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Abstract: Using DFT simulations, we studied the interaction of a semifullerene C30 and a defected
graphene layer. We obtained the C30 chemisorbs on the surface. We also found the adsorbed C30

chemisorbs, Li, Ti, or Pt, on its concave part. Thus, the resulting system (C30-graphene) is a graphene
layer decorated with a metal-doped C30. The adsorption of the molecules depends on the shape of
the base of the semifullerene and the dopant metal. The CO molecule adsorbed without dissociation
in all cases. When the bottom is a pentagon, the adsorption occurs only with Ti as the dopant. It also
adsorbs for a hexagon as the bottom with Pt as the dopant. The carbon dioxide molecule adsorbs
in the two cases of base shape but only when lithium is the dopant. The adsorption occurs without
dissociation. The ozone molecule adsorbs on both surfaces. When Ti or Pt are dopants, we found
that the O3 molecule always dissociates into an oxygen molecule and an oxygen atom. When Li
is the dopant, the O3 molecule adsorbs without dissociation. Methane did not adsorb in any case.
Calculating the recovery time at 300 K, we found that the system may be a sensor in several instances.

Keywords: carbon nanostructures; semifullerene; pollutant molecules; adsorption; graphene; carbon
monoxide; carbon dioxide; methane; ozone

1. Introduction

Molecules, such as CO, CO2, CH4, and O3, are air and water pollutants that threaten
the environment and life, prompting the scientific community to develop technological
solutions to such challenges [1–3]. In this study, we are interested in exploring the use of
fullerenes for such aims.

Surfaces based on fullerenes and their variations have been widely studied since
the prediction and further synthesis of the C60 structure [4–6], a highly stable group of
molecules consisting of 60 carbon atoms, also named buckminsterfullerene, buckyball, or
simply fullerene. Although fullerenes, such as C60, C70, or larger, are the most commonly
studied [7,8], smaller fullerenes can also be experimentally produced and are of particular
interest due to their curvature [9–11].

Fullerene fragments such as a C30 hydrocarbon—i.e., half of the buckminsterfullerene
C60—can show some of the properties of their complete counterparts [9] while also offering
new possibilities due to their open basket-like shape. Similar nonplanar-related structures
are corannulene (C20H10) and coronene, known since the 1960s [12–14]. The latter is a
bowl carbon structure with 20 atoms or C20, the smallest possible fullerene, which has
been experimentally produced [11]. And the discovery of bidimensional, planar structures,
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such as graphene [15,16] and borophene [17], has also attracted attention because of their
attractive properties and potential applications.

Previous investigations from other authors considered fullerenes on a graphene sur-
face, focusing on studying weak interactions at a molecular level [18]. Graphene can
accept electrons from a C60 fullerene relatively quickly, which, combined with the high
transport capability of the former, turns this hybrid material into a good candidate for solar
cell technology [19]. The development of hybrid surfaces has also focused on fabricating
graphene-C60 films on silicon surfaces by a multistep self-assembly process [20]. The
potential applications of these systems are promising, especially as lubricating films in
electromechanics microsystems. Graphene-C60 vertical heterostructures composed of C60
thin films have also focused on their structural and electrical properties [21]. The absorption
of pollutants, such as COCl2 (phosgene), H2S, CO, or CO2, among others, by these hybrid
structures has also raised attention. Decorating such arrangements with transition metals
usually catalyzes absorption [22–25].

This work studies a mixed surface formed by a semifullerene C30 adsorbed on a
defective 5 × 5 graphene layer without a hexagonal ring, i.e., six carbon vacancies. The
roughness of the surface at several sites and the change in curvature make this an attractive
system to dope with different atoms. We considered Li, Ti, and Pt-decorations and then
studied the ability of the compound system to capture the pollutant molecules mentioned
above. We found that all the molecules reacted with the surface except methane.

