Transduction of Brain Neurons in Juvenile Chum Salmon (Oncorhynchus keta) with Recombinant Adeno-Associated Hippocampal Virus Injected into the Cerebellum during Long-Term Monitoring
Abstract
:1. Introduction
2. Results
2.1. Areas of Intracerebellar GCaMP6m-GFP Expression in the Juvenile Chum Salmon Cerebellum
2.1.1. Dorsal Part of Corpus Cerebelli
2.1.2. Lateral Part of Corpus Cerebelli
2.1.3. Basal Part of Corpus Cerebelli
2.2. Extracerebellar GCaMP6m-GFP Expression in the Tectum Opticum
2.2.1. Extracerebellar GCaMP6m-GFP Transduction in the Dorsal Thalamus
2.2.2. Extracerebellar GCaMP6m-GFP Transduction in the Epithalamus
2.2.3. Extracerebellar GCaMP6m-GFP Transduction in the Epiphysis
2.3. Extracerebellar Transduction of GCaMP6m-GFP in the Posterior Tuberal Region
2.4. Extracerebellar Transduction of GCaMP6m-GFP into the Nucleus Rotundus
2.5. Extracerebellar Transduction of GCaMP6m-GFP into the Corpus Geniculatum
3. Discussion
3.1. Phylogenetic Divergence and Functional Heterogeneity of Fish Cerebellar Connections
3.2. Intra- and Extracerebellar Transduction of rAAV in Fish
3.3. Vector Transduction into Tectum Opticum
3.4. Expression of rAAV in the Thalamus and Nuclei of the Pretectum and Epiphysis
4. Material and Methods
4.1. Experimental Animals
4.2. Injection of Recombinant Adeno-Associated Virus
4.3. Sample Preparation
4.4. Immunofluorescent Labeling
4.5. Microscopy
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAV | adeno-associated virus |
ADV | Adenoviruses |
AZ | apical zone |
BBB | blood-brain barrier |
CAR | coxsackie receptor and adenovirus receptor |
CG | corpus geniculatlim |
CNS | central nervous system |
CSF | cerebrospinal fluid |
cTO | caudal optic tectum |
DA | dopaminergic complex |
DAPI | 4′,6-diamidino-2-phenylindole dihydrochloride |
DMZ | dorsal matrix zone |
DNA | deoxyribonucleic acid |
Dth | dorsal thalamus |
DTN | dorsal thalamic nucleus |
EDC | eurydendroid cells |
Ep | Epithalamus |
Epi | Epiphysis |
GCaMP6m-FP | genetically encoded indicators of calcium |
GECI | genetically encoded calcium indicators |
GFP | green fluorescent protein |
GM1 | monosialotetrahexosylganglioside |
Grl | granular layer |
Grnl | ganglionar layer |
H | Habenula |
HSPG | surface heparan sulfate proteoglycan |
HuCD | RNA-binding proteins which induce neuronal differentiation activity |
IF | Immunofluorescence |
IHC | Immunohistochemical |
III | Infundibulum |
IV | fourth ventricle |
Ml | molecular layer |
N is | nucleus isthmi |
NC | nucleus corticalis |
nR | nucleus rotundus |
PC | Purkinje cells |
PD | Parkinson’s disease |
PTp | posterior tubercle |
PVZ | periventricular zone |
PZ | parenchimal zone |
rAAV | recombinant adeno-associated viral vectors |
RFP | red fluorescent protein |
SGAP | stratum grizerum et al.bum periventriculare |
SGC | stratum grizerum centrale |
SVZ | subventricular zone |
VTA | ventral tegmental area |
WGA | wheat germ agglutinin |
References
- Lewis, T.B.; Glasgow, J.N.; Glandon, A.M.; Curiel, D.T.; Standaert, D.G. Transduction of brain dopamine neurons by adenoviral vectors is modulated by CAR expression: Rationale for tropism modified vectors in PD gene therapy. PLoS ONE 2010, 5, e12672. [Google Scholar] [CrossRef] [PubMed]
- Jan, A.; Richner, M.; Vægter, C.B.; Nyengaard, J.R.; Jensen, P.H. Gene transfer in rodent nervous tissue following hindlimb intramuscular delivery of recombinant adeno-associated virus serotypes AAV2/6, AAV2/8, and AAV2/9. Neurosci. Insights 2019, 14, 1179069519889022. [Google Scholar] [CrossRef] [Green Version]
