Decreased BAFF Receptor Expression and Unaltered B Cell Receptor Signaling in Circulating B Cells from Primary Sjögren’s Syndrome Patients at Diagnosis
Abstract
:1. Introduction
2. Results
2.1. BTK Levels and Basal BCR Signaling Activity Are Similar between Non-SS Sicca and pSS Patients
2.2. BTK Levels and BCR Signaling Responsiveness Are Unaltered in Non-SS Sicca and pSS Patients Compared with HCs
2.3. BAFF Receptor Downregulation Is an Early pSS Marker
3. Discussion
4. Materials and Methods
4.1. Patient Characteristics
4.2. Flow Cytometric Analysis
4.2.1. B Cell Surface Marker and Intracellular Staining
4.2.2. BCR Signaling Measurement by Phosphoflow Cytometry
4.3. Statistical and Computational Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neys, S.F.H.; Hendriks, R.W.; Corneth, O.B.J. Targeting Bruton’s Tyrosine Kinase in Inflammatory and Autoimmune Pathologies. Front. Cell Dev. Biol. 2021, 9, 668131. [Google Scholar] [CrossRef] [PubMed]
- Kil, L.P.; de Bruijn, M.J.W.; van Nimwegen, M.; Corneth, O.B.J.; van Hamburg, J.P.; Dingjan, G.M.; Thaiss, F.; Rimmelzwaan, G.F.; Elewaut, D.; Delsing, D.; et al. Btk levels set the threshold for B-cell activation and negative selection of autoreactive B cells in mice. Blood 2012, 119, 3744–3756. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Vidal, G.S.; Kelly, J.A.; Delgado-Vega, A.M.; Howard, X.K.; Macwana, S.R.; Dominguez, N.; Klein, W.; Burrell, C.; Harley, I.T.; et al. Genetic associations of LYN with systemic lupus erythematosus. Genes Immun. 2009, 10, 397–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, J.; Ibrahim, S.; Petersen, F.; Yu, X. Meta-analysis reveals an association of PTPN22 C1858T with autoimmune diseases, which depends on the localization of the affected tissue. Genes Immun. 2012, 13, 641–652. [Google Scholar] [CrossRef]
- Martin, J.-E.; Assassi, S.; Diaz-Gallo, L.-M.; Broen, J.C.; Simeon, C.P.; Castellvi, I.; Vicente-Rabaneda, E.; Fonollosa, V.; Ortego-Centeno, N.; González-Gay, M.A.; et al. A systemic sclerosis and systemic lupus erythematosus pan-meta-GWAS reveals new shared susceptibility loci. Hum. Mol. Genet. 2013, 22, 4021–4029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burbelo, P.D.; Ambatipudi, K.; Alevizos, I. Genome-wide association studies in Sjögren’s syndrome: What do the genes tell us about disease pathogenesis? Autoimmun. Rev. 2014, 13, 756–761. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.H.; Athanasopoulos, V.; Ellyard, J.I.; Chuah, A.; Cappello, J.; Cook, A.; Prabhu, S.B.; Cardenas, J.; Gu, J.; Stanley, M.; et al. Functional rare and low frequency variants in BLK and BANK1 contribute to human lupus. Nat. Commun. 2019, 10, 2201. [Google Scholar] [CrossRef] [Green Version]
- Corneth, O.B.J.; Verstappen, G.M.P.; Paulissen, S.M.J.; de Bruijn, M.J.W.; Rip, J.; Lukkes, M.; van Hamburg, J.P.; Lubberts, E.; Bootsma, H.; Kroese, F.G.M.; et al. Enhanced Bruton’s Tyrosine Kinase Activity in Peripheral Blood B Lymphocytes From Patients With Autoimmune Disease. Arthritis Rheumatol. 2017, 69, 1313–1324. [Google Scholar] [CrossRef]
