APEX2-Mediated Proximity Labeling Resolves the DDIT4-Interacting Proteome
Abstract
:1. Introduction
2. Results
2.1. Construction of a Functional DDIT4–APEX2 Fusion Protein for Proximity Labeling
2.2. Proteomic Identification of DDIT4 Partners in Unstressed and Acutely Stressed Conditions
2.3. Bioinformatic Analysis of DDIT4 Partners in Unstressed and Acutely Stressed Conditions
2.4. Identification of DDIT4 Directly-Interacting Proteins
3. Discussion
4. Materials and Methods
4.1. Antibodies
4.2. Generation of DNA Constructs
4.3. In Situ Labeling of DDIT4 Interactors Mediated by APEX2-Mediated Biotinylation
4.4. Immunofluorescence Staining
4.5. Preparation of Whole Protein Extracts and Affinity Capture of Biotinylated Proteins
4.6. Western Blot Analysis
4.7. Liquid Chromatography-Tandem Mass Spectrometry
4.7.1. Sample Preparation
4.7.2. LC-MS/MS Analysis
4.7.3. MS Data Processing
4.8. Co-Immunoprecipitation
4.9. Gene Ontology Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shoshani, T.; Faerman, A.; Mett, I.; Zelin, E.; Tenne, T.; Gorodin, S.; Moshel, Y.; Elbaz, S.; Budanov, A.; Chajut, A.; et al. Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol. Cell. Biol. 2002, 22, 2283–2293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellisen, L.W.; Ramsayer, K.D.; Johannessen, C.M.; Yang, A.; Beppu, H.; Minda, K.; Oliner, J.D.; McKeon, F.; Haber, D.A. REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol. Cell 2002, 10, 995–1005. [Google Scholar] [CrossRef]
- McGhee, N.K.; Jefferson, L.S.; Kimball, S.R. Elevated corticosterone associated with food deprivation upregulates expression in rat skeletal muscle of the mTORC1 repressor, REDD1. J. Nutr. 2009, 139, 828–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saracino, P.G.; Rossetti, M.L.; Steiner, J.L.; Gordon, B.S. Hormonal regulation of core clock gene expression in skeletal muscle following acute aerobic exercise. Biochem. Biophys. Res. Commun. 2019, 508, 871–876. [Google Scholar] [CrossRef]
- Lin, L.; Qian, Y.; Shi, X.; Chen, Y. Induction of a cell stress response gene RTP801 by DNA damaging agent methyl methanesulfonate through CCAAT/enhancer binding protein. Biochemistry 2005, 44, 3909–3914. [Google Scholar] [CrossRef]
- Malagelada, C.; Ryu, E.J.; Biswas, S.C.; Jackson-Lewis, V.; Greene, L.A. RTP801 is elevated in Parkinson brain substantia nigral neurons and mediates death in cellular models of Parkinson’s disease by a mechanism involving mammalian target of rapamycin inactivation. J. Neurosci. Off. J. Soc. Neurosci. 2006, 26, 9996–10005. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Malone, M.H.; Thomenius, M.J.; Zhong, F.; Xu, F.; Distelhorst, C.W. Dexamethasone-induced gene 2 (dig2) is a novel pro-survival stress gene induced rapidly by diverse apoptotic signals. J. Biol. Chem. 2003, 278, 27053–27058. [Google Scholar] [CrossRef] [Green Version]
- Whitney, M.L.; Jefferson, L.S.; Kimball, S.R. ATF4 is necessary and sufficient for ER stress-induced upregulation of REDD1 expression. Biochem. Biophys. Res. Commun. 2009, 379, 451–455. [Google Scholar] [CrossRef] [Green Version]
- DeYoung, M.P.; Horak, P.; Sofer, A.; Sgroi, D.; Ellisen, L.W. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev. 2008, 22, 239–251. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Stringfield, T.M.; Shi, X.; Chen, Y. Arsenite induces a cell stress-response gene, RTP801, through reactive oxygen species and transcription factors Elk-1 and CCAAT/enhancer-binding protein. Biochem. J. 2005, 392, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Michel, G.; Matthes, H.W.; Hachet-Haas, M.; El Baghdadi, K.; de Mey, J.; Pepperkok, R.; Simpson, J.C.; Galzi, J.L.; Lecat, S. Plasma membrane translocation of REDD1 governed by GPCRs contributes to mTORC1 activation. J. Cell Sci. 2014, 127, 773–787. [Google Scholar] [CrossRef] [Green Version]
