Engineered Glycosidases for the Synthesis of Analogs of Human Milk Oligosaccharides
Abstract
:1. Introduction
2. Results
2.1. β3-N-Acetylhexosaminidase BbhI and the Synthesis of Lacto-N-triose II (3)
2.2. Galactosynthase E233G BgaC and the Synthesis of Lacto-N-tetraose (5)
2.3. β-Galactosidase BgaD-B and the Synthesis of Lacto-N-neotetraose (7)
2.4. β4-N-Acetylgalactosaminidase E546Q TfHex and the Synthesis of Tetrasaccharide (9)
3. Discussion
4. Materials and Methods
4.1. Standard Assays for Enzyme Activity, Protein Concentration and Purity
4.2. Preparation, Expression, and Purification of BbhI
4.3. Preparation, Expression, and Purification of BgaD-B
4.4. Expression and Purification of E233G BgaC
4.5. Expression and Purification of E546Q TfHex
4.6. Synthesis of Oligosaccharides
4.6.1. 2-Acetamido-2-deoxy-β-d-glucopyranosyl-(1→3)-β-d-galactopyranosyl-(1→4)-d-glucopyranose (3, lacto-N-triose II, GlcNAcβ3Galβ4Glc)
4.6.2. β-d-Galactopyranosyl-(1→3)-2-acetamido-2-deoxy-β-d-glucopyranosyl-(1→3)-β-d-galactopyranosyl-(1→4)-d-glucopyranose (5, lacto-N-tetraose, Galβ3GlcNAcβ3Galβ4Glc)
4.6.3. β-d-Galactopyranosyl-(1→4)-2-acetamido-2-deoxy-β-d-glucopyranosyl-(1→3)-β-d-galactopyranosyl-(1→4)-d-glucopyranose (7, lacto-N-neotetraose, Galβ4GlcNAcβ3Galβ4Glc)
4.6.4. 2-Acetamido-2-deoxy-β-d-galactopyranosyl-(1→4)-2-acetamido-2-deoxy-β-d-glucopyranosyl-(1→3)-β-d-galactopyranosyl-(1→4)-d-glucopyranose (9, GalNAcβ4GlcNAcβ3Galβ4Glc)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BbhI | Bifidobacterium bifidum β-N-acetylhexosaminidase |
BgaC | Bacillus circulans β3-galactosidase |
BgaD | Bacillus circulans β4-galactosidase |
ESI | electrospray ionization |
Fuc | l-fucose |
Gal | d-galactose |
GH | glycoside hydrolase |
Glc | d-glucose |
GlcNAc | N-acetyl-d-glucosamine |
GlcNAc-oxazoline | 1,2-dideoxy-2′-methyl-α-d-glucopyranoso-[2,1-d]-Δ2′-oxazoline |
HILIC | hydrophilic interaction liquid chromatography |
HPLC | high performance liquid chromatography |
HMO | human milk oligosaccharide |
HRMS | high resolution mass spectrometry |
IPTG | isopropyl 1-thio-β- d-galactopyranoside |
LNnT | lacto-N-neotetraose (β-d-Gal-(1→4)-β-d-GlcNAc-(1→3)-β-d-Gal-(1→4)-d-Glc) |
LNT | lacto-N-tetraose (β-d-Gal-(1→3)-β-d-GlcNAc-(1→3)-β-d-Gal-(1→4)-d-Glc) |
LNT2 | lacto-N-triose II (β-d-GlcNAc-(1→3)-β-d-Gal-(1→4)-d-Glc) |
MS | mass spectrometry |
Neu5Ac | N-acetyl-α-d-neuraminic acid |
NMR | nuclear magnetic resonance |
PCR | polymerase chain reaction |
pNP-Gal | 4-nitrophenyl β-d-galactopyranoside |
pNP-GlcNAc | 4-nitrophenyl 2-acetamido-2-deoxy-β- d-glucopyranoside |
References
- Bode, L. Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 2012, 22, 1147–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X. Human milk oligosaccharides (HMOS): Structure, function, and enzyme-catalyzed synthesis. Adv. Carbohydr. Chem. Biochem. 2015, 72, 113–190. [Google Scholar] [PubMed]
- Blank, D.; Dotz, V.; Geyer, R.; Kunz, C. Human milk oligosaccharides and Lewis blood group: Individual high-throughput sample profiling to enhance conclusions from functional studies. Adv. Nut. 2012, 3, 440S–449S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mészáros, Z.; Nekvasilová, P.; Bojarová, P.; Křen, V.; Slámová, K. Advanced glycosidases as ingenious biosynthetic instruments. Biotechnol. Adv. 2021, 49, 107733. [Google Scholar] [CrossRef] [PubMed]