- von Borstel, A.; Abdulahad, W.H.; Sanders, J.S.; Rip, J.; Neys, S.F.H.; Hendriks, R.W.; Stegeman, C.A.; Heeringa, P.; Rutgers, A.; Corneth, O.B.J. Evidence for enhanced Bruton’s tyrosine kinase activity in transitional and naïve B cells of patients with granulomatosis with polyangiitis. Rheumatology (Oxford) 2019, 58, 2230–2239. [Google Scholar] [CrossRef] [Green Version]
- Verstappen, G.M.; Pringle, S.; Bootsma, H.; Kroese, F.G.M. Epithelial–immune cell interplay in primary Sjögren syndrome salivary gland pathogenesis. Nat. Rev. Rheumatol. 2021, 17, 333–348. [Google Scholar] [CrossRef]
- Nocturne, G.; Mariette, X. B cells in the pathogenesis of primary Sjögren syndrome. Nat. Rev. Rheumatol. 2018, 14, 133–145. [Google Scholar] [CrossRef] [PubMed]
- Groom, J.; Kalled, S.L.; Cutler, A.H.; Olson, C.; Woodcock, S.A.; Schneider, P.; Tschopp, J.; Cachero, T.G.; Batten, M.; Wheway, J.; et al. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjögren’s syndrome. J. Clin. Investig. 2002, 109, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Szodoray, P.; Jellestad, S.; Alex, P.; Zhou, T.; Wilson, P.C.; Centola, M.; Brun, J.G.; Jonsson, R. Programmed cell death of peripheral blood B cells determined by laser scanning cytometry in Sjögren’s syndrome with a special emphasis on BAFF. J. Clin. Immunol. 2004, 24, 600–611. [Google Scholar] [CrossRef] [PubMed]
- Pers, J.-O.; Daridon, C.; Devauchelle, V.; Jousse, S.; Saraux, A.; Jamin, C.; Youinou, P. BAFF overexpression is associated with autoantibody production in autoimmune diseases. Ann. N. Y. Acad. Sci. 2005, 1050, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Mariette, X.; Roux, S.; Zhang, J.; Bengoufa, D.; Lavie, F.; Zhou, T.; Kimberly, R. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjögren’s syndrome. Ann. Rheum. Dis. 2003, 62, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Lavie, F.; Miceli-Richard, C.; Quillard, J.; Roux, S.; Leclerc, P.; Mariette, X. Expression of BAFF (BLyS) in T cells infiltrating labial salivary glands from patients with Sjögren’s syndrome. J. Pathol. 2004, 202, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Vadacca, M.; Margiotta, D.; Sambataro, D.; Buzzulini, F.; Lo Vullo, M.; Rigon, A.; Afeltra, A. BAFF/APRIL pathway in Sjögren syndrome and systemic lupus erythematosus: Relationship with chronic inflammation and disease activity. Reumatismo 2010, 62, 259–265. [Google Scholar] [CrossRef]
- Loureiro-Amigo, J.; Franco-Jarava, C.; Perurena-Prieto, J.; Palacio, C.; Martínez-Valle, F.; Soláns-Laqué, R. Serum CXCL13, BAFF, IL-21 and IL-22 levels are related to disease activity and lymphocyte profile in primary Sjögren’s syndrome. Clin. Exp. Rheumatol. 2021, 39 (Suppl. 1), 131–139. [Google Scholar] [CrossRef]
- Thien, M.; Phan, T.G.; Gardam, S.; Amesbury, M.; Basten, A.; Mackay, F.; Brink, R. Excess BAFF Rescues Self-Reactive B Cells from Peripheral Deletion and Allows Them to Enter Forbidden Follicular and Marginal Zone Niches. Immunity 2004, 20, 785–798. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.H.; Cancro, M.P. Cutting edge: B cell receptor signals regulate BLyS receptor levels in mature B cells and their immediate progenitors. J. Immunol. 2003, 170, 5820–5823. [Google Scholar] [CrossRef] [Green Version]
