Identification of Sex Differentiation-Related microRNAs in Spinach Female and Male Flower
Abstract
:1. Introduction
2. Results
2.1. Small RNA Sequencing
2.2. Sex-Biased miRNAs of Spinach
2.3. Target Genes of miRNAs
2.4. MiRNAs Residing in Sex Chromosome
2.5. Functional Analysis of Sol-miR172 and Sol-miR2550n
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Library Construction and Sequencing
- (1)
- Removing low quality reads containing more than one low quality (Q-value ≤ 20) base or containing unknown nucleotides (N);
- (2)
- Removing reads without 3′adapters;
- (3)
- Removing reads containing 5′adapters;
- (4)
- Removing reads containing 3′ and 5′ adapters but no small RNA fragment between them;
- (5)
- Removing reads containing ployA (the content of A base in a reads is higher than 70%) in small RNA fragment;
- (6)
- Removing reads shorter than 18 nt (not include adapters).
4.3. Alignment and Identification of Small RNA
- (1)
- Minimal miRNA sequence length is 18 nt;
- (2)
- Maximal miRNA sequence length is 25 nt;
- (3)
- Minimal miRNA reference sequence length is 20 nt;
- (4)
- Maximal miRNA reference sequence length is 23 nt;
- (5)
- Maximal copy number of miRNAs on reference is 20;
- (6)
- Maximal free energy allowed for a miRNA precursor is 18 kcal/mol;
- (7)
- Maximal space between miRNA and miRNA* is 300 nt;
- (8)
- Minimal space between miRNA and miRNA* is 16 nt;
- (9)
- Maximal bulge between miRNA and miRNA* is 4 nt;
- (10)
- Maximal asymmetry of miRNA/miRNA* duplex is 4 nt;
- (11)
- Flank sequence length of miRNA precursor is 20 nt.
4.4. MiRNA Expression Profiles
4.5. Target Gene Prediction
- (1)
- No more than four mismatches between sRNA & target (G-U bases count as 0.5 mismatches)
- (2)
- No more than two adjacent mismatches in the miRNA/target duplex
- (3)
- No adjacent mismatches in in positions 2–12 of the miRNA/target duplex (5’ of miRNA)
- (4)
- No mismatches in positions 10–11 of miRNA/target duplex
- (5)
- No more than 2.5 mismatches in positions 1–12 of the of the miRNA/target duplex (5’ of miRNA)
- (6)
- Minimum free energy (MFE) of the miRNA/target duplex should be > = 74% of the MFE of the miRNA bound to it’s perfect complement.
4.6. qRT-PCR
4.7. Vector Construction and Plant Transformation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Renner, S.S. The relative and absolute frequencies of angiosperm sexual systems: Dioecy, monoecy, gynodioecy, and an updated online database. Am. J. Bot. 2014, 101, 1588–1596. [Google Scholar] [CrossRef] [Green Version]
- Barrett, S.C. The evolution of plant sexual diversity. Nat. Rev. Genet. 2002, 3, 274–284. [Google Scholar] [CrossRef]
- Charlesworth, D. Plant contributions to our understanding of sex chromosome evolution. New Phytol. 2015, 208, 52–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henry, I.M.; Akagi, T.; Tao, R.; Comai, L. One Hundred Ways to Invent the Sexes: Theoretical and Observed Paths to Dioecy in Plants. Annu. Rev. Plant Biol. 2018, 69, 553–575. [Google Scholar] [CrossRef] [Green Version]
- Akagi, T.; Charlesworth, D. Pleiotropic effects of sex-determining genes in the evolution of dioecy in two plant species. Proc. Biol. Sci. 2019, 286, 20191805. [Google Scholar] [CrossRef]