- Zeuner, B.; Teze, D.; Muschiol, J.; Meyer, A.S. Synthesis of human milk oligosaccharides: Protein engineering strategies for improved enzymatic transglycosylation. Molecules 2019, 24, 2033. [Google Scholar] [CrossRef] [Green Version]
- Slámová, K.; Bojarová, P.; Petrásková, L.; Křen, V. β-N-Acetylhexosaminidase: What’s in a name…? Biotechnol. Adv. 2010, 28, 682–693. [Google Scholar] [CrossRef]
- Chen, X.; Xu, L.; Jin, L.; Sun, B.; Gu, G.; Lu, L.; Xiao, M. Efficient and regioselective synthesis of β-GalNAc/GlcNAc-lactose by a bifunctional transglycosylating β-N-acetylhexosaminidase from Bifidobacterium bifidum. Appl. Environ. Microbiol. 2016, 82, 5642. [Google Scholar] [CrossRef] [Green Version]
- Schmölzer, K.; Weingarten, M.; Baldenius, K.; Nidetzky, B. Glycosynthase principle transformed into biocatalytic process technology: Lacto-N-triose II production with engineered exo-hexosaminidase. ACS Catal. 2019, 9, 5503–5514. [Google Scholar] [CrossRef]
- Chen, X.; Jin, L.; Jiang, X.; Guo, L.; Gu, G.; Xu, L.; Lu, L.; Wang, F.; Xiao, M. Converting a β-N-acetylhexosaminidase into two trans-β-N-acetylhexosaminidases by domain-targeted mutagenesis. Appl. Microbiol. Biotechnol. 2020, 104, 661–673. [Google Scholar] [CrossRef]
- Teze, D.; Zhao, J.; Wiemann, M.; Kazi, Z.G.A.; Lupo, R.; Zeuner, B.; Vuillemin, M.; Rønne, M.E.; Carlström, G.; Duus, J.Ø.; et al. Rational enzyme design without structural knowledge: A sequence-based approach for efficient generation of transglycosylases. Chem. Eur. J. 2021, 27, 10323–10334. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Wang, L.; Huang, P.; Jiang, Z.-Q.; Yan, Q.-J.; Yang, S.-Q. Efficient sequential synthesis of lacto-N-triose II and lacto-N-neotetraose by a novel β-N-acetylhexosaminidase from Tyzzerella nexilis. Food Chem. 2020, 332, 127438. [Google Scholar] [CrossRef] [PubMed]
- Bojarová, P.; Křenek, K.; Kuzma, M.; Petrásková, L.; Bezouška, K.; Namdjou, D.-J.; Elling, L.; Křen, V. N-Acetylhexosamine triad in one molecule: Chemoenzymatic introduction of 2-acetamido-2-deoxy-β-d-galactopyranosyluronic acid residue into a complex oligosaccharide. J. Mol. Catal. B Enzym. 2008, 50, 69–73. [Google Scholar] [CrossRef]
- Bojarová, P.; Slámová, K.; Křenek, K.; Gažák, R.; Kulik, N.; Ettrich, R.; Pelantová, H.; Kuzma, M.; Riva, S.; Adámek, D.; et al. Charged hexosaminides as new substrates for β-N-acetylhexosaminidase-catalyzed synthesis of immunomodulatory disaccharides. Adv. Synth. Catal. 2011, 353, 2409–2420. [Google Scholar] [CrossRef]
- Slámová, K.; Gažák, R.; Bojarová, P.; Kulik, N.; Ettrich, R.; Pelantová, H.; Sedmera, P.; Křen, V. 4-Deoxy-substrates for β-N-acetylhexosaminidases: How to make use of their loose specificity. Glycobiology 2010, 20, 1002–1009. [Google Scholar] [CrossRef] [Green Version]
- Bojarová, P.; Kulik, N.; Hovorková, M.; Slámová, K.; Pelantová, H.; Křen, V. The β-N-acetylhexosaminidase in the synthesis of bioactive glycans: Protein and reaction engineering. Molecules 2019, 24, 599. [Google Scholar] [CrossRef] [Green Version]
- Nekvasilová, P.; Kulik, N.; Rychlá, N.; Pelantová, H.; Petrásková, L.; Bosáková, Z.; Cvačka, J.; Slámová, K.; Křen, V.; Bojarová, P. How site-directed mutagenesis boosted selectivity of a promiscuous enzyme. Adv. Synt. Catal. 2020, 362, 4138–4150. [Google Scholar] [CrossRef]
- Murata, T.; Inukai, T.; Suzuki, M.; Yamagishi, M.; Usui, T. Facile enzymatic conversion of lactose into lacto-N-tetraose and lacto-N-neotetraose. Glycoconj. J. 1999, 16, 189–195. [Google Scholar] [CrossRef]