- Stadanlick, J.E.; Kaileh, M.; Karnell, F.G.; Scholz, J.L.; Miller, J.P.; Quinn, W.J.; Brezski, R.J.; Treml, L.S.; Jordan, K.A.; Monroe, J.G.; et al. Tonic B cell antigen receptor signals supply an NF-kappaB substrate for prosurvival BLyS signaling. Nat. Immunol. 2008, 9, 1379–1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinners, N.P.; Carlesso, G.; Castro, I.; Hoek, K.L.; Corn, R.A.; Woodland, R.T.; Scott, M.L.; Wang, D.; Khan, W.N. Bruton’s tyrosine kinase mediates NF-kappa B activation and B cell survival by B cell-activating factor receptor of the TNF-R family. J. Immunol. 2007, 179, 3872–3880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schweighoffer, E.; Vanes, L.; Nys, J.; Cantrell, D.; McCleary, S.; Smithers, N.; Tybulewicz, V.L.J. The BAFF Receptor Transduces Survival Signals by Co-opting the B Cell Receptor Signaling Pathway. Immunity 2013, 38, 475–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seror, R.; Ravaud, P.; Bowman, S.J.; Baron, G.; Tzioufas, A.; Theander, E.; Gottenberg, J.-E.; Bootsma, H.; Mariette, X.; Vitali, C. EULAR Sjögren’s syndrome disease activity index: Development of a consensus systemic disease activity index for primary Sjögren’s syndrome. Ann. Rheum. Dis. 2010, 69, 1103–1109. [Google Scholar] [CrossRef]
- Rawlings, D.J.; Scharenberg, A.M.; Park, H.; Wahl, M.I.; Lin, S.; Kato, R.M.; Fluckiger, A.C.; Witte, O.N.; Kinet, J.P. Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases. Science 1996, 271, 822–825. [Google Scholar] [CrossRef]
- Glauzy, S.; Sng, J.; Bannock, J.M.; Gottenberg, J.E.; Korganow, A.S.; Cacoub, P.; Saadoun, D.; Meffre, E. Defective Early B Cell Tolerance Checkpoints in Sjogren’s Syndrome Patients. Arthritis Rheumatol. 2017, 69, 2203–2208. [Google Scholar] [CrossRef] [Green Version]
- Meffre, E.; O’Connor, K.C. Impaired B-cell tolerance checkpoints promote the development of autoimmune diseases and pathogenic autoantibodies. Immunol. Rev. 2019, 292, 90–101. [Google Scholar] [CrossRef]
- Hansen, A.; Odendahl, M.; Reiter, K.; Jacobi, A.M.; Feist, E.; Scholze, J.; Burmester, G.R.; Lipsky, P.E.; Dörner, T. Diminished peripheral blood memory B cells and accumulation of memory B cells in the salivary glands of patients with Sjögren’s syndrome. Arthritis Rheum. 2002, 46, 2160–2171. [Google Scholar] [CrossRef]
- Bohnhorst, J.Ø.; Bjørgan, M.B.; Thoen, J.E.; Natvig, J.B.; Thompson, K.M. Bm1-Bm5 classification of peripheral blood B cells reveals circulating germinal center founder cells in healthy individuals and disturbance in the B cell subpopulations in patients with primary Sjögren’s syndrome. J. Immunol. 2001, 167, 3610–3618. [Google Scholar] [CrossRef]
- Roberts, M.E.P.; Kaminski, D.; Jenks, S.A.; Maguire, C.; Ching, K.; Burbelo, P.D.; Iadarola, M.J.; Rosenberg, A.; Coca, A.; Anolik, J.; et al. Primary Sjögren’s syndrome is characterized by distinct phenotypic and transcriptional profiles of IgD+ unswitched memory B cells. Arthritis Rheumatol. (Hoboken NJ) 2014, 66, 2558–2569. [Google Scholar] [CrossRef] [Green Version]
- Hansen, A.; Gosemann, M.; Pruss, A.; Reiter, K.; Ruzickova, S.; Lipsky, P.E.; Dörner, T. Abnormalities in peripheral B cell memory of patients with primary Sjögren’s syndrome. Arthritis Rheum. 2004, 50, 1897–1908. [Google Scholar] [CrossRef] [PubMed]