- Gray, S.J.; Woodard, K.T.; Samulski, R.J. Viral vectors and delivery strategies for CNS gene therapy. Ther. Deliv. 2010, 1, 517–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ugolini, G. Transneuronal transfer of herpes-simplex virus type-1 (HSV-1) from mixed limb nerves to the CNS. 1. Sequence of transfer from sensory, motor, and sympathetic-nerve fibers to the spinal-cord. J. Comp. Neurol. 1992, 326, 527–548. [Google Scholar] [CrossRef]
- Ohka, S.; Yang, W.X.; Terada, E.; Iwasaki, K.; Nomoto, A. Retrograde transport of intact poliovirus through the axon via the fast transport system. Virology 1998, 250, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Martins, I.H.; Chiorini, J.A.; Davidson, B.L. Adeno-associated virus type 4 (AAV4) targets ependyma and astrocytes in the subventricular zone and RMS. Gene Ther. 2005, 12, 1503–1508. [Google Scholar] [CrossRef]
- Srivastava, V.; Singh, A.J.; Gaurav, K.; Ahmad, F.J.; Shukla, R.; Kesharwani, P. Viral vectors as a promising nanotherapeutic approach against neurodegenerative disorders. Proc. Biochem. 2021, 109, 130–142. [Google Scholar] [CrossRef]
- Cearley, C.N.; Wolfe, J.H. Transduction characteristics of adeno-associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol. Ther. 2006, 13, 528–537. [Google Scholar] [CrossRef]
- Yetnikoff, L.; Lavezzi, H.N.; Reichard, R.A.; Zahm, D.S. An update on the connections of the ventral mesencephalic dopaminergic complex. Neuroscience 2014, 282, 23–48. [Google Scholar] [CrossRef] [Green Version]
- Pushchina, E.V.; Kapustyanov, I.A.; Shamshurina, E.V.; Varaksin, A.A. A confocal microscopic study of gene transfer into the mesencephalic tegmentum of juvenile chum salmon. Int. J. Mol. Sci. 2021, 22, 5661. [Google Scholar] [CrossRef]
- Pushchina, E.V.; Kapustyanov, I.A.; Shamshurina, E.V.; Varaksin, A.A. Labeling of mesencephalic tegmental neurons in a juvenile pacific chum salmon Oncorhynchus keta with mouse hippocampal adeno-associated viral vectors. J. Evol. Biochem. Physiol. 2021, 57, 88–94. [Google Scholar] [CrossRef]
- Stukaneva, M.E.; Pushchina, E.V.; Varaksin, A.A. Transduction of the recombinant adeno-associated mammalian hippocampal virus vector in cells of the cerebellum of juvenile Oncorhynchus keta. Rus. J. Physiol. 2020, 106, 1412–1420. [Google Scholar]
- Schober, A.L.; Gagarkin, D.A.; Chen, Y.; Gao, G.; Jacobson, L.; Mongin, A.A. Recombinant adeno-associated virus serotype 6 (rAAV6) potently and preferentially transduces rat astrocytes. Front. Cell. Neurosci. 2016, 10, 262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mease, P.J.; Wei, N.; Fudman, E.J.; Kivitz, A.J.; Schechtman, J.; Trapp, R.G.; Hobbs, K.F.; Greenwald, M.; Hou, A.; Bookbinder, S.A.; et al. Safety, tolerability, and clinical outcomes after intraarticular injection of a recombinant adeno-associated vector containing a tumor necrosis factor antagonist gene: Results of a phase 1/2 Study. J. Rheumatol. 2010, 37, 692–703. [Google Scholar] [CrossRef] [PubMed]
- Matsui, H.; Namikawa, K.; Babaryka, A.; Köster, R.W. Functional regionalization of the teleost cerebellum analyzed in vivo. Proc. Natl. Acad. Sci. USA 2014, 111, 11846–11851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikenaga, T.; Yoshida, M.; Uematsu, K. Cerebellar efferent neurons in teleost fish. Cerebellum 2006, 5, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Knogler, L.D.; Markov, D.A.; Dragomir, E.I.; Stih, V.; Portugues, R. Sensorimotor representations in cerebellar granule cells in larval zebrafish are dense, spatially organized, and non-temporally ratterned. Curr. Biol. 2017, 27, 1288–1302. [Google Scholar] [CrossRef] [PubMed]