- Feng, G.; Sanderson, B.J.; Keefoverring, K.; Liu, J.; Ma, T.; Yin, T.; Smart, L.B.; Difazio, S.P.; Olson, M.S. Pathways to sex determination in plants: How many roads lead to Rome? Curr. Opin. Plant Biol. 2020, 54, 61–68. [Google Scholar] [CrossRef]
- Fechter, I.; Hausmann, L.; Daum, M.; Sorensen, T.R.; Viehover, P.; Weisshaar, B.; Topfer, R. Candidate genes within a 143 kb region of the flower sex locus in Vitis. Mol. Genet. Genom. 2012, 287, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Picq, S.; Santoni, S.; Lacombe, T.; Latreille, M.; Weber, A.; Ardisson, M.; Ivorra, S.; Maghradze, D.; Arroyo-Garcia, R.; Chatelet, P.; et al. A small XY chromosomal region explains sex determination in wild dioecious V. vinifera and the reversal to hermaphroditism in domesticated grapevines. BMC Plant Biol. 2014, 14, 229. [Google Scholar] [CrossRef] [Green Version]
- Akagi, T.; Henry, I.M.; Tao, R.; Comai, L. A Y-chromosome-encoded small RNA acts as a sex determinant in persimmons. Science 2014, 346, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Geraldes, A.; Hefer, C.A.; Capron, A.; Kolosova, N.; Martinez-Nunez, F.; Soolanayakanahally, R.Y.; Stanton, B.; Guy, R.D.; Mansfield, S.D.; Douglas, C.J.; et al. Recent Y chromosome divergence despite ancient origin of dioecy in poplars (Populus). Mol. Ecol. 2015, 24, 3243–3256. [Google Scholar] [CrossRef] [PubMed]
- Muller, N.A.; Kersten, B.; Leite Montalvao, A.P.; Mahler, N.; Bernhardsson, C.; Brautigam, K.; Carracedo Lorenzo, Z.; Hoenicka, H.; Kumar, V.; Mader, M.; et al. A single gene underlies the dynamic evolution of poplar sex determination. Nat. Plants 2020, 6, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Wu, H.; Chen, Y.; Li, X.; Hou, J.; Lu, J.; Wei, S.; Dai, X.; Olson, M.S.; Liu, J.; et al. Evidences for a role of two Y-specific genes in sex determination in Populus deltoides. Nat. Commun. 2020, 11, 5893. [Google Scholar] [CrossRef]
- Mori, K.; Shirasawa, K.; Nogata, H.; Hirata, C.; Tashiro, K.; Habu, T.; Kim, S.; Himeno, S.; Kuhara, S.; Ikegami, H. Identification of RAN1 orthologue associated with sex determination through whole genome sequencing analysis in fig (Ficus carica L.). Sci. Rep. 2017, 7, 46784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, M.F.; Mathew, L.S.; Ahmed, I.; Al-Azwani, I.K.; Krueger, R.; Rivera-Nunez, D.; Mohamoud, Y.A.; Clark, A.G.; Suhre, K.; Malek, J.A. Genus-wide sequencing supports a two-locus model for sex-determination in Phoenix. Nat. Commun. 2018, 9, 3969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tennessen, J.A.; Wei, N.; Straub, S.; Govindarajulu, R.; Liston, A.; Ashman, T.L. Repeated translocation of a gene cassette drives sex-chromosome turnover in strawberries. PLoS Biol. 2018, 16, e2006062. [Google Scholar] [CrossRef] [Green Version]
- Akagi, T.; Pilkington, S.M.; Varkonyi-Gasic, E.; Henry, I.M.; Sugano, S.S.; Sonoda, M.; Firl, A.; McNeilage, M.A.; Douglas, M.J.; Wang, T.C.; et al. Two Y-chromosome-encoded genes determine sex in kiwifruit. Nat. Plants 2019, 5, 801–809. [Google Scholar] [CrossRef]
- Harkess, A.; Huang, K.; van der Hulst, R.; Tissen, B.; Caplan, J.L.; Koppula, A.; Batish, M.; Meyers, B.C.; Leebens-Mack, J. Sex Determination by Two Y-Linked Genes in Garden Asparagus. Plant Cell 2020, 32, 1790–1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergero, R.; Charlesworth, D. Preservation of the Y Transcriptome in a 10-Million-Year-Old Plant Sex Chromosome System. Curr. Biol. 2011, 21, 1470–1474. [Google Scholar] [CrossRef] [Green Version]