- Ito, Y.; Sasaki, T. Cloning and characterization of the gene encoding a novel β-galactosidase from Bacillus circulans. Biosci. Biotechnol. Biochem. 1997, 61, 1270–1276. [Google Scholar] [CrossRef] [Green Version]
- Otieno, D.O. Synthesis of β-galactooligosaccharides from lactose using microbial β-galactosidases. Compr. Rev. Food Sci. Food Saf. 2010, 9, 471–482. [Google Scholar] [CrossRef]
- Song, J.; Imanaka, H.; Imamura, K.; Minoda, M.; Katase, T.; Hoshi, Y.; Yamaguchi, S.; Nakanishi, K. Cloning and expression of a β-galactosidase gene of Bacillus circulans. Biosci. Biotechnol. Biochem. 2011, 75, 1194–1197. [Google Scholar] [CrossRef]
- Zeuner, B.; Nyffenegger, C.; Mikkelsen, J.D.; Meyer, A.S. Thermostable β-galactosidases for the synthesis of human milk oligosaccharides. New Biotechnol. 2016, 33, 355–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishikawa, K.; Kataoka, M.; Yanamoto, T.; Nakabayashi, M.; Watanabe, M.; Ishihara, S.; Yamaguchi, S. Crystal structure of β-galactosidase from Bacillus circulans ATCC 31382 (BgaD) and the construction of the thermophilic mutants. FEBS J. 2015, 282, 2540–2552. [Google Scholar] [CrossRef] [PubMed]
- Henze, M.; You, D.-J.; Kamerke, C.; Hoffmann, N.; Angkawidjaja, C.; Ernst, S.; Pietruszka, J.; Kanaya, S.; Elling, L. Rational design of a glycosynthase by the crystal structure of β-galactosidase from Bacillus circulans (BgaC) and its use for the synthesis of N-acetyllactosamine type 1 glycan structures. J. Biotechnol. 2014, 191, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Warmerdam, A.; Paudel, E.; Jia, W.; Boom, R.M.; Janssen, A.E.M. Characterization of β-galactosidase isoforms from Bacillus circulans and their contribution to GOS production. Appl. Biochem. Biotechnol. 2013, 170, 340–358. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.M.; Bum-Erdene, K.; Yu, X.; Blanchard, H. Galectin-3 interactions with glycosphingolipids. J. Mol. Biol. 2014, 426, 1439–1451. [Google Scholar] [CrossRef] [PubMed]
- Bumba, L.; Laaf, D.; Spiwok, V.; Elling, L.; Křen, V.; Bojarová, P. Poly-N-acetyllactosamine neo-glycoproteins as nanomolar ligands of human galectin-3: Binding kinetics and modeling. Int. J. Mol. Sci. 2018, 19, 372. [Google Scholar] [CrossRef] [Green Version]
- Krejzová, J.; Kulik, N.; Slámová, K.; Křen, V. Expression of human β-N-acetylhexosaminidase B in yeast eases the search for selective inhibitors. Enzym. Microb. Technol. 2016, 89, 1–6. [Google Scholar] [CrossRef]
- Slámová, K.; Bojarová, P.; Gerstorferová, D.; Fliedrová, B.; Hofmeisterová, J.; Fiala, M.; Pompach, P.; Křen, V. Sequencing, cloning and high-yield expression of a fungal β-N-acetylhexosaminidase in Pichia pastoris. Protein Expr. Purif. 2012, 82, 212–217. [Google Scholar] [CrossRef]
- Li, C.; Kim, Y.-W. Characterization of a galactosynthase derived from Bacillus circulans β-galactosidase: Facile synthesis of d-lacto- and d-galacto-N-bioside. ChemBioChem 2014, 15, 522–526. [Google Scholar] [CrossRef]
- Kamerke, C.; Pattky, M.; Huhn, C.; Elling, L. Synthesis of nucleotide-activated disaccharides with recombinant β3-galactosidase C from Bacillus circulans. J. Mol. Catal. B Enzym. 2013, 89, 73–81. [Google Scholar] [CrossRef]
- Hovorková, M.; Kulik, N.; Konvalinková, D.; Petrásková, L.; Křen, V.; Bojarová, P. Mutagenesis of catalytic nucleophile of β-galactosidase retains residual hydrolytic activity and affords a transgalactosidase. ChemCatChem 2021, 13, 4532–4542. [Google Scholar] [CrossRef]
