling, in-vitro assay and DNA binding studies. J. Mol. Liq. 2021, 326, 115277. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Abdel-Rahman, L.H.; Abdelhamid, A.A.; Marzouk, A.A.; Shehata, M.R.; Bakheet, M.A.; Almaghrabi, O.A.; Nafady, A. Synthesis and characterization of new Cr (III), Fe (III) and Cu (II) complexes incorporating multi-substituted aryl imidazole ligand: Structural, DFT, DNA binding, and biological implications. Spectrochim. Acta A 2020, 228, 117700. [Google Scholar] [CrossRef] [PubMed]
- Abu-Dief, A.M.; El-Metwaly, N.M.; Alzahrani, S.O.; Alkhatib, F.; Abumelha, H.M.; El-Dabea, T.; El-Remaily, M.A.E.A.A.A. Structural, conformational and therapeutic studies on new thiazole complexes: Drug-likeness and MOE-simulation assessments. Res. Chem. Intermed. 2021, 47, 1979–2002. [Google Scholar] [CrossRef]
- Porkodi, J.; Raman, N. Synthesis, characterization and biological screening studies of mixed ligand complexes using flavonoids as precursors. Appl. Organomet. Chem. 2018, 32, e4030. [Google Scholar] [CrossRef]
- Al-Saeedi, S.I.; Abdel-Rahman, L.H.; Abu-Dief, A.M.; Abdel-Fatah, S.M.; Alotaibi, T.M.; Alsalme, A.M.; Nafady, A. Catalytic Oxidation of Benzyl Alcohol Using Nanosized Cu/Ni Schiff-Base Complexes and Their Metal Oxide Nanoparticles. Catalysts 2018, 8, 452. [Google Scholar] [CrossRef]
- Tweedy, B.G. Plant Extracts with Metal Ions as Potential Antimicrobial Agents. Phytopathology 1964, 55, 910–914. [Google Scholar]
- Abdel-Rahman, L.H.; Abu-Dief, A.M.; El-Khatib, R.M.; Abdel-Fatah, S.M. Some new nano-sized Fe (II), Cd (II) and Zn (II) Schiff base complexes as precursor for metal oxides: Sonochemical synthesis, characterization, DNA interaction, in vitro antimi-crobial and anticancer activities. Bioorg. Chem. 2016, 69, 140. [Google Scholar] [CrossRef] [PubMed]
- Raman, N.; Dhaveethu Raja, J. Synthesis, structural characterization and antibacterial studies of some biosensitive mixed ligand copper(II) complexes. Indian J. Chem. A 2007, 46, 1611–1614. [Google Scholar]
- Abdel-Rahman, L.H.; Abdelhamid, A.A.; Abu-Dief, A.M.; Shehata, M.R.; Bakhe, M.A. Facile synthesis, X-Ray structure of new multi-substituted aryl imidazole ligand, biological screening and DNA binding of its Cr (III), Fe (III) and Cu (II) coordination compounds as potential antibiotic and anticancer drugs. J. Mol. Struct. 2020, 1200, 127034. [Google Scholar] [CrossRef]
- Gowda, K.R.S.; Naik, H.S.B.; Kumar, B.V.; Sudhamani, C.N.; Sudeep, H.V.; Naik, T.R.R.; Krishnamurthy, G. Synthesis, antimicrobial, DNA-binding and photonuclease studies of Cobalt(III) and Nickel(II) Schiff base complexes. Spectrochim. Acta Part A 2013, 105, 229–237. [Google Scholar] [CrossRef] [PubMed]
- Abu-Dief, A.M.; Nassr, L.A.-M.E. Tailoring, physicochemical characterization, anti-bacterial and DNA binding mode studies of Cu (II) Schiff bases amino acid bioactive agents incorporating 5-bromo-2-hydroxybenzaldehyde. J. Iran. Chem. Soc. 2015, 12, 943–955. [Google Scholar] [CrossRef]
- Epand, R.M.; Walker, C.; Epand, R.F.; Magarvey, N.A. Molecular mechanisms of membrane targeting antibiotics. Biochim. Biophys. Acta (BBA)-Biomembr. 2016, 1858, 980–998. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, A.D.M.; Abualreish, M.; Abu-Dief, A.M. Antimicrobial and anticancer activities of cobalt (III)-hydrazone complexes: Solubilities and chemical potentials of transfer in different organic co-solvent-water mixtures. J. Mol. Liq. 2019, 290, 111162. [Google Scholar] [CrossRef]