- Mingueneau, M.; Boudaoud, S.; Haskett, S.; Reynolds, T.L.; Nocturne, G.; Norton, E.; Zhang, X.; Constant, M.; Park, D.; Wang, W.; et al. Cytometry by time-of-flight immunophenotyping identifies a blood Sjögren’s signature correlating with disease activity and glandular inflammation. J. Allergy Clin. Immunol. 2016, 137, 1809–1821. [Google Scholar] [CrossRef] [PubMed]
- Szabó, K.; Papp, G.; Szántó, A.; Tarr, T.; Zeher, M. A comprehensive investigation on the distribution of circulating follicular T helper cells and B cell subsets in primary Sjögren’s syndrome and systemic lupus erythematosus. Clin. Exp. Immunol. 2016, 183, 76–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corsiero, E.; Sutcliffe, N.; Pitzalis, C.; Bombardieri, M. Accumulation of Self-Reactive Naïve and Memory B Cell Reveals Sequential Defects in B Cell Tolerance Checkpoints in Sjögren’s Syndrome. PLoS ONE 2014, 9, e114575. [Google Scholar] [CrossRef] [Green Version]
- Barcelos, F.; Martins, C.; Papoila, A.; Geraldes, C.; Cardigos, J.; Nunes, G.; Lopes, T.; Alves, N.; Vaz-Patto, J.; Branco, J.; et al. Association between memory B-cells and clinical and immunological features of primary Sjögren’s syndrome and Sicca patients. Rheumatol. Int. 2018, 38, 1063–1073. [Google Scholar] [CrossRef]
- Wang, S.-P.; Iwata, S.; Nakayamada, S.; Niiro, H.; Jabbarzadeh-Tabrizi, S.; Kondo, M.; Kubo, S.; Yoshikawa, M.; Tanaka, Y. Amplification of IL-21 signalling pathway through Bruton’s tyrosine kinase in human B cell activation. Rheumatology (Oxford). 2015, 54, 1488–1497. [Google Scholar] [CrossRef] [Green Version]
- Weißenberg, S.Y.; Szelinski, F.; Schrezenmeier, E.; Stefanski, A.-L.; Wiedemann, A.; Rincon-Arevalo, H.; Welle, A.; Jungmann, A.; Nordström, K.; Walter, J.; et al. Identification and Characterization of Post-activated B Cells in Systemic Autoimmune Diseases. Front. Immunol. 2019, 10, 2136. [Google Scholar] [CrossRef] [Green Version]
- Cheema, G.S.; Roschke, V.; Hilbert, D.M.; Stohl, W. Elevated serum B lymphocyte stimulator levels in patients with systemic immune-based rheumatic diseases. Arthritis Rheum. 2001, 44, 1313–1319. [Google Scholar] [CrossRef]
- Sellam, J.; Miceli-Richard, C.; Gottenberg, J.-E.; Ittah, M.; Lavie, F.; Lacabaratz, C.; Gestermann, N.; Proust, A.; Lambotte, O.; Mariette, X. Decreased B cell activating factor receptor expression on peripheral lymphocytes associated with increased disease activity in primary Sjögren’s syndrome and systemic lupus erythematosus. Ann. Rheum. Dis. 2007, 66, 790–797. [Google Scholar] [CrossRef] [Green Version]
- Dumoitier, N.; Chaigne, B.; Régent, A.; Lofek, S.; Mhibik, M.; Dorfmüller, P.; Terrier, B.; London, J.; Bérezné, A.; Tamas, N.; et al. Scleroderma Peripheral B Lymphocytes Secrete Interleukin-6 and Transforming Growth Factor β and Activate Fibroblasts. Arthritis Rheumatol. (Hoboken NJ) 2017, 69, 1078–1089. [Google Scholar] [CrossRef] [Green Version]
- Carter, R.H.; Zhao, H.; Liu, X.; Pelletier, M.; Chatham, W.; Kimberly, R.; Zhou, T. Expression and occupancy of BAFF-R on B cells in systemic lupus erythematosus. Arthritis Rheum. 2005, 52, 3943–3954. [Google Scholar] [CrossRef] [PubMed]
- Lesley, R.; Xu, Y.; Kalled, S.L.; Hess, D.M.; Schwab, S.R.; Shu, H.-B.; Cyster, J.G. Reduced Competitiveness of Autoantigen-Engaged B Cells due to Increased Dependence on BAFF. Immunity 2004, 20, 441–453. [Google Scholar] [CrossRef] [Green Version]