- Kazama, Y.; Ishii, K.; Aonuma, W.; Ikeda, T.; Kawamoto, H.; Koizumi, A.; Filatov, D.A.; Chibalina, M.; Bergero, R.; Charlesworth, D.; et al. A new physical mapping approach refines the sex-determining gene positions on the Silene latifolia Y-chromosome. Sci. Rep. 2016, 6, 18917. [Google Scholar] [CrossRef] [Green Version]
- Zerpa-Catanho, D.; Wai, J.; Wang, M.L.; Yu, L.; Nguyen, J.; Ming, R. Differential gene expression among three sex types reveals a MALE STERILITY 1 (CpMS1) for sex differentiation in papaya. BMC Plant Biol. 2019, 19, 545. [Google Scholar] [CrossRef]
- Voinnet, O. Origin, Biogenesis, and Activity of Plant MicroRNAs. Cell 2009, 136, 669–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chellappan, P.; Xia, J.; Zhou, X.F.; Gao, S.; Zhang, X.M.; Coutino, G.; Vazquez, F.; Zhang, W.X.; Jin, H.L. siRNAs from miRNA sites mediate DNA methylation of target genes. Nucleic Acids Res. 2010, 38, 6883–6894. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhou, H.Y.; Zhang, Q.Q.; Zhang, J.G.; Ni, F.R.; Liu, C.; Qi, Y.J. DNA Methylation Mediated by a MicroRNA Pathway. Mol. Cell 2010, 38, 465–475. [Google Scholar] [CrossRef]
- Feng, H.; Zhang, Q.; Wang, Q.; Wang, X.; Liu, J.; Li, M.; Huang, L.; Kang, Z. Target of tae-miR408, a chemocyanin-like protein gene (TaCLP1), plays positive roles in wheat response to high-salinity, heavy cupric stress and stripe rust. Plant Mol. Biol. 2013, 83, 433–443. [Google Scholar] [CrossRef]
- Hackenberg, M.; Shi, B.-J.; Gustafson, P.; Langridge, P. Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under phosphorus-sufficient and phosphorus-deficient conditions. BMC Plant Biol. 2013, 13, 214. [Google Scholar] [CrossRef] [Green Version]
- Han, R.; Jian, C.; Lv, J.Y.; Yan, Y.; Chi, Q.; Li, Z.J.; Wang, Q.; Zhang, J.; Liu, X.L.; Zhao, H.X. Identification and characterization of microRNAs in the flag leaf and developing seed of wheat (Triticum aestivum L.). BMC Genom. 2014, 15, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, X.; Li, Y.; Cao, X.; Qi, Y. MicroRNAs and Their Regulatory Roles in Plant–Environment Interactions. Annu. Rev. Plant Biol. 2019, 70, 489–525. [Google Scholar] [CrossRef]
- Baker, C.C.; Sieber, P.; Wellmer, F.; Meyerowitz, E.M. The early extra petals1 mutant uncovers a role for MicroRNA miR164c in regulating petal number in Arabidopsis. Curr. Biol. 2005, 15, 303–315. [Google Scholar] [CrossRef] [Green Version]
- Chen, X. A MicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower Development. Science 2004, 303, 2022. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Kim, Y.J.; Dinh, T.T.; Chen, X.M. miR172 regulates stem cell fate and defines the inner boundary of APETALA3 and PISTILLATA expression domain in Arabidopsis floral meristems. Plant J. 2007, 51, 840–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio-Somoza, I.; Weigel, D. Coordination of Flower Maturation by a Regulatory Circuit of Three MicroRNAs. PLoS Genet. 2013, 9, e1003374. [Google Scholar] [CrossRef] [Green Version]