- Folgueira, M.; Anadón, R.; Yáñez, J. Afferent and efferent connections of the cerebellum of a salmonid, the rainbow trout (Oncorhynchus mykiss): A tract-tracing study. J. Comp. Neurol. 2006, 497, 542–565. [Google Scholar] [CrossRef]
- Wullimann, M.F.; Northcutt, R.G. Connections of the corpus cerebelli in the green sunfish and the common goldfish: A comparison of perciform and cypriniform teleosts. Brain Behav. Evol. 1988, 32, 293–316. [Google Scholar] [CrossRef] [Green Version]
- Lewis, T.B.; Standaert, D.G. Design of clinical trials of gene therapy in Parkinson disease. Exp. Neurol. 2008, 209, 41–47. [Google Scholar] [CrossRef]
- Bjorklund, T.; Kordower, J.H. Gene therapy for Parkinson’s disease. Mov. Disord. 2010, 25, S161–S173. [Google Scholar] [CrossRef]
- Christine, C.W.; Starr, P.A.; Larson, P.S.; Eberling, J.L.; Jagust, W.J.; Hawkins, R.A.; VanBrocklin, H.F.; Wright, J.F.; Bankiewicz, K.S.; Aminoff, M.J. Safety and tolerability of putaminal AADC gene therapy for Parkinson disease. Neurology 2009, 73, 1662–1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marks, W.J.; Bartus, R.T.; Siffert, J.; Davis, C.S.; Lozano, A.; Boulis, N.; Vitek, J.; Stacy, M.; Turner, D.; Verhagen, L.; et al. Gene delivery of AAV2-neurturin for Parkinson’s disease: A double-blind, randomised, controlled trial. Lancet Neurol. 2010, 9, 1164–1172. [Google Scholar] [CrossRef]
- Wang, D.; Tai, P.W.L.; Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 2019, 18, 358–378. [Google Scholar] [CrossRef] [PubMed]
- Pillay, S.; Meyer, N.L.; Puschnik, A.S.; Davulcu, O.; Diep, J.; Ishikawa, Y.; Jae, L.T.; Wosen, J.E.; Nagamine, C.M.; Chapman, M.S.; et al. An essential receptor for adeno-associated virus infection. Nature 2016, 530, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Summerford, C.; Johnson, J.S.; Samulski, R.J. AAVR: A multi-serotype receptor for AAV. Mol. Ther. 2016, 24, 663–666. [Google Scholar] [CrossRef] [Green Version]
- Drouin, L.M.; Agbandje-McKenna, M. Adeno-associated virus structural biology as a tool in vector development. Future Virol. 2013, 8, 1183–1199. [Google Scholar] [CrossRef] [Green Version]
- Nonnenmacher, M.; Weber, T. Adeno-associated virus 2 infection requires endocytosis through the CLIC/GEEC pathway. Cell Host Microbe 2011, 10, 563–576. [Google Scholar] [CrossRef] [Green Version]
- Sonntag, F.; Bleker, S.; Leuchs, B.; Fischer, R.; Kleinschmidt, J.A. Adeno-associated virus type 2 capsids with externalized VP1/VP2 trafficking domains are generated prior to passage through the cytoplasm and are maintained until uncoating occurs in the nucleus. J. Virol. 2006, 80, 11040–11054. [Google Scholar] [CrossRef] [Green Version]
- Xiao, P.J.; Samulski, R.J. Cytoplasmic trafficking, endosomal escape, and perinuclear accumulation of adeno-associated virus type 2 particles are facilitated by microtubule network. J. Virol. 2012, 86, 10462–10473. [Google Scholar] [CrossRef] [Green Version]
- Kelich, J.M.; Ma, J.; Dong, B.; Wang, Q.; Chin, M.; Magura, C.M.; Xiao, W.; Yang, W. Super-resolution imaging of nuclear import of adeno-associated virus in live cells. Mol. Ther. Methods Clin. Dev. 2015, 2, 15047. [Google Scholar] [CrossRef] [PubMed]
- Agbandje-McKenna, M.; Kleinschmidt, J. AAV capsid structure and cell interactions. Methods Mol. Biol. 2011, 807, 47–92. [Google Scholar] [PubMed]