- Abdel-Rahman, L.H.; Abu-Dief, A.M.; Aboelez, M.O.; Abdel-Mawgoud, A.A.H. DNA interaction, antimicrobial, anticancer activities and molecular docking study of some new VO (II), Cr (III), Mn (II) and Ni (II) mononuclear chelates encompassing quaridentate imine ligand. J. Photochem. Photobiol. B 2017, 170, 271–285. [Google Scholar] [CrossRef] [PubMed]
- Mohamad, A.D.M.; Abualreish, M.A.; Abu-Dief, A.M. Temperature and salt effects of the kinetic reactions of substituted 2-pyridylmethylene-8-quinolyl iron (II) complexes as antimicrobial, anticancer, and antioxidant agents with cyanide ions. Can. J. Chem. 2021, 99, 763–772. [Google Scholar] [CrossRef]
- Ramakrishnan, S.; Suresh, E.; Riyasdeen, A.; Akbarsha, M.A. Palaniandavar M, Interaction of rac-[M (diimine) 3] 2+(M = Co, Ni) complexes with CT DNA: Role of 5, 6-dmp ligand on DNA binding and cleavage and cytotoxicity. Dalton Trans. 2011, 40, 3245–3256. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Alrashedee, F.M.; Emran, K.M.; Al-Abdulkarim, H.A. Development of Some Magnetic Metal-Organic Framework Nano Composites for Pharmaceutical Applications. Inorg. Chem. Commun. 2022, 138, 109251. [Google Scholar] [CrossRef]
- Shaaban, S.; Negm, A.; Ashmawy, A.M.; Ahmed, D.M.; Wessjohann, L.A. Combinatorial synthesis, in silico, molecular and biochemical studies of tetrazole-derived organic selenides with increased selectivity against hepatocellular carcinoma. Eur. J. Med. Chem. 2016, 122, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Coats, A.W.; Redfern, J.P. Kinetic Parameters from Thermogravimetric Data. Nature 1964, 201, 68–69. [Google Scholar] [CrossRef]
- Al-Abdulkarim, H.A.; El-khatib, R.M.; Aljohani, F.S.; Mahran, A.; Alharbi, A.; Mersal, G.A.M.; El-Metwaly, N.M.; Abu-Dief, A.M. Optimization for synthesized quinoline-based Cr3+, VO2+, Zn2+ and Pd2+ complexes: DNA interaction, bio-logical assay and in-silico treatments for verification. J. Mol. Liq. 2021, 339, 116797. [Google Scholar] [CrossRef]
- Abdel-Rahman, L.H.; Abu-Dief, A.M.; Ismael, M.; Mohamed, M.A.A.; Hashem, N.A. Synthesis, structure elucidation, bio-logical screening, molecular modeling and DNA binding of some Cu (II) chelates incorporating imines derived from amino acids. J. Mol. Struct. 2016, 1103, 232. [Google Scholar] [CrossRef]
- El-Lateef, H.A.; Abu-Dief, A.M.; Abdel-Rahman, L.; Sañudo, E.C.; Aliaga-Alcalde, N. Electrochemical and theoretical quantum approaches on the inhibition of C1018 carbon steel corrosion in acidic medium containing chloride using some newly synthesized phenolic Schiff bases compounds. J. Electroanal. Chem. 2015, 743, 120–133. [Google Scholar]
- El-Lateef, H.M.A.; Abu-Dief, A.M.; Mohamed, M.A. Corrosion inhibition of carbon steel pipelines by some novel Schiff base compounds during acidizing treatment of oil wells studied by electrochemical and quantum chemical methods. J. Mol. Struct. 2017, 1130, 522–542. [Google Scholar] [CrossRef]
- El-Remaily, M.A.A.A.; El-Dabea, T.; Alsawat, M.; Mahmoud, M.H.H.; Alfi, A.A.; El-Metwaly, N.; Abu-Dief, A.M. Development of new thiazole complexes as powerful catalysts for synthesis of pyrazole-4-carbonitrile derivatives under ultrasonic irradiation condition supported by DFT studies. ACS Omega 2021, 6, 21071–21086. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 09, Revision, D.01; Gaussian, Inc.: Wallingford, CT, USA, 2013; Available online: https://gaussian.com/g09citation (accessed on 1 March 2022).