- Damodharan, S.; Corem, S.; Gupta, S.K.; Arazi, T. Tuning of SlARF10A dosage by sly-miR160a is critical for auxin-mediated compound leaf and flower development. Plant J. 2018, 96, 855–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuck, G.; Meeley, R.; Irish, E.; Sakai, H.; Hake, S. The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1. Nat. Genet. 2007, 39, 1517–1521. [Google Scholar] [CrossRef] [PubMed]
- Akagi, T.; Shirasawa, K.; Nagasaki, H.; Hirakawa, H.; Tao, R.; Comai, L.; Henry, I.M. The persimmon genome reveals clues to the evolution of a lineage-specific sex determination system in plants. PLoS Genet. 2020, 16, e1008845. [Google Scholar] [CrossRef]
- Ming, R.; Bendahmane, A.; Renner, S.S. Sex Chromosomes in Land Plants. Annu. Rev. Plant Biol. 2011, 62, 485–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onodera, Y.; Yonaha, I.; Masumo, H.; Tanaka, A.; Niikura, S.; Yamazaki, S.; Mikami, T. Mapping of the genes for dioecism and monoecism in Spinacia oleracea L.: Evidence that both genes are closely linked. Plant Cell Rep. 2011, 30, 965–971. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Qin, R.; Gao, J.; Cao, Y.; Li, S.; Gao, W.; Lu, L. Identification of sex chromosome of spinach by physical mapping of 45s rDNAs by FISH. Caryologia 2012, 65, 322–327. [Google Scholar] [CrossRef] [Green Version]
- Kudoh, T.; Takahashi, M.; Osabe, T.; Toyoda, A.; Hirakawa, H.; Suzuki, Y.; Ohmido, N.; Onodera, Y. Molecular insights into the non-recombining nature of the spinach male-determining region. Mol. Genet. Genom. 2018, 293, 557–568. [Google Scholar] [CrossRef]
- Wadlington, W.H.; Ming, R. Development of an X-specific marker and identification of YY individuals in spinach. Theor. Appl. Genet. 2018, 131, 1987–1994. [Google Scholar] [CrossRef]
- Qian, W.; Fan, G.Y.; Liu, D.D.; Zhang, H.L.; Wang, X.W.; Wu, J.; Xu, Z.S. Construction of a high-density genetic map and the X/Y sex-determining gene mapping in spinach based on large-scale markers developed by specific-locus amplified fragment sequencing (SLAF-seq). BMC Genom. 2017, 18, 276. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Ma, X.; Deng, B.; Yue, J.; Ming, R. Construction of high-density genetic maps defined sex determination region of the Y chromosome in spinach. Mol. Genet. Genom. 2021, 296, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Yu, L.; Fatima, M.; Wadlington, W.H.; Hulse-Kemp, A.M.; Zhang, X.; Zhang, S.; Xu, X.; Wang, J.; Huang, H.; et al. The spinach YY genome reveals sex chromosome evolution, domestication, and introgression history of the species. Genome Biol. 2022, 23, 75. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, Y.; Takahata, S.; Hirakawa, H.; Suzuki, Y.; Onodera, Y. Molecular evidence for recent divergence of X- and Y-linked gene pairs in Spinacia oleracea L. PLoS ONE 2019, 14, e0214949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Jiao, C.; Sun, H.; Cai, X.; Wang, X.; Ge, C.; Zheng, Y.; Liu, W.; Sun, X.; Xu, Y.; et al. Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nat. Commun. 2017, 8, 15275. [Google Scholar] [CrossRef] [PubMed]
