Genome-Wide Identification and Expression of MAPK Gene Family in Cultivated Strawberry and Their Involvement in Fruit Developing and Ripening
Abstract
:1. Introduction
2. Results
2.1. Identification and Analysis of FaMAPKs in Cultivated Strawberry
2.2. Phylogenetic Relationships and Multiple Sequences Alignment of FaMAPK Proteins
2.3. Structure and Motif Location Analysis of FaMAPKs
2.4. Synteny Analysis of the MAPK Genes in Arabidopsis, F. vesca and F. × Ananassa
2.5. Analysis of Cis-Regulatory Elements of FaMAPK Genes
2.6. Transcript Abundance Analysis of FaMAPK Genes in Strawberry
2.7. Validation of the Expression of FaMAPK Genes by qRT-PCR
2.8. Effects of Exogenous ABA and Sucrose on Strawberry Fruit Ripening
3. Discussion
4. Materials and Methods
4.1. Characterization, Phylogenetic, and Physicochemical Properties Analysis of MAPK Genes in the F. × ananassa Genome
4.2. Plant Materials and Treatments
4.3. RNA Extraction and cDNA Synthesis
4.4. Quantitative Transcript Analysis and Quantitative Real-Time PCR (qRT-PCR) Verification
4.5. Determination of ABA, Sucrose, Titratable Acid, and Total Anthocysnin Content
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bohnert, H.J.; Nelson, D.E.; Jensen, R.G. Adaptations to environmental stresses. Plant Cell. 1995, 7, 1099–1111. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.N.; Lee, J.S.; Han, H.; Choi, S.A.; Go, S.J.; Yoon, I.S. Isolation and characterization of a novel rice Ca2+-regulated protein kinase gene involved in responses to diverse signals including cold, light, cytokinins, sugars and salts. Plant Mol. Biol. 2003, 52, 1191–1202. [Google Scholar] [CrossRef] [PubMed]
- Umezawa, T.; Sugiyama, N.; Takahashi, F.; Anderson, J.C.; Ishihama, Y.; Peck, S.C.; Shinozaki, K. Genetics and phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci. Signal. 2013, 6, rs8. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Schumaker, K.S.; Zhu, J.K. Cell signaling during cold, drought, and salt stress. Plant Cell. 2002, 14, S165–S183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, S.; Lee, S.C.; Kim, M.K.; Koh, J.H.; Lee, S.; An, G.; Choe, S.; Kim, S.R. T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol. Biol. 2007, 65, 453–466. [Google Scholar] [CrossRef]
- Fu, S.F.; Chou, W.C.; Huang, D.D.; Huang, H.J. Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMAPK4, in response to environmental stresses. Plant Cell Physiol. 2002, 43, 958–963. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Zhang, S. MAPK cascades in plant disease resistance signaling. Annu. Rev. Phytopathol. 2013, 51, 245–266. [Google Scholar] [CrossRef]
- Andreasson, E.; Ellis, B. Convergence and specificity in the Arabidopsis MAPK nexus. Trends Plant Sci. 2010, 15, 106–113. [Google Scholar] [CrossRef]
- Jonak, C.; Okrész, L.; Bögre, L.; Hirt, H. Complexity, cross talk and integration of plant MAP kinase signalling. Curr. Opin. Plant Biol. 2002, 5, 415–424. [Google Scholar] [CrossRef]
- Zhang, M.; Su, J.; Zhang, Y.; Xu, J.; Zhang, S. Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense. Curr. Opin. Plant Biol. 2018, 45, 1–10. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, Z.; Schwarz, E.M.; Lin, A.; Guan, K.; Ulevitch, R.J.; Han, J. Structure-function studies of p38 mitogen-activated protein kinase. Loop 12 influences substrate specificity and autophosphorylation, but not upstream kinase selection. J. Biol. Chem. 1997, 272, 11096–11102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, X.; Pan, J.; Zhang, D.; Jiang, S.; Cai, G.; Wang, L.; Li, D. Identification of mitogen-activated protein kinase kinase gene family and MKK-MAPK interaction network in maize. Biochem. Biophys. Res. Commun. 2013, 441, 964–969. [Google Scholar] [CrossRef] [PubMed]