- Pfaller, M.A.; Burmeister, L.; Bartlett, M.S.; Rinaldi, M.G. Multicenter evaluation of four methods of yeast inoculum preparation. J. Clin. Microbiol. 1988, 26, 1437–1441. [Google Scholar] [CrossRef]
- Saddik, M.S.; Elsayed, M.M.A.; El-Mokhtar, M.A.; Sedky, H.; Abdel-Aleem, J.A.; Abu-Dief, A.M.; Al-Hakkani, M.F.; Hussein, H.L.; Al-Shelkamy, S.A.; Meligy, F.Y.; et al. Tailoring of Novel Azithromycin-Loaded Zinc Oxide Nanoparticles for Wound Healing. Pharmaceutics 2022, 14, 111. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival. Immunol. J. Methods 1983, 65, 55. [Google Scholar]
- Saddik, M.S.; Elsayed, M.; Abdelkader, M.S.A.; El-Mokhtar, M.A.; Abdel-Aleem, J.A.; Abu-Dief, A.M.; Al-Hakkani, M.F.; Farghaly, H.S.; Abou-Taleb, H.A. Novel green biosynthesis of 5-fluorouracil chromium nanoparticles using harpullia pendula extract for treatment of colorectal cancer. Pharmaceutics 2021, 13, 226. [Google Scholar] [CrossRef]
- Aljohani, E.T.; Shehata, M.R.; Alkhatib, F.; Alzahrani, S.O.; Abu-Dief, A.M. Development and structure elucidation of new VO2+, Mn2+, Zn2+, and Pd2+ complexes based on azomethine ferrocenyl ligand: DNA interaction, antimicrobial, antioxidant, anticancer activities, and molecular docking. Appl. Organomet. Chem. 2021, 35, e6154. [Google Scholar] [CrossRef]
- Molecular Operating Environment (MOE), 2019.01; Chemical Computing Group ULC: Montreal, QC, Canada, 2021; Available online: https://www.chemcomp.com/Research-Citing_MOE.htm (accessed on 1 March 2022).