2. Results
2.1. Optimization of the Semifullerene C30

We took two different parts when splitting a fullerene C60 into two halves (“bucky-
balls”) [10] to obtain a semifullerene C30. One has a pentagon in the base (section P), and
the other has a hexagonal base (section H). Figure 1 shows the optimization for each case.
Figure 1a,b show the C30 with a pentagon at the bottom, and Figure 1c,d show the C30
with a hexagonal base. After optimization, we discovered that in the C60 molecule, the
separation between the carbon atoms is 1.425 Å. For section P, the distance is 1.444 Å at the
bottom, and for the rest of the particles, the average separation is 1.375 Å. For section H,
the space is 1.485 Å at the base, and the average spacing is 1.436 Å for the other particles.
The results from other authors [10] agree with our results.
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Figure 1. Molecules after optimization of C30. In (a,b), we have C30 with a pentagonal base, in a front
and a side view, respectively. In (c,d), we show a front and side view for C30 with a hexagonal base.
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2.2. Optimization of Graphene with a Six-Vacancy Cluster

The vacancies in the graphene layer are necessary for the adsorption of the C30
molecule. We considered a graphene unit cell with 50 atoms and made a six vacancy cluster.
Then, we optimized the system. Figure 2 shows the final configuration. We note that there
is some distortion in the graphene lattice. The carbon atoms around the vacancies have
different separations concerning pristine graphene. The bond lengths marked with A are
1.403 Å, and those marked with X are 1.452 Å. The other bonds are 1.420 Å, which is the
same size as pristine graphene.
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Figure 2. Unit cell after optimization of graphene with a six-vacancy cluster. The bond lengths
marked with A are 1.403 Å, and those marked with X are 1.452 Å. The other bonds are the same size
as in pristine graphene, 1.420 Å.

2.3. Adsorption of the C30 Molecule with a Pentagonal Base

The left column (P) in Figure 3 shows the adsorption of the C30 molecule with a
pentagonal base in row 1. The initial location of the C30 molecule is above the cluster
vacancies. Besides, the molecule is, with the closest carbon atom to the surface, at a distance
of 3 Å. In the same column, row 2, we can see the system’s final configuration. The
adsorption energy is −15.29 eV, indicating a powerful graphene reaction. We perceive a
view from above, the graphene surface in row 3 of the same column after adsorption using
four-unit cells.

2.4. Adsorption of the C30 Molecule with a Hexagonal Base

Column H in row 1 shows the initial location of the C30 molecule with a hexagonal
bottom concerning the graphene layer with the closest carbon atom to the surface at a
distance of 3 Å. In the same column, row 2, we can see the system’s final configuration.
The adsorption energy is −16.410 eV, which is a stronger adsorption than in the pentagonal
case. We perceive the graphene surface in row 3 of the same column after adsorption using
four-unit cells.
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Figure 3. Adsorption of C30 on graphene with a six-vacancy cluster. In column P, we show the
adsorption of the C30 molecule with a pentagonal base. In the same column P, in row 1, we have the
initial location of the semifullerene. We have the final configuration after adsorption in the second
row of the same column. We view the surface with four-unit cells from above in the last row of this
column, P. The corresponding sequence for a C30 with a hexagonal base is in column H.

2.5. Adsorption of Metals on the Graphene-C30 (P) Surface
2.5.1. Doping with Li

Figure 4a presents the initial and final configuration for the adsorption of a lithium
atom on the surface. The initial distance between the metal atom and the plane defined
by the opening of C30 was 3.27 Å and 5.27 Å from the graphene layer. The lithium atom
ends up bound to a carbon atom of the C30. The adsorption energy of Li is –3.686 eV, which
indicates a strong reaction with the surface. The Li atom yields 0.0561 electrons.

Figure 5 shows the interaction’s projected density of states (PDOS). Note the hybridiza-
tion of orbitals s and p from carbon with the orbital p from lithium around the Fermi energy
at around 4 eV above the Fermi energy and about 2 eV below the Fermi energy.
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Figure 4. Adsorption of Li, Pt, and Ti on the graphene-C30 system for the pentagonal base. The three
metals adsorbed with a strong reaction on the surface. (a) presents the initial and final configuration
for the adsorption of a lithium atom on the surface. (b) shows the initial and final configuration for
the adsorption of a titanium atom on the surface. (c) shows the initial and final configuration for the
adsorption of a platinum atom on the surface.
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2.5.2. Doping with Ti

Figure 4b shows the initial and final configuration for the adsorption of a titanium
atom on the surface. The initial distance between the metal atom and the plane defined by
the opening of C30 was 3.34Å and 5.25 Å from the graphene layer. The titanium atom ends
up bound to four carbon atoms of the C30. The adsorption energy is = −8.082 eV, implying
an intense reaction. The Ti atom yields 0.6129 electrons to the surface.