- Nonnenmacher, M.E.; Cintrat, J.C.; Gillet, D.; Weber, T. Syntaxin 5-dependent retrograde transport to the trans-Golgi network is required for adeno-associated virus transduction. J. Virol. 2015, 89, 1673–1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qing, K.; Mah, C.; Hansen, J.; Zhou, S.Z.; Dwarki, V.; Srivastava, A. Human fibroblast growth factor receptor 1 is a co-receptor for infection by adeno-associated virus 2. Nat. Med. 1999, 5, 71–77. [Google Scholar] [CrossRef]
- Summerford, C.; Bartlett, J.S.; Samulski, R.J. alpha V beta 5 integrin: A co-receptor for adeno-associated virus type 2 infection. Nat. Med. 1999, 5, 78–82. [Google Scholar] [CrossRef]
- Soudais, C.; Laplace-Builhe, C.; Kissa, K.; Kremer, E.J. Preferential transduction of neurons by canine adenovirus vectors and their efficient retrograde transport in vivo. FASEB J. 2001, 15, 2283–2285. [Google Scholar] [CrossRef]
- Bergelson, J.M.; Cunningham, J.A.; Droguett, G.; Kurt-Jones, E.A.; Krithivas, A.; Hong, J.S.; Horwitz, M.S.; Crowell, R.L.; Finberg, R.W. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997, 275, 1320–1323. [Google Scholar] [CrossRef]
- Glasgow, J.N.; Everts, M.; Curiel, D.T. Transductional targeting of adenovirus vectors for gene therapy. Cancer Gene Ther. 2006, 13, 830–844. [Google Scholar] [CrossRef]
- Paul, C.P.; Everts, M.; Glasgow, J.N.; Dent, P.; Fisher, P.B.; Ulasov, I.V.; Lesniak, M.S.; Stoff-Khalili, M.A.; Roth, J.C.; Preuss, M.A.; et al. Characterization of infectivity of knob-modified adenoviral vectors in glioma. Cancer Biol. Ther. 2008, 7, 786–793. [Google Scholar] [CrossRef] [Green Version]
- Wullimann, M.F. The central nervous system. In The Physiology of Fishes, 2nd ed.; Evans, D.H., Ed.; CRC Press: Boca Raton, FL, USA, 1998; pp. 245–282. [Google Scholar]
- Ito, H.; Murakami, T.; Morita, Y. An indirect telencephalo-cerebellar pathway and its relay nucleus in teleosts. Brain Res. 1982, 249, 1–13. [Google Scholar] [CrossRef]
- Matsui, H. Dopamine system, cerebellum, and nucleus ruber in fish and mammals. Dev. Growth Differ. 2017, 59, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Wullimann, M.F.; Meyer, D.L. Possible multiple evolution of indirect telencephalo-cerebellar pathways in teleosts: Studies in Carassius auratus and Pantodon buchholzi. Cell Tissue Res. 1993, 274, 447–455. [Google Scholar] [CrossRef] [Green Version]
- Finger, T.E. Cerebellar afferents in teleost catfish (Ictaluridae). J. Comp. Neurol. 1978, 181, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Bae, Y.K.; Kani, S.; Shimizu, T.; Tanabe, K.; Nojima, H.; Kimura, Y.; Higashijima, S.; Hibi, M. Anatomy of zebrafish cerebellum and screen for mutations affecting its development. Dev. Biol. 2009, 330, 406–426. [Google Scholar] [CrossRef] [Green Version]
- Wullimann, M.F.; Northcutt, R.G. Afferent connections of the valvula cerebelli in two teleosts, the common goldfish and the green sunfish. J. Comp. Neurol. 1989, 289, 554–567. [Google Scholar] [CrossRef] [Green Version]
- Finger, T.E.; Bell, C.C.; Russell, C.J. Electrosensory pathways to the valvula cerebelli in mormyrid fish. Exp. Brain Res. 1981, 42, 23–33. [Google Scholar] [CrossRef]
- Nieuwenhuys, R. Comparative anatomy of the cerebellum. Prog. Brain Res. 1967, 25, 1–93. [Google Scholar]
- Finger, T.E. Efferent neurons of the teleost cerebellum. Brain Res. 1978, 153, 608–614. [Google Scholar] [CrossRef]
- Murakami, T.; Morita, Y. Morphology and distribution of the projection neurons in the cerebellum in a Teleost, Sebastiscus marmoratus. J. Comp. Neurol. 1987, 256, 607–623. [Google Scholar] [CrossRef]
- Meek, J. Why run parallel fibers parallel? Teleostean Purkinje cells as possible coincidence detectors, in a timing device subserving spatial coding of temporal differences. Neuroscience 1992, 48, 249–283. [Google Scholar] [CrossRef]