- Mazumdar, M.; Fournier, D.; Zhu, D.-W.; Cadot, C.; Poirier, D.; Lin, S.-X. Binary and ternary crystal structure analyses of a novel inhibitor with 17β-HSD type 1: A lead compound for breast cancer therapy. Biochem. J. 2009, 424, 357–366. [Google Scholar] [CrossRef]
- Price, A.C.; Choi, K.H.; Heath, R.J.; Li, S.Z.; White, W.; Rock, C.O. Inhibition of beta-ketoacyl-acyl carrier protein synthases by thiolactomycin and cerulenin. Structure and mechanism. J. Biol. Chem. 2001, 276, 6551. [Google Scholar] [CrossRef]
Compound Formula M.P (C) Color | μeff (B.M.) | Ʌm Analysis: Found (calcd) (Ω−1 cm2 mol−1) | IR, cm−1 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C(%) | H(%) | N(%) | υ(OH)/ H2O | υSt (-CH = N) | υph (C-O) | υ(M-O) | υ(M-N) | ||||||
PDBS C20H14N2O2Br2 (474.15) | orange | 165 | - | - | 50.62 (50.66) | 3.03 (2.98) | 5.97 (5.91) | 3385 | 1612 | 1273 | - | - | |
[Fe(NO3)(H2O)(PDBS)]. 2H2O, (C20H18N3O8Br2Fe), PDBSFe, (644.03) | brown | >300 | 5.52 | 16.54 | 37.43 (37.30) | 2.79 (2.82) | 6.58 (6.52) | 3415 | 1602 | 1232 | 590 | 491 | |
CPBS C20H13ClN2O2Br2 (508.58) | yellow | 185 | - | - | 47.30 (47.23) | 2.61 (2.58) | 5.46 (5.51) | 3425 | 1635 | 1279 | - | - | |
Fe(NO3)(H2O)(CPBS)]. H2O, (C20H15N3O7ClBr2Fe), CPBSFe, (660.46) | brown | >300 | 5.47 | 12.35 | 36.42 (36.37) | 2.34 (2.29) | 6.34 (6.36) | 3471 | 1608 | 1263 | 549 | 503 |
Complexes | Temperature °C | Fragment Loss % | Weight Loss % | E* (kJmol−1) | A (S−1) | ∆H* (kJmol−1) | ∆G* (kJmol−1) | ∆S* (Jmol−1K−1) | ||
---|---|---|---|---|---|---|---|---|---|---|
Molecular Formula | M. Wt. | Found | (Calc.) | |||||||
PDBSFe | 35–120 | 2H2O | 36 | 5.54 | 5.59 | 153.43 | 1.87 | 157.35 | 240.15 | −229.18 |
125–145 | H2O coord | 18 | 2.86 | 2.80 | 155.42 | 253.75 | −234.31 | |||
150–200 | NO3 | 62 | 9.59 | 9.63 | 154.27 | 263.52 | −237.51 | |||
205–305 | C6H3Br | 155 | 24.11 | 24.07 | 153.14 | 283.24 | −241.14 | |||
310–450 | C6H3BrO | 171 | 26.52 | 26.55 | 152.42 | 315.12 | −244.68 | |||
450–650 | C8H6N2 | 130 | 20.24 | 20.19 | 151.19 | 353.77 | −246.15 | |||
Residue | >620 | FeO | 72 | 11.15 | 11.18 | |||||
CPBSFe | 35–120 | H2O | 18 | 2.75 | 2.73 | 152.10 | 1.81 | 158.41 | 238.31 | −227.95 |
125–145 | H2O coord | 18 | 2.70 | 2.73 | 156.72 | 250.57 | −230.03 | |||
145–200 | NO3 | 62 | 9.41 | 9.39 | 155.21 | 260.05 | −235.32 | |||
205–305 | C6H3Br | 155 | 23.44 | 23.47 | 152.35 | 278.79 | −239.47 | |||
310–450 | C6H3BrO | 171 | 25.94 | 25.89 | 151.12 | 309.55 | −242.62 | |||
450–650 | C8H5N2Cl | 164.5 | 24.87 | 24.91 | 149.09 | 350.60 | −244.85 | |||
Residue | >620 | FeO | 72 | 10.93 | 10.90 |