We can see in Figure 6 the interaction’s PDOS. We note the hybridization of orbitals s
and d from titanium with the orbitals p from the neighboring carbon atoms between −4 eV,
a bit below the Fermi energy, and between 1 eV and 5 eV.
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2.5.3. Doping with Pt

Figure 4c shows the initial and final configuration for the adsorption of a platinum
atom on the surface. The initial distance between the metal atom and the plane defined
by the opening of C30 was 3.36Å and 5.24 Å from the graphene layer. The platinum atom
ends up bound to two carbon atoms of the C30, with an adsorption energy of −5.982 eV,
showing a strong reaction with the surface again. The Pt atom yields 0.3910 electrons to
the surface.

Figure 7 shows the corresponding PDOS. We note the hybridization of orbital p from
carbon with the orbitals s and p from platinum, around the Fermi energy, at around 2 eV
above the Fermi energy, at about 2 eV below the Fermi energy, and below −4 eV.
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2.6. Adsorption of Metals on the Graphene-C30 (H) Surface
2.6.1. Doping with Li

Figure 8a shows the initial and final configuration for the adsorption of a lithium atom
on the surface. The initial distance between the metal atom and the plane defined by the
opening of C30 was 3.37 Å and 4.57 Å from the graphene layer. The lithium atom ends
up bound to a carbon atom of C30 with an adsorption energy of −1.551 eV. It is a strong
reaction but not as intense as the pentagonal case. The Li atom transfers 0.0364 electrons to
the surface.
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Figure 8. Adsorption of Li, Pt, and Ti on the graphene-C30 system for the hexagonal base. The three
metals adsorbed strongly. (a) shows the initial and final configuration for the adsorption of a lithium
atom on the surface. (b) shows the initial and final configuration for the adsorption of a titanium
atom on the surface. (c) presents the initial and final configuration for the adsorption of a platinum
atom on the surface.

Figure 9 shows the interaction’s PDOS. Note the hybridization of orbitals s and p from
carbon with the orbital p from lithium, between 1eV and 3 eV, around 4 eV, and a weaker
hybridization between −2 eV and −1 eV.
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2.6.2. Doping with Ti

Figure 8b shows the initial and final configuration for the adsorption of a titanium
atom on the surface. The initial distance between the metal atom and the plane defined
by the opening of C30 was 3.34 Å and 4.57 Å from the graphene layer. The titanium atom
ends up bound to two carbon atoms of C30. The adsorption energy of the titanium atom is
−5.435 eV. The Ti atom transfers 0.6179 electrons to the system. The interaction is intense
but not as much as in the pentagonal case.

We can see in Figure 10 the interaction’s PDOS. We note the hybridization of orbitals s
and d from titanium with the orbitals p from the neighboring carbon atoms around −2 eV
and between the Fermi energy and 5 eV.
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2.6.3. Doping with Pt

Figure 8c presents the initial and final configuration for the adsorption of a platinum
atom on the surface. The initial distance between the metal atom and the plane defined
by the opening of C30 was 3.34 Å and 4.57 Å from the graphene layer. The platinum atom
ends up bound to two carbon atoms of C30. The adsorption energy of the platinum atom
is −4.706 eV, which is a strong interaction with the surface but not as intense as in the
pentagonal case.

The Pt atom transfers 0.5141 electrons to the surface. Figure 11 shows the correspond-
ing PDOS. We Note the hybridization of orbital p from carbon atoms with the orbitals s
and d from platinum, at around −2 eV, about 1.5 eV, and below −4 eV.
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2.7. Adsorption of Pollutant Molecules on the Li-doped Graphene-C30 (P) Surface
2.7.1. Adsorption of CO

There is no adsorption in this case.