- Reyna, N.S.; Yang, Y. Molecular analysis of the rice MAP kinase gene family in relation to Magnaporthe grisea infection. Mol. Plant-Microbe Interact. 2006, 19, 530–540. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Xu, R.; Luo, X.; Jiang, Z.; Shu, H. Genome-wide identification and expression analysis of MAPK and MAPKK gene family in Malus domestica. Gene 2013, 531, 377–387. [Google Scholar] [CrossRef]
- Ichimura, K.; Mizoguchi, T.; Yoshida, R.; Yuasa, T.; Shinozaki, K. Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant J. 2000, 24, 655–665. [Google Scholar] [CrossRef] [PubMed]
- Jammes, F.; Yang, X.; Xiao, S.; Kwak, J.M. Two Arabidopsis guard cell-preferential MAPK genes, MPK9 and MPK12, function in biotic stress response. Plant Signal. Behav. 2011, 6, 1875–1877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, H.; Wang, Y.; Sun, M.; Li, B.; Han, Y.; Zhao, Y.; Li, X.; Ding, N.; Li, C.; Ji, W.; et al. Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening. New Phytol. 2013, 198, 453–465. [Google Scholar] [CrossRef]
- Hao, L.; Dai, S.J.; Ren, J.; Zhang, C.X.; Leng, P. The role of ABA in the maturation and postharvest life of a nonclimacteric sweet cherry fruit. J. Plant Growth Regul. 2014, 33, 373–383. [Google Scholar]
- Wu, J.; Xu, Z.; Zhang, Y.; Chai, L.; Yi, H.; Deng, X. An integrative analysis of the transcriptome and proteome of the pulp of a spontaneous late-ripening sweet orange mutant and its wild type improves our understanding of fruit ripening in citrus. J. Exp. Bot. 2014, 65, 1651–1671. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.; Li, C.; Chai, Y.; Xing, Y.; Shen, Y. Sucrose promotes strawberry fruit ripening by stimulation of abscisic acid biosynthesis. Pak. J. Bot. 2013, 45, 169–176. [Google Scholar]
- Nakashima, K.; Fujita, Y.; Kanamori, N.; Katagiri, T.; Umezawa, T.; Kidokoro, S.; Maruyama, K.; Yoshida, T.; Ishiyama, K.; Kobayashi, M.; et al. Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol. 2009, 50, 1345–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuoka, D.; Soga, K.; Yasufuku, T.; Nanmori, T. Control of plant growth and development by overexpressing MAP3K17, an ABA-inducible MAP3K, in Arabidopsis. Plant Biotechnol. 2018, 35, 171–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guruprasad, K.; Reddy, B.V.; Pandit, M.W. Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. 1990, 4, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Chai, Z.; Xie, Y.; Gao, K.; Cui, M.; Jiang, Y.; Feng, J. Bioinformatics identification and transcript profile analysis of the mitogen-activated protein kinase gene family in the diploid woodland strawberry Fragaria vesca. PLoS ONE 2017, 12, e0178596. [Google Scholar] [CrossRef] [Green Version]
- Cui, L.; Yang, G.; Yan, J.; Pan, Y.; Nie, X. Genome-wide identification, expression profiles and regulatory network of MAPK cascade gene family in barley. BMC Genom. 2019, 20, 750. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Zhao, H.; Sun, L.; Wu, W.; Li, C.; Wu, Q. Genome-wide identification of MAPK gene family members in Fagopyrum tataricum and their expression during development and stress responses. BMC Genom. 2022, 23, 96. [Google Scholar] [CrossRef]