Complex | Type of Complex | Kf | Log Kf | ∆G* (KJmol−1) |
---|---|---|---|---|
PDBSFe | 1:1 | 6.20 × 104 | 4.79 | −27.34 |
CPBSFe | 1:1 | 5.65 × 104 | 4.75 | −27.11 |
PDBSFe | CPBSFe | PDBSFe | CPBSFe | ||
---|---|---|---|---|---|
Type of bond | Bond lengths (Å) | Type of bond | Bond lengths (Å) | ||
Fe-N1 | 1.941 | 1.939 | Fe-O2 | 1.929 | 1.927 |
Fe-N2 | 1.943 | 1.942 | Fe-O3 | 2.065 | 2.067 |
Fe-O1 | 1.893 | 1.895 | Fe-O4 | 1.892 | 1.888 |
Type of Angle | Angle (°) | Type of Angle | Angle (°) | ||
N1-Fe-N2 | 84.35 | 84.54 | O4-Fe-N1 | 95.04 | 95.56 |
N1-Fe-O1 | 91.36 | 91.64 | O4-Fe-N2 | 96.43 | 96.05 |
N2-Fe-O2 | 92.21 | 92.39 | O4-Fe-O1 | 91.95 | 91.73 |
O1-Fe-O2 | 91.54 | 90.75 | O4-Fe-O2 | 89.54 | 89.71 |
O3-Fe-N1 | 95.58 | 94.99 | N1-Fe-O2 | 174.5 | 174.2 |
O3-Fe-N2 | 89.85 | 89.72 | N2-Fe-O1 | 170.9 | 171.6 |
O3-Fe-O1 | 82.55 | 83.17 | O3-Fe-O4 | 168.1 | 168.4 |
O3-Fe-O2 | 80.15 | 80.00 | N1-N2-O2-O1 | 2.628 * | 1.719 * |
Property | PDBS | CPBS | PDBSFe | CPBSFe |
---|---|---|---|---|
The total energy E (a.u.) | −6179.07 | −6638.70 | −6657.72 | −7117.33 |
HOMO (eV) | −6.3479 | −6.4383 | −6.1455 | −6.2799 |
LUMO (eV) | −2.4267 | −2.5661 | −3.1873 | −3.3462 |
Eg = ELUMO − EHOMO (eV) | 3.9212 | 3.8722 | 2.9582 | 2.9337 |
Dipole moment (Debye) | 2.3936 | 0.8180 | 8.3195 | 6.9156 |
Ionization potential I= −EHOMO | 6.3479 | 6.4383 | 6.1455 | 6.2799 |
Electron affinity A = −ELUMO | 2.4267 | 2.5661 | 3.1873 | 3.3462 |
Electronegativity χ = (I + A)/2 | 4.3873 | 4.5022 | 4.6664 | 4.8130 |
Chemical hardness η = (I − A)/2 | 1.9606 | 1.9361 | 1.4791 | 1.4668 |
Chemical softness S = 1/2η | 0.2550 | 0.2583 | 0.3380 | 0.3409 |
Chemical potential μ = −χ | −4.3873 | −4.5022 | −4.6664 | −4.8130 |
Electrophilicity ω = μ2/2η | 4.9088 | 5.2347 | 7.3610 | 7.8963 |
Compounds | Bacteria | Fungi | ||||
---|---|---|---|---|---|---|
S. marcescence | E. coli | M. luteus | G. candidum | A. flavus | F. oxysporum | |
PDBS | 7.25 | 7.75 | 6.25 | 6.75 | 8.00 | 7.50 |
PDBSFe | 3.75 | 4.25 | 3.00 | 4.00 | 4.50 | 4.25 |
CPBS | 5.50 | 6.25 | 4.75 | 5.25 | 6.75 | 6.25 |
CPBSFe | 3.25 | 3.50 | 2.50 | 3.00 | 3.75 | 3.50 |
Compounds | IC50 (µg/µL) | ||
---|---|---|---|
MCF-7 | HepG-2 | HCT-116 | |
PDBS | 28.50 ± 0.11 | 33.65 ± 0.12 | 24.25 ± 0.13 |
PDBSFe | 8.57 ± 0.10 | 10.20 ± 0.16 | 6.85 ± 0.09 |
CPBS | 21.35 ± 0.12 | 27.70 ± 0.11 | 15.75 ± 0.07 |
CPBSFe | 5.14 ± 0.05 | 6.75 ± 0.12 | 4.45 ± 0.14 |
DMSO | --- | --- | ---- |
Doxorubicin | 4.10 ± 0.13 | 5.15 ± 0.07 | 4.35 ± 0.15 |
Receptor | Interaction | Distance (Å) | E (kcal/mol) | |
---|---|---|---|---|
PDBS | ||||