2.7.2. Adsorption of CO2

Figure 12a shows the initial and final configuration of the system for the adsorption of
a carbon dioxide molecule. The molecule ends up bound to the lithium atom via the oxygen
atom with an adsorption energy of −0.373 eV. The molecule transfers 0.04688 electrons to
the surface.
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Figure 12. (a) The adsorption of CO2 on the Li-doped graphene-C30 system for the pentagonal base.
The initial distance between the carbon atom of the CO2 molecule and the Li atom was 3.17 Å, and
the distance from the graphene layer was 7.12 Å. The molecule was parallel to the graphene layer.
The adsorption is without dissociation. (b) The PDOS for the adsorption of CO2 on the Li-doped
graphene-C30 system for the pentagonal base.

Figure 12b shows the corresponding PDOS. We note the hybridization of orbital p
from the oxygen atom with the orbital s from lithium at around 3 eV.

2.7.3. Adsorption of O3

Figure 13a shows the initial and final configuration of the system for the adsorption of
an ozone molecule. The molecule ends up bound to the lithium atom without dissociation.
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The adsorption energy is −1.777 eV, and using MD at 300 K, we found that the particle
Li-O3 remains close to the surface at that temperature.
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Figure 13. (a) The adsorption of O3 on the Li-doped graphene-C30 system for the pentagonal base.
The initial distance between the central oxygen atom of the O3 molecule and the Li atom was 3.015
Å, and the distance from the graphene layer was 7.15 Å. The molecule was perpendicular to the
graphene layer. The adsorption is without dissociation. (b) The PDOS for the adsorption of O3 on the
Li-doped graphene-C30 system for the pentagonal base.

Figure 13b shows the corresponding PDOS. Notice the weak hybridization of orbitals p
from the oxygen and carbon atoms with the orbitals s from the lithium between 0 and 2 eV.

2.8. Adsorption of Pollutant Molecules on the Ti-Doped Graphene-C30 (P) Surface
2.8.1. Adsorption of CO

Figure 14a shows the initial and final configuration of the system for the adsorption of
a carbon monoxide molecule. The molecule ends up bound to the titanium atom without
dissociation via the carbon atom. The adsorption energy is −1.21 eV, and the molecule
gains 0.0322 electrons from the surface.
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Figure 14. (a) Adsorption of CO on the Ti-doped graphene-C30 system for the pentagonal base.
The initial distance between the carbon atom of the CO molecule and the Ti atom was 4.18 Å, and
the distance from the graphene layer was 7.34 Å. The molecule was parallel to the graphene layer.
The adsorption is without dissociation. (b) The PDOS for the adsorption of CO on the Ti-doped
graphene-C30 system for the pentagonal base.

Figure 14b shows the corresponding PDOS. Notice the hybridization of orbital p from
the carbon atom with the orbitals s and d from the titanium atom at around −2 eV and
between 1 eV and 4 eV.

2.8.2. Adsorption of CO2

There is no adsorption in this case.

2.8.3. Adsorption of CH4

There is no adsorption in this case.
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2.8.4. Adsorption of O3

Figure 15a shows the initial and final configuration of the system for the adsorption of
an ozone molecule. The molecule dissociates into an oxygen atom and an oxygen molecule.
The oxygen atom is bound to the titanium, and the oxygen molecule is attached to the
titanium atom. The adsorption energy of the ozone molecule is −6.3953 eV. The oxygen
atom loses 0.2702 electrons. Besides, the oxygen molecule gains 0.4085 electrons. Using MD
at 300 K, we obtained that the particle Ti-O3 remains close to the surface at that temperature.
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Figure 15. (a) Adsorption of O3 on the Ti-doped graphene-C30 system for the pentagonal base. The
initial distance between the central oxygen atom and the Ti atom was 3.0 Å, and the distance from the
graphene layer was 7.14 Å. The plane of the ozone molecule was parallel to the graphene layer. The
adsorption is with dissociation. (b) The PDOS for the adsorption of O3 on the Ti-doped graphene-C30

system for the pentagonal base.