- Yoshihara, Y.; Mizuno, T.; Nakahira, M.; Kawasaki, M.; Watanabe, Y.; Kagamiyama, H.; Jishage, K.; Ueda, O.; Suzuki, H.; Tabuchi, K.; et al. A genetic approach to visualization of multisynaptic neural pathways using plant lectin transgene. Neuron 1999, 22, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Wullimann, M.F.; Rupp, B.; Reichert, H. Neuroanatomy of the Zebrafish Brain: A Topological Atlas; Birkhauser: Berlin, Germany, 1996. [Google Scholar]
- Ikenaga, T.; Yoshida, M.; Uematsu, K. Efferent connections of the cerebellum of the goldfish, Carassius auratus. Brain Behav. Evol. 2002, 60, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Altman, J.; Bayer, S.A. Development of the Cerebellar System. In Relation to Its Evolution, Structure and Functions; CRC Press, Inc.: Boca Raton, FL, USA, 1997. [Google Scholar]
- Burger, C.; Gorbatyuk, O.S.; Velardo, M.J.; Peden, C.S.; Williams, P.; Zolotukhin, S.; Reier, P.J.; Mandel, R.J.; Muzyczka, N. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol. Ther. 2004, 10, 302–317. [Google Scholar] [CrossRef] [PubMed]
- Sgaier, S.K.; Millet, S.; Villanueva, M.P.; Berenshteyn, F.; Song, C.; Joyner, A.L. Morphogenetic and cellular movements that shape the mouse cerebellum; insights from genetic fate mapping. Neuron 2005, 45, 27–40. [Google Scholar] [PubMed] [Green Version]
- Meek, J. Functional anatomy of the tectum mesencephali of the goldfish. An explorative analysis of the functional implications of the laminar structural organization of the tectum. Brain Res. 1983, 287, 247–297. [Google Scholar] [CrossRef]
- Northcutt, R.G. Evolution of the optic tectum in ray-finned fishes. In Fish Neurobiology: Higher Brain Areas and Functions; Davis, R.E., Northcutt, R.G., Eds.; University of Michigan Press: Ann Arbor, MI, USA, 1983; Volume 2, pp. 1–42. [Google Scholar]
- Meek, H.J. Tectal morphology: Connections, neurons and synapses. In The Visual System of Fish; Douglas, R.H., Djamgoz, M.B.A., Eds.; Chapman & Hall: London, UK, 1990; pp. 239–277. [Google Scholar]
- Fame, R.M.; Brajon, C.; Ghysen, A. Second-order projection from the posterior lateral line in the early zebrafish brain. Neural. Dev. 2006, 1, 4. [Google Scholar] [CrossRef]
- Northcutt, R.G. Cells of origin of pathways afferent to the optic tectum in the green sunfish, Lepomis cyanellus. Ophthalmol. Visual Sci. Suppl. 1982, 22, 245. [Google Scholar]
- Zeymer, M.; von der Emde, G.; Wullimann, M.F. The mormyrid optic tectum is a topographic interface for active electrolocation and visual sensing. Front. Neuroanat. 2018, 12, 79. [Google Scholar] [CrossRef] [Green Version]
- Airhart, M.J.; Kriebel, R.M. Telencephalic terminals in the major retinal synaptic lamina of the goldfish optic tectum. Brain Res. 1985, 336, 363–367. [Google Scholar] [CrossRef]
- Oldfield, C.S.; Grossrubatscher, I.; Chávez, M.; Hoagland, A.; Huth, A.R.; Carroll, E.C.; Prendergast, A.; Qu, T.; Gallant, J.L.; Wyart, C.; et al. Experience, circuit dynamics, and forebrain recruitment in larval zebrafish prey capture. Elife 2020, 9, e56619. [Google Scholar] [CrossRef]
- Carr, C.E.; Maler, L.; Heiligenberg, W.; Sas, E. Laminar organization of the afferent and efferent systems of the torus semicircularis of gymnotiform fish: Morphological substrates for parallel processing in the electrosensory system. J.Comp. Neurol. 1981, 203, 649–670. [Google Scholar] [CrossRef] [PubMed]