- Brugarolas, J.; Lei, K.; Hurley, R.L.; Manning, B.D.; Reiling, J.H.; Hafen, E.; Witters, L.A.; Ellisen, L.W.; Kaelin, W.G., Jr. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 2004, 18, 2893–2904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corradetti, M.N.; Inoki, K.; Guan, K.L. The stress-inducted proteins RTP801 and RTP801L are negative regulators of the mammalian target of rapamycin pathway. J. Biol. Chem. 2005, 280, 9769–9772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabatini, D.M. Twenty-five years of mTOR: Uncovering the link from nutrients to growth. Proc. Natl. Acad. Sci. USA 2017, 114, 11818–11825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inoki, K.; Li, Y.; Zhu, T.; Wu, J.; Guan, K.L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 2002, 4, 648–657. [Google Scholar] [CrossRef]
- Li, Y.; Inoki, K.; Yeung, R.; Guan, K.L. Regulation of TSC2 by 14-3-3 binding. J. Biol. Chem. 2002, 277, 44593–44596. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Jiang, X.; Li, B.; Yang, H.J.; Miller, M.; Yang, A.; Dhar, A.; Pavletich, N.P. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature 2017, 552, 368–373. [Google Scholar] [CrossRef]
- Vega-Rubin-de-Celis, S.; Abdallah, Z.; Kinch, L.; Grishin, N.V.; Brugarolas, J.; Zhang, X. Structural analysis and functional implications of the negative mTORC1 regulator REDD1. Biochemistry 2010, 49, 2491–2501. [Google Scholar] [CrossRef] [Green Version]
- Dennis, M.D.; Coleman, C.S.; Berg, A.; Jefferson, L.S.; Kimball, S.R. REDD1 enhances protein phosphatase 2A-mediated dephosphorylation of Akt to repress mTORC1 signaling. Sci. Signal. 2014, 7, ra68. [Google Scholar] [CrossRef] [Green Version]
- Britto, F.A.; Dumas, K.; Giorgetti-Peraldi, S.; Ollendorff, V.; Favier, F.B. Is REDD1 a metabolic double agent? Lessons from physiology and pathology. Am. J. Physiol. Cell Physiol. 2020, 319, C807–C824. [Google Scholar] [CrossRef]
- Lam, S.S.; Martell, J.D.; Kamer, K.J.; Deerinck, T.J.; Ellisman, M.H.; Mootha, V.K.; Ting, A.Y. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods 2015, 12, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Nayak, R.R.; Bernal, W.E.; Lee, J.W.; Kearns, M.J.; Cheung, V.G. Stress-induced changes in gene interactions in human cells. Nucleic Acids Res. 2014, 42, 1757–1771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimura, Y.; Kasahara, K.; Inagaki, M. Intermediate filaments and IF-associated proteins: From cell architecture to cell proliferation. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2019, 95, 479–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Wong, P.; Coulombe, P.A. A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature 2006, 441, 362–365. [Google Scholar] [CrossRef]
- Nair, R.R.; Hsu, J.; Jacob, J.T.; Pineda, C.M.; Hobbs, R.P.; Coulombe, P.A. A role for keratin 17 during DNA damage response and tumor initiation. Proc. Natl. Acad. Sci. USA 2021, 118, e2020150118. [Google Scholar] [CrossRef] [PubMed]
- Ku, N.O.; Michie, S.; Resurreccion, E.Z.; Broome, R.L.; Omary, M.B. Keratin binding to 14-3-3 proteins modulates keratin filaments and hepatocyte mitotic progression. Proc. Natl. Acad. Sci. USA 2002, 99, 4373–4378. [Google Scholar] [CrossRef] [Green Version]
- Caulin, C.; Ware, C.F.; Magin, T.M.; Oshima, R.G. Keratin-dependent, epithelial resistance to tumor necrosis factor-induced apoptosis. J. Cell Biol. 2000, 149, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Inada, H.; Izawa, I.; Nishizawa, M.; Fujita, E.; Kiyono, T.; Takahashi, T.; Momoi, T.; Inagaki, M. Keratin attenuates tumor necrosis factor-induced cytotoxicity through association with TRADD. J. Cell Biol. 2001, 155, 415–426. [Google Scholar] [CrossRef] [Green Version]