Figure 15b shows the corresponding PDOS. Notice a weak hybridization of orbitals
s from the carbon atom with the orbitals s and d from the titanium atom and p orbitals
from the oxygen atoms at around 4 eV and between −6 eV and −4 eV with p orbitals from
oxygen atoms and orbitals s from the titanium atom.

2.9. Adsorption of Pollutant Molecules on the Pt-Doped Graphene-C30 (P) Surface
2.9.1. Adsorption of CO

There is no adsorption in this case.

2.9.2. Adsorption of CO2

There is no adsorption in this case.

2.9.3. Adsorption of CH4

There is no adsorption in this case.

2.9.4. Adsorption of O3

Figure 16a shows the initial and final configuration of the system for the adsorption of
an ozone molecule. The adsorption energy is −0.8521 eV, and the molecule dissociates into
an oxygen atom and an oxygen molecule. The oxygen atom ends up bound to a carbon
atom. Besides, the oxygen molecule ends up bound to the platinum atom. The oxygen
atom, which ends bound to a carbon atom, transfers 0.1207 electrons. The remaining part
of the ozone molecule, the oxygen molecule bound to the Pt atom, gains 0.5665 electrons.
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Figure 17. (a) Adsorption of CO2 on the Li-doped graphene-C30 system for the hexagonal base. The 
initial distance between the carbon atom of the CO2 molecule and the Li atom was 3.11 Å, and the 
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Figure 16. (a) Adsorption of O3 on the Pt-doped graphene-C30 system for the pentagonal base.
The initial distance between the central oxygen atom and the Pt atom was 3.60 Å, and the distance
from the graphene layer was 7.25 Å. The plane of the ozone molecule was parallel to the graphene
layer. The adsorption is with dissociation. (b) The PDOS for the adsorption of O3 on the Pt-doped
graphene-C30 system for the pentagonal base.

Figure 16b shows the corresponding PDOS. Notice a weak hybridization of orbitals p
from the carbon atom with the orbitals p from the platinum and oxygen atoms at around
4.2 eV. The same hybridization is stronger below −4 eV.

2.10. Adsorption of Pollutant Molecules on the Li-Doped Graphene-C30 (H) Surface
2.10.1. Adsorption of CO

There is no adsorption in this case.

2.10.2. Adsorption of CO2

Figure 17a shows the initial and final configuration of the system for the adsorption of
a carbon dioxide molecule. The molecule adsorbs without dissociation, and one oxygen
atom ends up bound to the lithium atom. The adsorption energy is −0.6491 eV, and the
molecule transfers to the system 0.0803 electrons. The calculated recovery time at 300 K is
0.13 s, a good value for a sensor.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 13 of 20 
 

 

2.9.4. Adsorption of O3 
Figure 16a shows the initial and final configuration of the system for the adsorption 

of an ozone molecule. The adsorption energy is −0.8521 eV, and the molecule dissociates 
into an oxygen atom and an oxygen molecule. The oxygen atom ends up bound to a car-
bon atom. Besides, the oxygen molecule ends up bound to the platinum atom. The oxygen 
atom, which ends bound to a carbon atom, transfers 0.1207 electrons. The remaining part 
of the ozone molecule, the oxygen molecule bound to the Pt atom, gains 0.5665 electrons. 

 

 

Figure 16. (a) Adsorption of O3 on the Pt-doped graphene-C30 system for the pentagonal base. The 
initial distance between the central oxygen atom and the Pt atom was 3.60 Å, and the distance from 
the graphene layer was 7.25 Å. The plane of the ozone molecule was parallel to the graphene layer. 
The adsorption is with dissociation. (b) The PDOS for the adsorption of O3 on the Pt-doped gra-
phene-C30 system for the pentagonal base. 

Figure 16b shows the corresponding PDOS. Notice a weak hybridization of orbitals 
p from the carbon atom with the orbitals p from the platinum and oxygen atoms at around 
4.2 eV. The same hybridization is stronger below −4 eV. 

2.10. Adsorption of Pollutant Molecules on the Li-Doped Graphene-C30 (H) Surface 
2.10.1. Adsorption of CO 

There is no adsorption in this case. 