- Hirakawa, H.; Toyoda, A.; Itoh, T.; Suzuki, Y.; Nagano, A.J.; Sugiyama, S.; Onodera, Y. A spinach genome assembly with remarkable completeness, and its use for rapid identification of candidate genes for agronomic traits. DNA Res. 2021, 28, dsab004. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Sun, X.; Xu, C.; Sun, H.; Wang, X.; Ge, C.; Zhang, Z.; Wang, Q.; Fei, Z.; Jiao, C.; et al. Genomic analyses provide insights into spinach domestication and the genetic basis of agronomic traits. Nat. Commun. 2021, 12, 7246. [Google Scholar] [CrossRef]
- Avsar, B.; Aliabadi, D.E. In silico Analysis of MicroRNAs in Spinacia oleracea Genome and Transcriptome. Int. J. Biosci. Biochem. Bioinform. 2017, 7, 84–92. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Liao, H.; Zhang, W.; Yu, X.; Zhang, R.; Shan, H.; Duan, X.; Yao, X.; Kong, H. Flexibility in the structure of spiral flowers and its underlying mechanisms. Nat. Plants 2015, 2, 15188. [Google Scholar] [CrossRef]
- West, N.W.; Golenberg, E.M. Gender-specific expression of GIBBERELLIC ACID INSENSITIVE is critical for unisexual organ initiation in dioecious Spinacia oleracea. New Phytol. 2018, 217, 1322–1334. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Onodera, Y.; Masuta, C. Application of cucumber mosaic virus to efficient induction and long-term maintenance of virus-induced gene silencing in spinach. Plant Biotechnol. 2020, 37, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Cheng, H.; Zhang, Y.; Zhang, J.; Niu, S.; Wang, X.; Li, W.; Zhang, J.; Yao, Y. The MdMYB16/MdMYB1-miR7125-MdCCR module regulates the homeostasis between anthocyanin and lignin biosynthesis during light induction in apple. New Phytol. 2021, 231, 1105–1122. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Meng, Z.; Tao, M.; Wang, Y.; Zhang, Y.; Li, S.; Gao, W.; Deng, C. Comparative transcriptome analysis of male and female flowers in Spinacia oleracea L. BMC Genom. 2020, 21, 850. [Google Scholar] [CrossRef]
- Aukerman, M.J.; Sakai, H. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 2003, 15, 2730–2741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, J.T. Sex expression in spinach. Hilgardia 1925, 1, 259–274. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Chen, X. Secrets of the MIR172 family in plant development and flowering unveiled. PLoS Biol. 2021, 19, e3001099. [Google Scholar] [CrossRef] [PubMed]
Sample ID | Clean Reads | High Quality | 3’Adapter Null | Insert Null | 5’Adapter Contaminants | Smaller than 18 nt | PolyA | Clean Tags |
---|---|---|---|---|---|---|---|---|
SpM10-1 | 14,183,245 (100%) | 13,907,336 (98.0547%) | 66,715 (0.4797%) | 39,362 (0.2830%) | 68,350 (0.4915%) | 193,229 (1.3894%) | 2113 (0.0152%) | 13,537,567 (97.3412%) |
SpM10-2 | 14,464,387 (100%) | 14,164,634 (97.9276%) | 80,069 (0.5653%) | 67,309 (0.4752%) | 19,248 (0.1359%) | 553,683 (3.9089%) | 1861 (0.0131%) | 13,442,464 (94.9016%) |
SpM10-3 | 14,506,554 (100%) | 14,227,721 (98.0779%) | 77,086 (0.5418%) | 117,860 (0.8284%) | 37,183 (0.2613%) | 1,254,040 (8.8141%) | 1497 (0.0105%) | 12,740,055 (89.5439%) |
SpM05-1 | 15,642,311 (100%) | 15,300,380 (97.8141%) | 34,255 (0.2239%) | 129,458 (0.8461%) | 29,207 (0.1909%) | 778,380 (5.0873%) | 2248 (0.0147%) | 14,326,832 (93.6371%) |
SpM05-2 | 15,687,586 (100%) | 15,366,874 (97.9556%) | 39,542 (0.2573%) | 104,255 (0.6784%) | 42,694 (0.2778%) | 514,753 (3.3498%) | 1978 (0.0129%) | 14,663,652 (95.4238%) |