- Bastian, J. Vision and electroreception: Integration of sensory information in the optic tectum of the weakly electric fish Apteronotus albifrons. J. Comp. Physiol. 1982, 147, 287–297. [Google Scholar] [CrossRef]
- Wullimann, M.F.; Northcutt, R.G. Visual and electrosensory circuits of the diencephalon in mormyrids: An evolutionary perspective. J. Comp. Neurol. 1990, 297, 537–552. [Google Scholar] [CrossRef] [Green Version]
- King, W.M.; Schmidt, J.T. The long latency component of retinotectal transmission: Enhancement by stimulation of nucleus isthmi or tectobulbar tract and block by nicotinic cholinergic antagonists. Neuroscience 1991, 40, 701–712. [Google Scholar] [CrossRef]
- King, W.M.; Schmidt, J.T. Nucleus isthmi in goldfish: In vitro recordings and fiber connections revealed by HRP injections. Vis. Neurosci. 1993, 10, 419–437. [Google Scholar] [CrossRef] [PubMed]
- Duque, S.; Joussemet, B.; Riviere, C.; Marais, T.; Dubreil, L.; Douar, A.M.; Fyfe, J.; Moullier, P.; Colle, M.A.; Barkats, M. Intravenous administration of self-complementary AAV9 enables transgene delivery to adult motor neurons. Mol. Ther. 2009, 17, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yang, B.; Mu, X.; Ahmed, S.S.; Su, Q.; He, R.; Wang, H.; Mueller, C.; Sena-Esteves, M.; Brown, R.; et al. Several rAAV vectors efficiently cross the blood-brain barrier and transduce neurons and astrocytes in the neonatal mouse central nervous system. Mol. Ther. 2011, 19, 1440–1448. [Google Scholar] [CrossRef] [Green Version]
- Foust, K.D.; Nurre, E.; Montgomery, C.L.; Hernandez, A.; Chan, C.M.; Kaspar, B.K. Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat. Biotechnol. 2009, 27, 59–65. [Google Scholar] [CrossRef] [Green Version]
- Stoica, L.; Todeasa, S.H.; Cabrera, G.T.; Salameh, J.S.; ElMallah, M.K.; Mueller, C.; Brown, R.H.; Sena-Esteves, M. Adeno-associated virus-delivered artificial microRNA extends survival and delays paralysis in an amyotrophic lateral sclerosis mouse model. Ann. Neurol. 2016, 79, 687–700. [Google Scholar] [CrossRef]
- Ahmed, S.S.; Li, H.; Cao, C.; Sikoglu, E.M.; Denninger, A.R.; Su, Q.; Eaton, S.; Liso Navarro, A.A.; Xie, J.; Szucs, S.; et al. A single intravenous rAAV injection as late as P20 achieves efficacious and sustained CNS gene therapy in canavan mice. Mol. Ther. 2013, 21, 2136–2147. [Google Scholar] [CrossRef] [Green Version]
- Weismann, C.M.; Ferreira, J.; Keeler, A.M.; Su, Q.; Qui, L.; Shaffer, S.A.; Xu, Z.; Gao, G.; Sena-Esteves, M. Systemic AAV9 gene transfer in adult GM1 gangliosidosis mice reduces lysosomal storage in CNS and extends lifespan. Hum. Mol. Genet. 2015, 24, 4353–4364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, H.; Dirosario, J.; Killedar, S.; Zaraspe, K.; McCarty, D.M. Correction of neurological disease of mucopolysaccharidosis IIIB in adult mice by rAAV9 trans-blood-brain barrier gene delivery. Mol. Ther. 2011, 19, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Grover, B.G.; Sharma, S.C. Organization of extrinisic tectal connection in goldfish (Carassius auratus). J. Comp. Neurol. 1981, 196, 471–488. [Google Scholar] [CrossRef] [PubMed]
- Heiligenberg, W.; Rose, G.J. The optic tectum of the gymnotiform electric fish, Eigenmannia: Labeling of physiologically identified cells. Neuroscience 1987, 22, 331–340. [Google Scholar] [CrossRef]
- Murakami, T.; Morita, Y.; Ito, H. Cytoarchitecture and fiber connections of the superficial pretectum in a teleost, Navodon modestus. Brain Res. 1986, 373, 213–221. [Google Scholar] [CrossRef]