2.10.2. Adsorption of CO2 
Figure 17a shows the initial and final configuration of the system for the adsorption 

of a carbon dioxide molecule. The molecule adsorbs without dissociation, and one oxygen 
atom ends up bound to the lithium atom. The adsorption energy is −0.6491 eV, and the 
molecule transfers to the system 0.0803 electrons. The calculated recovery time at 300 K is 
0.13 s, a good value for a sensor. 
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phene-C30 system for the hexagonal base. 

Figure 17. (a) Adsorption of CO2 on the Li-doped graphene-C30 system for the hexagonal base.
The initial distance between the carbon atom of the CO2 molecule and the Li atom was 3.11 Å, and
the distance from the graphene layer was 7.15 Å. The molecule was parallel to the graphene layer.
The adsorption is without dissociation. (b) The PDOS for the adsorption of CO2 on the Li-doped
graphene-C30 system for the hexagonal base.

Figure 17b shows the corresponding PDOS. Notice the hybridization of orbitals p from
the oxygen atom with the orbitals s from the lithium atom at around 2 eV.

2.10.3. Adsorption of CH4

There is no adsorption in this case.

2.10.4. Adsorption of O3

Figure 18a shows the initial and final configuration of the system for the adsorption of
an ozone molecule. The molecule ends up bound to the lithium atom without dissociation.
The adsorption energy of the ozone molecule is −2.119 eV, and the surface transfers
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0.2883 electrons to the ozone molecule. Using MD at 300 K, we found that the particle
Li-O3 remains close to the surface at that temperature; it does not go away from the surface.
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2.11.2. Adsorption of CO2 
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Figure 19a shows the initial and final configuration of the system for the adsorption 

of an ozone molecule. The adsorption energy is −0.8214 eV, and the molecule dissociates 
into two fractions during adsorption, an oxygen atom and an oxygen molecule. Besides, 
the first fraction is bound to a carbon atom, and the second remains close to the surface. 
Using MD at 300 K, we found that the molecule O2 remains close to the surface at that 
temperature; it does not go away from the surface. 

Figure 18. (a) Adsorption of O3 on the Li-doped graphene-C30 system for the hexagonal base. The
initial distance between the central oxygen atom and the Li atom was 3.26 Å, and the distance from
the graphene layer was 7.35 Å. The plane of the ozone molecule was parallel to the graphene layer.
The adsorption is without dissociation. (b) The PDOS for the adsorption of O3 on the Li-doped
graphene-C30 system for the hexagonal base.

Figure 18b shows the corresponding PDOS. Notice the hybridization of orbitals p from
the oxygen with the orbitals s from the lithium atom between 3 eV and 4 eV. There is a
weaker hybridization below the Fermi energy.

2.11. Adsorption of Pollutant Molecules on the Ti-Doped Graphene-C30 (H) Surface
2.11.1. Adsorption of CO

There is no adsorption in this case.

2.11.2. Adsorption of CO2

There is no adsorption in this case.

2.11.3. Adsorption of CH4

There is no adsorption in this case.

2.11.4. Adsorption of O3

Figure 19a shows the initial and final configuration of the system for the adsorption
of an ozone molecule. The adsorption energy is −0.8214 eV, and the molecule dissociates
into two fractions during adsorption, an oxygen atom and an oxygen molecule. Besides,
the first fraction is bound to a carbon atom, and the second remains close to the surface.
Using MD at 300 K, we found that the molecule O2 remains close to the surface at that
temperature; it does not go away from the surface.
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The surface transfers 0.0322 electrons to the carbon monoxide molecule. Figure 20b 
shows the corresponding PDOS. We can see the hybridization of orbitals p from the car-
bon atom and the orbitals s from the platinum atom at around 3 eV and about 1.2 eV, 
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There is no adsorption in this case. 
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Figure 19. (a) Adsorption of O3 on the Ti-doped graphene-C30 system for the hexagonal base. The
initial distance between the central oxygen atom and the Ti atom was 3.97 Å, and the distance from
the graphene layer was 6.90 Å. The plane of the ozone molecule was parallel to the graphene layer.
The adsorption is with dissociation into an oxygen atom and an oxygen molecule. (b) The PDOS for
the adsorption of O3 on the Ti-doped graphene-C30 system for the hexagonal base.
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Figure 19b shows the corresponding PDOS. Notice the hybridization of orbitals p from
the carbon and oxygen atoms and the orbitals d from the titanium atom between 2 and 4 eV
and below the Fermi energy.