SpM05-3 | 13,426,285 (100%) | 13,140,154 (97.8689%) | 60,121 (0.4575%) | 96,948 (0.7378%) | 23,471 (0.1786%) | 566,578 (4.3118%) | 1664 (0.0127%) | 12,391,372 (94.3016%) |
SpM03-1 | 14,134,390 (100%) | 13,839,374 (97.9128%) | 65,717 (0.4749%) | 87,932 (0.6354%) | 25,498 (0.1842%) | 619,950 (4.4796%) | 2138 (0.0154%) | 13,038,139 (94.2105%) |
SpM03-2 | 14,974,564 (100%) | 14,661,075 (97.9065%) | 51,713 (0.3527%) | 49,690 (0.3389%) | 27,909 (0.1904%) | 716,623 (4.8879%) | 2337 (0.0159%) | 13,812,803 (94.2141%) |
SpM03-3 | 14,763,485 (100%) | 14,459,587 (97.9416%) | 59,870 (0.4141%) | 102,487 (0.7088%) | 25,196 (0.1743%) | 1,058,011 (7.3170%) | 1825 (0.0126%) | 13,212,198 (91.3733%) |
SpFYS-1 | 14,686,982 (100%) | 14,367,641 (97.8257%) | 42,045 (0.2926%) | 57,856 (0.4027%) | 18,191 (0.1266%) | 388,472 (2.7038%) | 1739 (0.0121%) | 13,859,338 (96.4622%) |
SpFYS-2 | 16,785,272 (100%) | 16,407,458 (97.7491%) | 84,234 (0.5134%) | 85,457 (0.5208%) | 28,469 (0.1735%) | 790,536 (4.8182%) | 1885 (0.0115%) | 15,416,877 (93.9626%) |
SpFYS-3 | 13,411,587 (100%) | 13,139,123 (97.9684%) | 59,803 (0.4552%) | 75,025 (0.5710%) | 19,904 (0.1515%) | 554,722 (4.2219%) | 1697 (0.0129%) | 12,427,972 (94.5875%) |
SpFNB-1 | 12,270,405 (100%) | 12,010,945 (97.8855%) | 38,498 (0.3205%) | 53,131 (0.4424%) | 14,985 (0.1248%) | 314,233 (2.6162%) | 1141 (0.0095%) | 11,588,957 (96.4866%) |
SpFNB-2 | 13,192,504 (100%) | 12,938,214 (98.0725%) | 26,417 (0.2042%) | 54,149 (0.4185%) | 21,619 (0.1671%) | 550,952 (4.2583%) | 1196 (0.0092%) | 12,283,881 (94.9426%) |
SpFNB-3 | 12,539,936 (100%) | 12,279,735 (97.9250%) | 53,903 (0.4390%) | 38,428 (0.3129%) | 17,344 (0.1412%) | 364,801 (2.9708%) | 1132 (0.0092%) | 11,804,127 (96.1269%) |
SpFNS-1 | 14,777,105 (100%) | 14,461,450 (97.8639%) | 44,934 (0.3107%) | 58,975 (0.4078%) | 19,961 (0.1380%) | 822,130 (5.6850%) | 1283 (0.0089%) | 13,514,167 (93.4496%) |
SpFNS-2 | 13,104,189 (100%) | 12,831,211 (97.9169%) | 26,074 (0.2032%) | 66,202 (0.5159%) | 19,029 (0.1483%) | 426,303 (3.3224%) | 1346 (0.0105%) | 12,292,257 (95.7997%) |
SpFNS-3 | 13,170,448 (100%) | 12,905,639 (97.9894%) | 97,757 (0.7575%) | 67,113 (0.5200%) | 18,541 (0.1437%) | 619,765 (4.8023%) | 1122 (0.0087%) | 12,101,341 (93.7679%) |
Sample | Tags Total | Known miRNA | Novel miRNA | ||||
---|---|---|---|---|---|---|---|
miRNA Number | Tags Number | Ratio a | miRNA Number | Tags Number | Ratio b | ||
SpM10-1 | 13537567 | 164 | 655285 | 4.84% | 2434 | 66103 | 0.49% |
SpM10-2 | 13442464 | 179 | 704922 | 5.24% | 2503 | 81406 | 0.61% |
SpM10-3 | 12740055 | 178 | 913251 | 7.17% | 2216 | 78922 | 0.62% |
SpM05-1 | 14326832 | 183 | 694889 | 4.85% | 2416 | 61441 | 0.43% |
SpM05-2 | 14663652 | 166 | 1005695 | 6.86% | 2338 | 61939 | 0.42% |
SpM05-3 | 12391372 | 173 | 677457 | 5.47% | 2384 | 58427 | 0.47% |
SpM03-1 | 13038139 | 157 | 449864 | 3.45% | 2581 | 95857 | 0.74% |
SpM03-2 | 13812803 | 219 | 662634 | 4.80% | 2563 | 105093 | 0.76% |
SpM03-3 | 13212198 | 194 | 734663 | 5.56% | 2386 | 121533 | 0.92% |
SpFYS-1 | 13859338 | 173 | 347553 | 2.51% | 2772 | 74358 | 0.54% |
SpFYS-2 | 15416877 | 200 | 358872 | 2.33% | 2790 | 104483 | 0.68% |
SpFYS-3 | 12427972 | 163 | 360486 | 2.90% | 2499 | 69776 | 0.56% |
SpFNB-1 | 11588957 | 140 | 733948 | 6.33% | 1980 | 48237 | 0.42% |