- Schneider-Brachert, W.; Tchikov, V.; Neumeyer, J.; Jakob, M.; Winoto-Morbach, S.; Held-Feindt, J.; Heinrich, M.; Merkel, O.; Ehrenschwender, M.; Adam, D.; et al. Compartmentalization of TNF receptor 1 signaling: Internalized TNF receptosomes as death signaling vesicles. Immunity 2004, 21, 415–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smulski, C.R.; Kury, P.; Seidel, L.M.; Staiger, H.S.; Edinger, A.K.; Willen, L.; Seidl, M.; Hess, H.; Salzer, U.; Rolink, A.G.; et al. BAFF- and TACI-Dependent Processing of BAFFR by ADAM Proteases Regulates the Survival of B Cells. Cell Rep. 2017, 18, 2189–2202. [Google Scholar] [CrossRef] [Green Version]
- Badr, G.; Borhis, G.; Lefevre, E.A.; Chaoul, N.; Deshayes, F.; Dessirier, V.; Lapree, G.; Tsapis, A.; Richard, Y. BAFF enhances chemotaxis of primary human B cells: A particular synergy between BAFF and CXCL13 on memory B cells. Blood 2008, 111, 2744–2754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szyszko, E.A.; Brun, J.G.; Skarstein, K.; Peck, A.B.; Jonsson, R.; Brokstad, K.A. Phenotypic diversity of peripheral blood plasma cells in primary Sjögren’s syndrome. Scand. J. Immunol. 2011, 73, 18–28. [Google Scholar] [CrossRef]
- Mariette, X.; Seror, R.; Quartuccio, L.; Baron, G.; Salvin, S.; Fabris, M.; Desmoulins, F.; Nocturne, G.; Ravaud, P.; De Vita, S. Efficacy and safety of belimumab in primary Sjögren’s syndrome: Results of the BELISS open-label phase II study. Ann. Rheum. Dis. 2015, 74, 526–531. [Google Scholar] [CrossRef]
- Dorner, T.; Posch, M.G.; Li, Y.; Petricoul, O.; Cabanski, M.; Milojevic, J.M.; Kamphausen, E.; Valentin, M.A.; Simonett, C.; Mooney, L.; et al. Treatment of primary Sjogren’s syndrome with ianalumab (VAY736) targeting B cells by BAFF receptor blockade coupled with enhanced, antibody-dependent cellular cytotoxicity. Ann. Rheum. Dis. 2019, 78, 641–647. [Google Scholar] [CrossRef]
- Bowman, S.J.; Fox, R.; Dörner, T.; Mariette, X.; Papas, A.; Grader-Beck, T.; Fisher, B.A.; Barcelos, F.; De Vita, S.; Schulze-Koops, H.; et al. Safety and efficacy of subcutaneous ianalumab (VAY736) in patients with primary Sjögren’s syndrome: A randomised, double-blind, placebo-controlled, phase 2b dose-finding trial. Lancet 2022, 399, 161–171. [Google Scholar] [CrossRef]
- Neys, S.F.H.; Rip, J.; Hendriks, R.W.; Corneth, O.B.J. Bruton’s Tyrosine Kinase Inhibition as an Emerging Therapy in Systemic Autoimmune Disease. Drugs 2021, 81, 1605–1626. [Google Scholar] [CrossRef]
- Price, E.; Bombardieri, M.; Kivitz, A.; Matzkies, F.; Gurtovaya, O.; Pechonkina, A.; Jiang, W.; Downie, B.; Mathur, A.; Mozaffarian, A.; et al. Safety and efficacy of filgotinib, lanraplenib and tirabrutinib in Sjögren’s syndrome: A randomized, phase 2, double-blind, placebo-controlled study. Rheumatology 2022, keac167. [Google Scholar] [CrossRef] [PubMed]
- Trier, N.H.; Nielsen, I.Ø.; Friis, T.; Houen, G.; Theander, E. Comparison of antibody assays for detection of autoantibodies to Ro 52, Ro 60 and La associated with primary Sjögren’s syndrome. J. Immunol. Methods 2016, 433, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Verstappen, G.M.; Ice, J.A.; Bootsma, H.; Pringle, S.; Haacke, E.A.; de Lange, K.; van der Vries, G.B.; Hickey, P.; Vissink, A.; Spijkervet, F.K.L.; et al. Gene expression profiling of epithelium-associated FcRL4(+) B cells in primary Sjögren’s syndrome reveals a pathogenic signature. J. Autoimmun. 2020, 109, 102439. [Google Scholar] [CrossRef] [PubMed]