2.12. Adsorption of Pollutant Molecules on the Pt-Doped Graphene-C30 (H) Surface
2.12.1. Adsorption of CO

Figure 20a shows the initial and final configuration of the system for the adsorption of
a carbon monoxide molecule. The adsorption energy is −1.756 eV without dissociation.
The carbon atom ends up bound to the platinum atom.
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from the graphene layer was 7.32 Å. The molecule was parallel to the graphene layer. The adsorp-
tion is without dissociation; (b) The PDOS for the adsorption of CO on the Pt-doped graphene-C30 
system for the hexagonal base. 

The surface transfers 0.0322 electrons to the carbon monoxide molecule. Figure 20b 
shows the corresponding PDOS. We can see the hybridization of orbitals p from the car-
bon atom and the orbitals s from the platinum atom at around 3 eV and about 1.2 eV, 
respectively. We can also notice a weak hybridization of orbitals p from the carbon atom 
with orbitals d and s from the platinum atom below −1 eV. 

2.12.2. Adsorption of CO2 
There is no adsorption in this case. 

2.12.3. Adsorption of CH4 
There is no adsorption in this case. 

Figure 20. (a) Adsorption of CO on the Pt-doped graphene-C30 system for the hexagonal base. The
initial distance between the center of the CO molecule and the Pt atom was 3.0 Å, and the distance
from the graphene layer was 7.32 Å. The molecule was parallel to the graphene layer. The adsorption
is without dissociation; (b) The PDOS for the adsorption of CO on the Pt-doped graphene-C30 system
for the hexagonal base.

The surface transfers 0.0322 electrons to the carbon monoxide molecule. Figure 20b
shows the corresponding PDOS. We can see the hybridization of orbitals p from the carbon
atom and the orbitals s from the platinum atom at around 3 eV and about 1.2 eV, respectively.
We can also notice a weak hybridization of orbitals p from the carbon atom with orbitals d
and s from the platinum atom below −1 eV.

2.12.2. Adsorption of CO2

There is no adsorption in this case.

2.12.3. Adsorption of CH4

There is no adsorption in this case.

2.12.4. Adsorption of O3

Figure 21a shows the initial and final configuration of the system for the adsorption of
an ozone molecule that occurs with dissociation and with an adsorption energy of −1.43 eV.
The molecule splits into two parts, an oxygen atom and an oxygen molecule. Using MD
at 300 K, we found that the particle O2 remains close to the surface at that temperature; it
does not go away from the surface.
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Figure 21. (a) Adsorption of O3 on the Pt-doped graphene-C30 system for the hexagonal base. The
initial distance between the central oxygen atom and the Pt atom was 3.18 Å, and the distance
from the graphene layer was 7.21 Å. The plane of the ozone molecule was parallel to the graphene
layer. The adsorption is with dissociation. (b) The PDOS for the adsorption of O3 on the Pt-doped
graphene-C30 system for the hexagonal base.

The oxygen atom, which ends bound to the platinum atom, transfers 0.1207 electrons.
The surface transfers 0.5665 electrons to the remaining fraction of the ozone molecule and
the oxygen molecule, which remains close to the surface.

Figure 21b shows the corresponding PDOS. We can see the hybridization of orbitals p
from the oxygen atom and the orbitals s and d from the platinum atom at around 2 eV and
about −1.75 eV, respectively. We can also notice a weak hybridization of orbitals p from the
oxygen atom with orbitals d and s from the platinum atom below −2 eV.

3. Materials and Methods

We used the GGA approximation for the exchange and correlation energies in the
Perdew–Burke–Ernzerhohof (PBE) expression [26], using a Martins–Troullier norm-conserving
pseudopotential [27]. We performed structural relaxations using the Quantum ESPRESSO
code package [28], which uses periodical boundary conditions. We took threshold energy
of 1.0 × 10−6 eV for convergence, a cut-off energy point of 1100 eV, and a threshold force of
1.0 × 10−5 eV/Å. We considered 40 k points within the Monkhorst–Pack particular k point
scheme for Brillouin-zone integrations [29] with a separation of 0.083 Å−1.