- Yamada, Y.; Michikawa, T.; Hashimoto, M.; Horikawa, K.; Nagai, T.; Miyawaki, A.; Häusser, M.; Mikoshiba, K. Quantitative comparison of genetically encoded Ca indicators in cortical pyramidal cells and cerebellar Purkinje cells. Front. Cell Neurosci. 2011, 5, 18. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Hires, S.A.; Mao, T.; Huber, D.; Chiappe, M.E.; Chalasani, S.H.; Petreanu, L.; Akerboom, J.; McKinney, S.A.; Schreiter, E.R.; et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 2009, 6, 875–881. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Araki, S.; Wu, J.; Teramoto, T.; Chang, Y.F.; Nakano, M.; Abdelfattah, A.S.; Fujiwara, M.; Ishihara, T.; Nagai, T.; et al. An expanded palette of genetically encoded Ca2+ indicators. Science 2011, 333, 1888–1891. [Google Scholar] [CrossRef] [Green Version]
- Tallini, Y.N.; Ohkura, M.; Choi, B.R.; Ji, G.; Imoto, K.; Doran, R.; Lee, J.; Plan, P.; Wilson, J.; Xin, H.B.; et al. Imaging cellular signals in the heart in vivo: Cardiac expression of the high–signal Ca2+ indicator GCaMP2. Proc. Natl. Acad. Sci. USA 2006, 103, 4753–4758. [Google Scholar] [CrossRef] [Green Version]
- Akerboom, J.; Chen, T.W.; Wardill, T.J.; Tian, L.; Marvin, J.S.; Mutlu, S.; Calderón, N.C.; Esposti, F.; Borghuis, B.G.; Sun, X.R.; et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J. Neurosci. 2012, 32, 13819–13840. [Google Scholar] [CrossRef]
- Wullimann, M.F.; Meyer, D.L. Phylogeny of putative cholinergic visual pathways through the pretectum to the hypothalamus in teleost fish. Brain Behav. Evol. 1990, 36, 14–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wullimann, M.F.; Meyer, D.L.; Northcutt, R.G. The visually related posterior pretectal nucleus in the non-percomorph teleost Osteoglossum bicirrhosum projects to the hypothalamus: A DiI study. J. Comp. Neurol. 1991, 312, 415–435. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.Y.; Xue, H.G.; Yoshimoto, M.; Ito, H.; Yamamoto, N.; Ozawa, H. Fiber connections of the corpus glomerulosum pars rotunda, with special reference to efferent projection pattern to the inferior lobe in a percomorph teleost, tilapia (Oreochromis niloticus). J. Comp. Neurol. 2007, 501, 582–607. [Google Scholar] [CrossRef] [PubMed]
- Yáñez, J.; Suárez, T.; Quelle, A.; Folgueira, M.; Anadón, R. Neural connections of the pretectum in zebrafish (Danio rerio). J. Comp. Neurol. 2018, 526, 1017–1040. [Google Scholar] [CrossRef]
- Giassi, A.C.; Maler, L.; Moreira, J.E.; Hoffmann, A. Glomerular nucleus of the weakly electric fish, Gymnotus sp.: Cytoarchitecture, histochemistry, and fiber connections-inisights from neuroanatomy to evolution and behavior. J. Comp. Neurol. 2011, 519, 1658–1676. [Google Scholar] [CrossRef]
- Ito, H.; Vanegas, H. Visual receptive thalamopetal neurons in the optic tectum of teleosts (Holocentridae). Brain Res. 1984, 290, 201–210. [Google Scholar] [CrossRef]
- Northcutt, R.G.; Wullimann, M.F. The visual system in teleost fishes: Morphological patterns and trends. In Sensory Biology of Aquatic Animals. Sensory Biology of Aquatic Animals; Atema, J., Fay, R.R., Popper, A.N., Tavolga, W.N., Eds.; Springer: New York, NY, USA, 1988; pp. 515–552. [Google Scholar]
- McCormick, C.A.; Hernandez, D.V. Connections of octaval and lateral line nuclei of the medulla in the goldfish, including the cytoarchitecture of the secondary octaval population in goldfish and catfish. Brain Behav. Evol. 1996, 47, 113–137. [Google Scholar] [CrossRef]
- Murakami, T.; Ito, H.; Morita, Y. Telencephalic afferent nuclei in the carp diencephalon, with special reference to fiber connections of the nucleus preglomerulosus pars lateralis. Brain Res. 1986, 382, 97–103. [Google Scholar] [CrossRef]