- Shiboski, C.H.; Shiboski, S.C.; Seror, R.; Criswell, L.A.; Labetoulle, M.; Lietman, T.M.; Rasmussen, A.; Scofield, H.; Vitali, C.; Bowman, S.J.; et al. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjögren’s syndrome. Ann. Rheum. Dis. 2017, 76, 9–16. [Google Scholar] [CrossRef]
- Rip, J.; Hendriks, R.W.; Corneth, O.B.J. A Versatile Protocol to Quantify BCR-mediated Phosphorylation in Human and Murine B Cell Subpopulations. Bio-Protocol 2021, 11, e3902. [Google Scholar] [CrossRef] [PubMed]
- Rip, J.; de Bruijn, M.J.W.; Kaptein, A.; Hendriks, R.W.; Corneth, O.B.J. Phosphoflow Protocol for Signaling Studies in Human and Murine B Cell Subpopulations. J. Immunol. 2020, 204, 2852–2863. [Google Scholar] [CrossRef] [PubMed]
non-SS Sicca | pSS | |
---|---|---|
N (female) | 30 (25) | 27 (25) |
Age (years) | 50 (20–72) | 54 (30–74) |
ESSDAI | - | 4 (0–34) |
Lymphocyte count (×103/mL) | 2.03 (1.01–3.47) | 1.3 (0.71–3.35) |
IgG (g/L) | 9.8 (7.6–16.6) | 16.0 (9.7–32.3) |
RF positive | 1/30 | 14/26 * |
Anti-Ro/SSA positive | 1/30 | 20/27 |
Anti-La /SSB positive | 0/30 | 11/27 |
Biopsy positive ** | 2/30 | 22/27 |
HC | non-SS sicca | pSS | |
---|---|---|---|
N (female) | 10 (7) | 10 (8) | 10 (10) |
Age (years) | 50 (27–69) | 48 (26–71) | 48 (32–71) |
ESSDAI | - | - | 4 (0–12) |
Lymphocyte count (×103/mL) | - | 2.68 (1.01–3.03) | 1.85 (1.05–3.35) |
IgG (g/L) | - | 11.0 (6.7–14.9) | 12.7 (9.7–26.7) |
RF positive | - | 1/10 | 4/10 |
Anti-Ro/SSA positive | - | 0/10 | 6/10 |
Anti-La/SSB positive | - | 0/10 | 3/10 |
Biopsy positive * | - | 1/10 | 8/10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neys, S.F.H.; Verstappen, G.M.; Bootsma, H.; Kroese, F.G.M.; Hendriks, R.W.; Corneth, O.B.J. Decreased BAFF Receptor Expression and Unaltered B Cell Receptor Signaling in Circulating B Cells from Primary Sjögren’s Syndrome Patients at Diagnosis. Int. J. Mol. Sci. 2022, 23, 5101. https://doi.org/10.3390/ijms23095101
Neys SFH, Verstappen GM, Bootsma H, Kroese FGM, Hendriks RW, Corneth OBJ. Decreased BAFF Receptor Expression and Unaltered B Cell Receptor Signaling in Circulating B Cells from Primary Sjögren’s Syndrome Patients at Diagnosis. International Journal of Molecular Sciences. 2022; 23(9):5101. https://doi.org/10.3390/ijms23095101
Chicago/Turabian StyleNeys, Stefan F. H., Gwenny M. Verstappen, Hendrika Bootsma, Frans G. M. Kroese, Rudi W. Hendriks, and Odilia B. J. Corneth. 2022. "Decreased BAFF Receptor Expression and Unaltered B Cell Receptor Signaling in Circulating B Cells from Primary Sjögren’s Syndrome Patients at Diagnosis" International Journal of Molecular Sciences 23, no. 9: 5101. https://doi.org/10.3390/ijms23095101
APA StyleNeys, S. F. H., Verstappen, G. M., Bootsma, H., Kroese, F. G. M., Hendriks, R. W., & Corneth, O. B. J. (2022). Decreased BAFF Receptor Expression and Unaltered B Cell Receptor Signaling in Circulating B Cells from Primary Sjögren’s Syndrome Patients at Diagnosis. International Journal of Molecular Sciences, 23(9), 5101. https://doi.org/10.3390/ijms23095101