To check the pseudopotentials, we minimized the energy of the different systems.
Thus, we obtained the Li lattice parameter 3.495 Å (the experimental value is 3.510 Å) [30];
for titanium, we obtained: a = 2.863 Å, and c = 4.544 Å (the observed values are 2.950 and
4.683 Å, respectively [30]; in the case of Pt, we calculated a lattice parameter of 2.898 Å (the
experimental value is 2.924 Å). We obtained the bond lengths and angles of the different
pollutant molecules we are considering with the same approach. Figure 22 shows our
results, which agree with the experimental values.

In our simulations, the adsorption energy is:

Eads = E(Sur f + Mol)− [E(Sur f ) + E(Mol)], (1)

where E(Surf + Mol) is the energy corresponding to the final system; [E(Surf ) + E(Mol)] cor-
responds to the initial configuration, which is the energy of the surface, without interaction
with the molecule plus the isolated molecule’s energy.

We calculated the recovery time (τ) from the Eyring transition state theory using the
expression [31,32]:

τ = [h/(kB T)]e−Eads/(kBT) (2)

In Equation (2), h is the Plank’s constant, kB is the Boltzmann’s constant, Eads is the
adsorption energy, and T is the absolute temperature.

The desirable set of values for the recovery time is between 10−2 and ten seconds,
implying at 300 K, adsorption energies in the range (−0.6428, −0.8215) eV.
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4. Discussion

We performed computational simulations to investigate the adsorption of pollut-
ing molecules on graphene-semifullerene (C30) surfaces, considering two C30 geometries:
hexagonal and pentagonal base. We found it possible to dope all surfaces with the metals Li,
Ti, and Pt, which we used as catalysts in the adsorption of the different polluting molecules.
We consider as pollutant molecules CO, CO2, CH4, and O3.

We obtained the semifullerene adsorbs on the graphene surface with adsorption
energies of −14.97 eV and −16.41 eV, respectively, for pentagonal and hexagonal bases.
The adsorption occurs on a six-vacancy cluster in a graphene layer. Besides, the catalysts
adsorb on the graphene-C30 surface with a pentagonal base with adsorption energies of
−4.02 eV, −6.3 eV, and −8.4 eV for Li, Pt, and Ti, respectively. For the hexagonal base, the
adsorption energies are −1.87 eV, −4.7 eV, and −5.43 eV, in the same order. Notice that in
each case (P or H), Li shows the adsorption energy with the minor magnitude and Ti with
the largest.

The carbon monoxide molecule adsorbs on the pentagonal-base (P) surface only
when Ti is the dopant, with an adsorption energy of −3.6 eV, and this adsorption is
without dissociation. Furthermore, CO adsorbs on the hexagonal-base (H) surface only
with Pt as the dopant with an adsorption energy of −0.89 eV. Again, the adsorption is
without dissociation.

The carbon dioxide molecule adsorbs on both surfaces but only with Li as the dopant,
with adsorption energies of: −0.67 eV for the P surface and −0.54 eV for the H surface. The
adsorption of the CO2 molecule is without dissociation.
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The methane molecule did not adsorb on any surface.
Finally, we found that both surfaces always adsorb the ozone molecule. When Ti or Pt

are dopants, we found that the O3 molecule always dissociates into an oxygen molecule
and an oxygen atom. For the P surface, the adsorption energies are −6.3953 and −0.8521 eV
for the Ti and Pt doped surfaces, respectively. Furthermore, the adsorption energies for the
Ti and Pt doped H surface are −0.82 eV and −1.43 eV, respectively. In the case of Li, the
O3 molecule adsorbs without dissociation. The adsorption energy is −1.777 eV for the P
surface, and the adsorption energy is −2.119 eV for the H surface.

At 300 K, the P surface would not act as a suitable sensor in any case. The H surface
would be a sensor for O3 with Ti as the dopant (τ = 9.97 s) and for CO2 with Li as a dopant
(τ = 0.13 s).
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