- Puschina, E.V. Neurochemical organization and connections of the cerebral preglomerular complex of the masu salmon. Neurophysiology 2012, 43, 437–451. [Google Scholar] [CrossRef]
- Ramon-Moliner, E. Specialized and generalized dendritic patterns. In Golgi Centennial Symposium; Santini, M., Ed.; Academic Press: Cambridge, MA, USA, 1975; pp. 87–101. [Google Scholar]
- McMullen, N.T.; Almli, C.R. Cell types within the medial forebrain bundle: A Golgi study of preoptic and hypothalamic neurons in the rat. Am. J. Anat. 1981, 161, 323–340. [Google Scholar] [CrossRef]
- Mesulam, M.M. Cholinergic pathways and the ascending reticular activating system of the human brain. Ann. New York Acad. Sci. 1995, 757, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Swanson, L.W.; Mogenson, G.J. Neural mechanisms for the functional coupling of autonomic, endocrine and somatomotor responses in adaptive behavior. Brain Res. 1981, 228, 1–34. [Google Scholar] [CrossRef]
- Groenewegen, H.J.; Berendse, H.W.; Wouterlood, F.G. Organization of the projections from the ventral striato–pallidal system to ventral mesencephalic dopaminergic neurons in the rat. Basal Ganglia IV 1994, 41, 81–93. [Google Scholar]
- Van der Werf, Y.D.; Witter, M.P.; Groenewegen, H.J. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res. Rev. 2002, 39, 107–140. [Google Scholar] [CrossRef]
- Bone, Q.; Moore, R.H. Biology of Fishes; Taylor & Francis Group: New York, NY, USA, 2008. [Google Scholar]
- Mueller, T. What is the thalamus in zebrafish? Front. Neurosci. 2012, 6, 64. [Google Scholar] [CrossRef] [Green Version]
- Wullimann, M.F.; Grothe, B. The central nervous organization of the lateral line system. In The Lateral Line System; Springer: Berlin/Heidelberg, Germany, 2013; pp. 195–251. [Google Scholar]
- Gao, G.; Qu, G.; Burnham, M.S.; Huang, J.; Chirmule, N.; Joshi, B.; Yu, Q.C.; Marsh, J.A.; Conceicao, C.M.; Wilson, J.M. Purification of recombinant adeno-associated virus vectors by column chromatography and its performance in vivo. Hum. Gene Ther. 2000, 11, 2079–2091. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pushchina, E.V.; Bykova, M.E.; Shamshurina, E.V.; Varaksin, A.A. Transduction of Brain Neurons in Juvenile Chum Salmon (Oncorhynchus keta) with Recombinant Adeno-Associated Hippocampal Virus Injected into the Cerebellum during Long-Term Monitoring. Int. J. Mol. Sci. 2022, 23, 4947. https://doi.org/10.3390/ijms23094947
Pushchina EV, Bykova ME, Shamshurina EV, Varaksin AA. Transduction of Brain Neurons in Juvenile Chum Salmon (Oncorhynchus keta) with Recombinant Adeno-Associated Hippocampal Virus Injected into the Cerebellum during Long-Term Monitoring. International Journal of Molecular Sciences. 2022; 23(9):4947. https://doi.org/10.3390/ijms23094947
Chicago/Turabian StylePushchina, Evgeniya V., Maria E. Bykova, Ekaterina V. Shamshurina, and Anatoly A. Varaksin. 2022. "Transduction of Brain Neurons in Juvenile Chum Salmon (Oncorhynchus keta) with Recombinant Adeno-Associated Hippocampal Virus Injected into the Cerebellum during Long-Term Monitoring" International Journal of Molecular Sciences 23, no. 9: 4947. https://doi.org/10.3390/ijms23094947
APA StylePushchina, E. V., Bykova, M. E., Shamshurina, E. V., & Varaksin, A. A. (2022). Transduction of Brain Neurons in Juvenile Chum Salmon (Oncorhynchus keta) with Recombinant Adeno-Associated Hippocampal Virus Injected into the Cerebellum during Long-Term Monitoring. International Journal of Molecular Sciences, 23(9), 4947. https://doi.org/10.3390/ijms23094947