- Viladot, J.L.; de Ramon, E.; Durany, O.; Planas, A. Probing the mechanism of Bacillus 1,3-1,4-ß-d-glucan 4-glucanohydrolases by chemical rescue of inactive mutants at catalytically essential residues. Biochemistry 1998, 37, 11332–11342. [Google Scholar] [CrossRef]
- Bojarová, P.; Bruthans, J.; Křen, V. β-N-Acetylhexosaminidases—The wizards of glycosylation. Appl. Microbiol. Biotechnol. 2019, 103, 7869–7881. [Google Scholar] [CrossRef]
- Castejón-Vilatersana, M.; Faijes, M.; Planas, A. Transglycosylation activity of engineered Bifidobacterium lacto-N-biosidase mutants at donor subsites for lacto-N-tetraose synthesis. Int. J. Mol. Sci. 2021, 22, 3230. [Google Scholar] [CrossRef]
- Schmölzer, K.; Weingarten, M.; Baldenius, K.; Nidetzky, B. Lacto-N-tetraose synthesis by wild-type and glycosynthase variants of the β-N-hexosaminidase from Bifidobacterium bifidum. Org. Biomol. Chem. 2019, 17, 5661–5665. [Google Scholar] [CrossRef] [Green Version]
- Vuillemin, M.; Holck, J.; Matwiejuk, M.; Moreno Prieto, E.S.; Muschiol, J.; Molnar-Gabor, D.; Meyer, A.S.; Zeuner, B. Improvement of the transglycosylation efficiency of a lacto-N-biosidase from Bifidobacterium bifidum by protein engineering. Appl. Sci. 2021, 11, 11493. [Google Scholar] [CrossRef]
- Garcia-Oliva, C.; Hoyos, P.; Petrásková, L.; Kulik, N.; Pelantová, H.; Cabanillas, A.H.; Rumbero, Á.; Křen, V.; Hernáiz, M.J.; Bojarová, P. Acceptor specificity of β-N-acetylhexosaminidase from Talaromyces flavus: A rational explanation. Int. J. Mol. Sci. 2019, 20, 6181. [Google Scholar] [CrossRef] [Green Version]
- Muschiol, J.; Vuillemin, M.; Meyer, A.S.; Zeuner, B. β-N-Acetylhexosaminidases for carbohydrate synthesis via trans-glycosylation. Catalysts 2020, 10, 365. [Google Scholar] [CrossRef] [Green Version]
- Pingitore, V.; Martínez-Bailén, M.; Carmona, A.T.; Mészáros, Z.; Kulik, N.; Slámová, K.; Křen, V.; Bojarová, P.; Robina, I.; Moreno-Vargas, A.J. Discovery of human hexosaminidase inhibitors by in situ screening of a library of mono- and divalent pyrrolidine iminosugars. Bioorg. Chem. 2022, 120, 105650. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nekvasilová, P.; Hovorková, M.; Mészáros, Z.; Petrásková, L.; Pelantová, H.; Křen, V.; Slámová, K.; Bojarová, P. Engineered Glycosidases for the Synthesis of Analogs of Human Milk Oligosaccharides. Int. J. Mol. Sci. 2022, 23, 4106. https://doi.org/10.3390/ijms23084106
Nekvasilová P, Hovorková M, Mészáros Z, Petrásková L, Pelantová H, Křen V, Slámová K, Bojarová P. Engineered Glycosidases for the Synthesis of Analogs of Human Milk Oligosaccharides. International Journal of Molecular Sciences. 2022; 23(8):4106. https://doi.org/10.3390/ijms23084106
Chicago/Turabian StyleNekvasilová, Pavlína, Michaela Hovorková, Zuzana Mészáros, Lucie Petrásková, Helena Pelantová, Vladimír Křen, Kristýna Slámová, and Pavla Bojarová. 2022. "Engineered Glycosidases for the Synthesis of Analogs of Human Milk Oligosaccharides" International Journal of Molecular Sciences 23, no. 8: 4106. https://doi.org/10.3390/ijms23084106
APA StyleNekvasilová, P., Hovorková, M., Mészáros, Z., Petrásková, L., Pelantová, H., Křen, V., Slámová, K., & Bojarová, P. (2022). Engineered Glycosidases for the Synthesis of Analogs of Human Milk Oligosaccharides. International Journal of Molecular Sciences, 23(8), 4106. https://doi.org/10.3390/ijms23084106