- Wu, J.; Xiao, J.; Wang, L.; Zhong, J.; Yin, H.; Wu, S.; Zhang, Z.; Yu, J. Systematic analysis of intron size and abundance parameters in diverse lineages. Sci. China Life Sci. 2013, 56, 968–974. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi-Shinozaki, K.; Shinozaki, K. Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci. 2005, 10, 88–94. [Google Scholar] [CrossRef]
- Li, M.; Sun, B.; Xie, F.; Gong, R.; Luo, Y.; Zhang, F.; Yan, Z.; Tang, H. Identification of the GRAS gene family in the Brassica juncea genome provides insight into its role in stem swelling in stem mustard. PeerJ 2019, 7, e6682. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, L.; Xu, X.; Cai, C.; Guo, W. Genome-wide identification of mitogen-activated protein kinase gene family in Gossypium raimondii and the function of their corresponding orthologs in tetraploid cultivated cotton. BMC Plant Biol. 2014, 14, 345. [Google Scholar] [CrossRef]
- Wang, G.; Wang, T.; Jia, Z.H.; Xuan, J.P.; Pan, D.L.; Guo, Z.R.; Zhang, J.Y. Genome-wide bioinformatics analysis of MAPK gene family in kiwifruit (Actinidia Chinensis). Int. J. Mol. Sci. 2018, 19, 2510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Droillard, M.; Boudsocq, M.; Barbier-Brygoo, H.; Laurière, C. Different protein kinase families are activated by osmotic stresses in Arabidopsis thaliana cell suspensions. Involvement of the MAP kinases AtMPK3 and AtMPK6. FEBS Lett. 2002, 527, 43–50. [Google Scholar] [CrossRef]
- Zeng, Q.; Chen, J.G.; Ellis, B.E. AtMPK4 is required for male-specific meiotic cytokinesis in Arabidopsis. Plant J. 2011, 67, 895–906. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Duan, P.; Yu, H.; Zhou, Z.; Zhang, B.; Wang, R.; Li, J.; Zhang, G.; Zhuang, S.; Lyu, J.; et al. Control of grain size and weight by the OsMKKK10-OsMKK4-OsMAPK6 signaling pathway in rice. Mol. Plant. 2018, 11, 860–873. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.; Jiu, S.; Zhang, C.; Wang, C.; Tariq, P.; Liu, Z.; Wang, B.; Cui, L.; Fang, J. Abscisic acid and sucrose regulate tomato and strawberry fruit ripening through the abscisic acid-stress-ripening transcription factor. Plant Biotechnol. J. 2016, 14, 2045–2065. [Google Scholar] [CrossRef] [PubMed]
- Karppinen, K.; Tegelberg, P.; Häggman, H.; Jaakola, L. Abscisic acid regulates anthocyanin biosynthesis and gene expression associated with cell wall modification in ripening bilberry (Vaccinium myrtillus L.) fruits. Front Plant Sci. 2018, 9, 1259. [Google Scholar] [CrossRef]
- Olivares, D.; Contreras, C.; Muñoz, V.; Rivera, S.; González-Agüero, M.; Retamales, J.; Defilippi, B.G. Relationship among color development; anthocyanin and pigment-related gene expression in ‘Crimson Seedless’ grapes treated with abscisic acid and sucrose. Plant Physiol. Biochem. 2017, 115, 286–297. [Google Scholar] [CrossRef]
- Luo, Y.; Ge, C.; Ling, Y.; Mo, F.; Yang, M.; Jiang, L.; Chen, Q.; Lin, Y.; Sun, B.; Zhang, Y.; et al. ABA and sucrose co-regulate strawberry fruit ripening and show inhibition of glycolysis. Mol. Genet. Genom. 2020, 295, 421–438. [Google Scholar] [CrossRef]
- Luo, Y.; Lin, Y.; Mo, F.; Ge, C.; Jiang, L.; Zhang, Y.; Chen, Q.; Sun, B.; Wang, Y.; Wang, X.; et al. Sucrose promotes strawberry fruit ripening and affects ripening-related processes. Int. J. Genom. 2019, 2019, 9203057. [Google Scholar] [CrossRef] [Green Version]