O 23 | O ILE 152 | H-donor | 2.91 (1.96) | −2.9 |
O 24 | SG CYS 145 | H-donor | 3.51 (2.59) | −1.4 |
6-ring | CA THR 148 | pi-H | 3.72 | −0.6 |
CPBS | ||||
O 23 | OE1 GLU 200 | H-donor | 2.79 (1.88) | −4.3 |
C 3 | SD MET 269 | H-donor | 3.90 (2.84) | −0.5 |
6-ring | CB ALA 162 | pi-H | 4.04 | −1.8 |
[FePDBS(H2O)NO3] | ||||
O 37 | O VAL 270 | H-donor | 2.68 (1.80) | −7.6 |
O 40 | N VAL 304 | H-acceptor | 3.16 (2.21) | −0.7 |
[FeCPBS(H2O)NO3] | ||||
O 37 | O ASP 85 | H-donor | 3.49 (2.50) | −3.1 |
O 37 | OD1 ASP 85 | Ionic | 2.87 | −5.4 |
O 37 | OD2 ASP 85 | Ionic | 3.55 | −1.7 |
6-ring | 5-ring HIS 252 | pi-pi | 3.55 | −0.1 |
Receptor | Interaction | Distance (Å) | E (kcal/mol) | |
---|---|---|---|---|
PDBS | ||||
O 24 | O THR 196 | H-donor | 2.92 (1.94) | −3.5 |
6-ring | CB PRO 132 | pi-H | 4.80 | −0.6 |
6-ring | CA ASN 133 | pi-H | 3.87 | −0.5 |
CPBS | ||||
O 23 | O LEU 287 | H-donor | 2.94 (1.96) | −4.2 |
Br 26 | O THR 169 | H-donor | 3.35 | −1.5 |
6-ring | CE LYS 137 | pi-H | 3.51 | −0.5 |
6-ring | CB ASP 197 | pi-H | 3.97 | −0.7 |
[FePDBS(H2O)NO3] | ||||
O 37 | O LEU 272 | H-donor | 2.80 (1.90) | −13.3 |
[FeCPBS(H2O)NO3] | ||||
O 37 | OD1 ASN 142 | H-donor | 2.79 (1.77) | −15.7 |
O 40 | NE2 GLN 189 | H-acceptor | 3.10 (2.17) | −1.1 |
Br 27 | O THR 26 | H-donor | 3.50 | −0.7 |
6-ring | CA ASN 142 | pi-H | 3.96 | −0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Lateef, H.M.A.; Khalaf, M.M.; Shehata, M.R.; Abu-Dief, A.M. Fabrication, DFT Calculation, and Molecular Docking of Two Fe(III) Imine Chelates as Anti-COVID-19 and Pharmaceutical Drug Candidate. Int. J. Mol. Sci. 2022, 23, 3994. https://doi.org/10.3390/ijms23073994
El-Lateef HMA, Khalaf MM, Shehata MR, Abu-Dief AM. Fabrication, DFT Calculation, and Molecular Docking of Two Fe(III) Imine Chelates as Anti-COVID-19 and Pharmaceutical Drug Candidate. International Journal of Molecular Sciences. 2022; 23(7):3994. https://doi.org/10.3390/ijms23073994
Chicago/Turabian StyleEl-Lateef, Hany M. Abd, Mai M. Khalaf, Mohamed R. Shehata, and Ahmed M. Abu-Dief. 2022. "Fabrication, DFT Calculation, and Molecular Docking of Two Fe(III) Imine Chelates as Anti-COVID-19 and Pharmaceutical Drug Candidate" International Journal of Molecular Sciences 23, no. 7: 3994. https://doi.org/10.3390/ijms23073994
APA StyleEl-Lateef, H. M. A., Khalaf, M. M., Shehata, M. R., & Abu-Dief, A. M. (2022). Fabrication, DFT Calculation, and Molecular Docking of Two Fe(III) Imine Chelates as Anti-COVID-19 and Pharmaceutical Drug Candidate. International Journal of Molecular Sciences, 23(7), 3994. https://doi.org/10.3390/ijms23073994