SpFNB-2 | 12283881 | 155 | 656934 | 5.35% | 1768 | 42769 | 0.35% |
SpFNB-3 | 11804127 | 131 | 768099 | 6.51% | 1796 | 45868 | 0.39% |
SpFNS-1 | 13514167 | 163 | 1010772 | 7.48% | 1857 | 74367 | 0.55% |
SpFNS-2 | 12292257 | 144 | 977760 | 7.95% | 2107 | 59193 | 0.48% |
SpFNS-3 | 12101341 | 156 | 687684 | 5.68% | 2032 | 40874 | 0.34% |
Total c | 92 | 3402 |
Sample Name | miRNA Number | Target Gene Number | Target Site Number |
---|---|---|---|
SpM10-1 | 1726 | 7161 | 14391 |
SpM10-2 | 1796 | 7619 | 15036 |
SpM10-3 | 1598 | 7832 | 15006 |
SpM05-1 | 1746 | 8359 | 15876 |
SpM05-2 | 1679 | 6518 | 13201 |
SpM05-3 | 1720 | 7744 | 15111 |
SpM03-1 | 1822 | 6874 | 13919 |
SpM03-2 | 1893 | 9451 | 18542 |
SpM03-3 | 1712 | 9045 | 17370 |
SpFYS-1 | 1952 | 6646 | 14188 |
SpFYS-2 | 1976 | 7817 | 16164 |
SpFYS-3 | 1744 | 6518 | 13423 |
SpFNB-1 | 1430 | 5401 | 10784 |
SpFNB-2 | 1323 | 5355 | 10423 |
SpFNB-3 | 1294 | 5091 | 9762 |
SpFNS-1 | 1361 | 6579 | 11874 |
SpFNS-2 | 1523 | 5300 | 10930 |
SpFNS-3 | 1481 | 6481 | 12669 |
Total | 2855 | 20460 | 49591 |
miRNA ID | Target | Annotation |
---|---|---|
novel-m2307-5p | Isoform014322 | ENTH/ANTH/VHS superfamily protein isoform 1 |
novel-m2430-5p | Isoform009669 | protein IQ-DOMAIN 14 |
novel-m2524-5p | Isoform010547 | F-box and leucine-rich repeat protein 2/20 |
novel-m2550-5p | Isoform007857 | defensin Ec-AMP-D2-like |
novel-m2554-3p | Isoform007343 | probable prefoldin subunit 2 |
novel-m2572-3p | Spo15344 | plant mobile domain family protein |
novel-m2617-3p | Isoform008852 | uncharacterized LOC104898421 |
novel-m2619-3p | Spo05571 | Polygalacturonase (PG) (3.2.1.15) (Pectinase) (Precursor) |
novel-m2641-5p | Isoform002028 | 7-hydroxymethyl chlorophyll a reductase, chloroplastic |
Isoform002329 | ABC transporter A family member 7-like | |
Isoform007233 | cysteine-rich and transmembrane domain-containing protein A | |
Isoform014680 | transcription factor bHLH90 | |
novel-m2763-3p | Isoform000331 | probable xyloglucan endotransglucosylase/hydrolase protein 5 |
Isoform011756 | uncharacterized LOC104897309 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Wang, Y.; Wang, J.; Zhang, W.; Meng, Z.; Wang, Y.; Zhang, Y.; Li, S.; Gao, W.; Deng, C. Identification of Sex Differentiation-Related microRNAs in Spinach Female and Male Flower. Int. J. Mol. Sci. 2022, 23, 4090. https://doi.org/10.3390/ijms23084090
Li N, Wang Y, Wang J, Zhang W, Meng Z, Wang Y, Zhang Y, Li S, Gao W, Deng C. Identification of Sex Differentiation-Related microRNAs in Spinach Female and Male Flower. International Journal of Molecular Sciences. 2022; 23(8):4090. https://doi.org/10.3390/ijms23084090
Chicago/Turabian StyleLi, Ning, Yueyuan Wang, Jiwen Wang, Wanqing Zhang, Ziwei Meng, Yuanshen Wang, Yulan Zhang, Shufen Li, Wujun Gao, and Chuanliang Deng. 2022. "Identification of Sex Differentiation-Related microRNAs in Spinach Female and Male Flower" International Journal of Molecular Sciences 23, no. 8: 4090. https://doi.org/10.3390/ijms23084090
APA StyleLi, N., Wang, Y., Wang, J., Zhang, W., Meng, Z., Wang, Y., Zhang, Y., Li, S., Gao, W., & Deng, C. (2022). Identification of Sex Differentiation-Related microRNAs in Spinach Female and Male Flower. International Journal of Molecular Sciences, 23(8), 4090. https://doi.org/10.3390/ijms23084090