- Dinsdale, D.; Lee, J.C.; Dewson, G.; Cohen, G.M.; Peter, M.E. Intermediate filaments control the intracellular distribution of caspases during apoptosis. Am. J. Pathol. 2004, 164, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, S.; Loranger, A.; Marceau, N. Keratins modulate c-Flip/extracellular signal-regulated kinase 1 and 2 antiapoptotic signaling in simple epithelial cells. Mol. Cell. Biol. 2004, 24, 7072–7081. [Google Scholar] [CrossRef] [Green Version]
- Mathew, J.; Loranger, A.; Gilbert, S.; Faure, R.; Marceau, N. Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling. Exp. Cell Res. 2013, 319, 474–486. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.C.; Wei, Y.; An, Z.; Zou, Z.; Xiao, G.; Bhagat, G.; White, M.; Reichelt, J.; Levine, B. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 2012, 338, 956–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molavi, G.; Samadi, N.; Hosseingholi, E.Z. The roles of moonlight ribosomal proteins in the development of human cancers. J. Cell. Physiol. 2019, 234, 8327–8341. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Shi, Y.; Gou, Y.; Li, J.; Han, S.; Zhang, Y.; Huo, J.; Ning, X.; Sun, L.; Chen, Y.; et al. Human ribosomal protein S13 promotes gastric cancer growth through down-regulating p27(Kip1). J. Cell. Mol. Med. 2011, 15, 296–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wanzel, M.; Russ, A.C.; Kleine-Kohlbrecher, D.; Colombo, E.; Pelicci, P.G.; Eilers, M. A ribosomal protein L23-nucleophosmin circuit coordinates Mizl function with cell growth. Nat. Cell Biol. 2008, 10, 1051–1061. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Z.; Liu, N.; Chen, Y. Ribosomal protein L10 in mitochondria serves as a regulator for ROS level in pancreatic cancer cells. Redox Biol. 2018, 19, 158–165. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, Z.; Li, M.; Wang, W.; Li, Y.; Rayburn, E.R.; Hill, D.L.; Wang, H.; Zhang, R. Ribosomal protein S7 as a novel modulator of p53-MDM2 interaction: Binding to MDM2, stabilization of p53 protein, and activation of p53 function. Oncogene 2007, 26, 5029–5037. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.; Zhao, Y.; He, H.; Sun, Y. Ribosomal protein S27-like and S27 interplay with p53-MDM2 axis as a target, a substrate and a regulator. Oncogene 2011, 30, 1798–1811. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, J.; Yuan, Y.; Zhang, W.; Guan, W.; Wu, Z.; Jin, C.; Chen, H.; Zhang, L.; Yang, X.; et al. Negative regulation of HDM2 to attenuate p53 degradation by ribosomal protein L26. Nucleic Acids Res. 2010, 38, 6544–6554. [Google Scholar] [CrossRef]
- Song, L.; Li, J.; Zhang, D.; Liu, Z.G.; Ye, J.; Zhan, Q.; Shen, H.M.; Whiteman, M.; Huang, C. IKKbeta programs to turn on the GADD45alpha-MKK4-JNK apoptotic cascade specifically via p50 NF-kappaB in arsenite response. J. Cell Biol. 2006, 175, 607–617. [Google Scholar] [CrossRef] [Green Version]
- Barreto, G.; Schafer, A.; Marhold, J.; Stach, D.; Swaminathan, S.K.; Handa, V.; Doderlein, G.; Maltry, N.; Wu, W.; Lyko, F.; et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 2007, 445, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Jang, C.Y.; Kim, H.D.; Kim, J. Ribosomal protein S3 interacts with TRADD to induce apoptosis through caspase dependent JNK activation. Biochem. Biophys. Res. Commun. 2012, 421, 474–478. [Google Scholar] [CrossRef] [PubMed]
- Gourdomichali, O.; Zonke, K.; Kattan, F.G.; Makridakis, M.; Kontostathi, G.; Vlahou, A.; Doxakis, E. In Situ Peroxidase Labeling Followed by Mass-Spectrometry Reveals TIA1 Interactome. Biology 2022, 11, 287. [Google Scholar] [CrossRef] [PubMed]
- Mokou, M.; Klein, J.; Makridakis, M.; Bitsika, V.; Bascands, J.L.; Saulnier-Blache, J.S.; Mullen, W.; Sacherer, M.; Zoidakis, J.; Pieske, B.; et al. Proteomics based identification of KDM5 histone demethylases associated with cardiovascular disease. EBioMedicine 2019, 41, 91–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, Y.; Wang, J.; Jaehnig, E.J.; Shi, Z.; Zhang, B. WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019, 47, W199–W205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.H.; Pages, F.; Trajanoski, Z.; Galon, J. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009, 25, 1091–1093. [Google Scholar] [CrossRef] [Green Version]
GO BP Term | Term PValue | % Associated Genes | Nr. Genes | Genes Cluster #1: Control Condition | Genes Cluster #2: Acute Stress Condition |
---|---|---|---|---|---|
Intermediate filament organization | 1.5 × 10−6 | 18.31 | 13 | [KRT13, KRT17, KRT71] | [KRT13, KRT31, KRT32, KRT33A, KRT33B, KRT34, KRT6C, KRT73, KRT82, KRT85, KRT86] |
Cytoplasmic translation | 2.7 × 10−6 | 5.75 | 10 | [EIF3G, RPL27, RPL32] | [FAU, RPL10A, RPL13A, RPL3, RPL37A, RPS15, RPS17] |
Glycolytic process | 1.2 × 10−2 | 2.08 | 2 | [DDIT4] | [DDIT4, PGAM2] |
Ribosomal large subunit biogenesis | 2.3 × 10−2 | 5.33 | 4 | [ZNF622] | [RPL10A, RPL3, RPL7L1] |
Negative regulation of cytokinesis | 8.0 × 10−2 | 28.57 | 2 | [-] | [E2F7, TEX14] |
Hindbrain morphogenesis | 8.2 × 10−2 | 5.45 | 3 | [CDK5] | [DLEC1, PTPN11] |
Modulation by host of viral process | 8.6 × 10−2 | 7.69 | 3 | [KRT17] | [PHB, VAPA] |
DNA duplex unwinding | 8.6 × 10−2 | 3.96 | 4 | [DNA2] | [ASCC3, ERCC6L, FANCM] |
Response to dopamine | 1.2 × 10−1 | 2.08 | 2 | [GNB1, HTR3C] | [-] |
Negative regulation of innate immune response | 1.6 × 10−1 | 2.67 | 2 | [ADAR, LYAR] | [-] |
Regulation of cardiac muscle contraction | 1.6 × 10−1 | 2.47 | 2 | [-] | [JUP, NKX2-5] |
Branched-chain amino acid metabolic process | 1.7 × 10−1 | 6.45 | 2 | [PCCA] | [MCCC1, PCCA] |
Activation of cysteine-type endopeptidase activity involved in apoptotic process | 1.7 × 10−1 | 3.41 | 3 | [S100A8] | [DLEC1, LCK] |
Cardiac muscle cell development | 1.8 × 10−1 | 3.80 | 3 | [OBSL1] | [ALPK2, NKX2-5] |
Neuron projection organization | 1.9 × 10−1 | 2.08 | 2 | [CDK5, PRMT3] | [-] |
Fatty acid beta-oxidation | 2.1 × 10−1 | 2.41 | 2 | [-] | [HADHB, HSD17B4] |
peptide cross-linking | 2.1 × 10−1 | 5.26 | 2 | [SPRR1B, TGM3] | [TGM3] |
Deoxyribonuclease activity | 2.2 × 10−1 | 2.82 | 2 | [DNA2, NME1] | [-] |
ATP generation from ADP | 2.3 × 10−1 | 2.06 | 2 | [DDIT4] | [DDIT4, PGAM2] |
Acetyl-CoA metabolic process | 2.4 × 10−1 | 5.41 | 2 | [-] | [ACSS2, DLST] |
Positive regulation of mitotic cell cycle phase transition | 2.6 × 10−1 | 2.15 | 2 | [ESPL1, RAB11A] | [-] |
Ribosomal small subunit biogenesis | 2.8 × 10−1 | 2.67 | 2 | [-] | [RPS15, RPS17] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naki, M.; Gourdomichali, O.; Zonke, K.; Kattan, F.-G.; Makridakis, M.; Kontostathi, G.; Vlahou, A.; Doxakis, E. APEX2-Mediated Proximity Labeling Resolves the DDIT4-Interacting Proteome. Int. J. Mol. Sci. 2022, 23, 5189. https://doi.org/10.3390/ijms23095189
Naki M, Gourdomichali O, Zonke K, Kattan F-G, Makridakis M, Kontostathi G, Vlahou A, Doxakis E. APEX2-Mediated Proximity Labeling Resolves the DDIT4-Interacting Proteome. International Journal of Molecular Sciences. 2022; 23(9):5189. https://doi.org/10.3390/ijms23095189
Chicago/Turabian StyleNaki, Marianna, Olga Gourdomichali, Katerina Zonke, Fedon-Giasin Kattan, Manousos Makridakis, Georgia Kontostathi, Antonia Vlahou, and Epaminondas Doxakis. 2022. "APEX2-Mediated Proximity Labeling Resolves the DDIT4-Interacting Proteome" International Journal of Molecular Sciences 23, no. 9: 5189. https://doi.org/10.3390/ijms23095189
APA StyleNaki, M., Gourdomichali, O., Zonke, K., Kattan, F. -G., Makridakis, M., Kontostathi, G., Vlahou, A., & Doxakis, E. (2022). APEX2-Mediated Proximity Labeling Resolves the DDIT4-Interacting Proteome. International Journal of Molecular Sciences, 23(9), 5189. https://doi.org/10.3390/ijms23095189