- Xiong, L.; Yang, Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen-activated protein kinase. Plant Cell 2003, 15, 745–759. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.J.; Zhu, S.Y.; Lu, Y.F.; Zhao, R.; Xin, Q.; Wang, X.F.; Zhang, D.P. Two coupled components of the mitogen-activated protein kinase cascade MdMPK1 and MdMKK1 from apple function in ABA signal transduction. Plant Cell Physiol. 2010, 51, 754–766. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Puryear, J.; Cairney, J. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 1993, 11, 113–116. [Google Scholar] [CrossRef]
- Putri, G.H.; Anders, S.; Pyl, P.T.; Pimanda, J.E.; Zanini, F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 2022, 21, btac166. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, L.; Liu, Y.; Lin, Y.; Zhang, Y.; Long, Y.; Luo, C.; Zhang, Y.; Chen, Q.; Chen, P.; et al. Characterization and regulation mechanism analysis of ubiquitin-conjugating family genes in strawberry reveals a potential role in fruit ripening. BMC Plant Biol. 2022, 22, 39. [Google Scholar] [CrossRef]
Gene Name | Amino Acid/aa | ORF/bp | Molecular Weight/kD | pI | Instability Index | GRAVY | Subcellular Localization |
---|---|---|---|---|---|---|---|
FaMAPK1-1 | 375 | 3674 | 42.76 | 5.96 | 39.12 | −0.265 | Cytoplasm |
FaMAPK1-2 | 372 | 2731 | 42.84 | 6.09 | 38.82 | −0.277 | Cytoplasm |
FaMAPK1-3 | 372 | 2929 | 42.81 | 6.09 | 37.31 | −0.282 | Cytoplasm |
FaMAPK1-4 | 372 | 3597 | 42.73 | 5.96 | 37.71 | −0.272 | Cytoplasm |
FaMAPK3-1 | 388 | 2703 | 44.59 | 5.52 | 37.52 | −0.196 | Cytoplasm |
FaMAPK3-2 | 371 | 3006 | 42.64 | 5.54 | 38.41 | −0.251 | Cytoplasm |
FaMAPK3-3 | 371 | 2919 | 42.71 | 5.62 | 39.46 | −0.266 | Cytoplasm and Nucleus |
FaMAPK4-1a | 373 | 6027 | 42.72 | 6.08 | 44.34 | −0.337 | Cytoplasm |
FaMAPK4-1b | 373 | 6924 | 42.67 | 6.08 | 43.90 | −0.329 | Cytoplasm |
FaMAPK4-1c | 373 | 4449 | 42.67 | 6.08 | 43.90 | −0.329 | Cytoplasm |
FaMAPK4-1d | 373 | 4405 | 42.67 | 6.08 | 43.90 | −0.329 | Cytoplasm |
FaMAPK4-1e | 373 | 4499 | 42.67 | 6.08 | 43.90 | −0.329 | Cytoplasm |
FaMAPK4-1f | 373 | 7167 | 42.68 | 6.08 | 42.19 | −0.329 | Cytoplasm |
FaMAPK4-2a | 405 | 5228 | 45.92 | 6.17 | 45.52 | −0.281 | Cytoplasm |
FaMAPK4-2b | 377 | 5289 | 43.23 | 6.28 | 45.32 | −0.368 | Cytoplasm |
FaMAPK4-2c | 410 | 5413 | 46.65 | 6.54 | 45.05 | −0.298 | Cytoplasm |
FaMAPK4-2d | 410 | 4164 | 46.68 | 6.43 | 44.41 | −0.301 | Cytoplasm |
FaMAPK6-1 | 391 | 3584 | 44.75 | 5.60 | 40.29 | −0.292 | Cytoskeleton |
FaMAPK6-2 | 390 | 3913 | 44.71 | 5.46 | 41.08 | −0.312 | Nucleus |
FaMAPK6-3 | 391 | 3948 | 44.77 | 5.58 | 39.98 | −0.277 | Cytoskeleton |
FaMAPK7-1 | 376 | 2842 | 43.41 | 8.02 | 33.67 | −0.219 | Cytoplasm |
FaMAPK7-2 | 434 | 2675 | 49.68 | 9.02 | 39.13 | −0.366 | Cytoplasm |
FaMAPK7-3 | 389 | 2846 | 44.84 | 8.57 | 34.20 | −0.205 | Cytoplasm |
FaMAPK7-4 | 415 | 2099 | 47.61 | 8.63 | 30.22 | −0.246 | Cytoplasm |
FaMAPK9-1 | 691 | 10,382 | 78.41 | 8.07 | 44.61 | −0.644 | Chloroplast |
FaMAPK9-2 | 615 | 5875 | 69.64 | 6.40 | 41.81 | −0.592 | Mitochondria |
FaMAPK9-3 | 692 | 4853 | 78.07 | 6.39 | 41.57 | −0.580 | Nucleus |
FaMAPK9-4 | 713 | 4733 | 80.47 | 6.76 | 41.94 | −0.579 | Cytoplasm |
FaMAPK13-1 | 377 | 3648 | 43.06 | 5.16 | 44.44 | −0.184 | Cytoplasm |
FaMAPK13-2 | 364 | 3789 | 41.73 | 5.16 | 43.42 | −0.268 | Extracellular matrix |
FaMAPK13-3 | 365 | 3794 | 41.83 | 5.05 | 42.04 | −0.284 | Extracellular matrix |
FaMAPK16-1 | 561 | 5872 | 63.80 | 8.73 | 36.05 | −0.476 | Cytoplasm |
FaMAPK16-2 | 561 | 6121 | 63.77 | 8.64 | 35.21 | −0.483 | Cytoplasm |
FaMAPK16-3 | 561 | 6052 | 63.82 | 8.80 | 36.10 | −0.477 | Cytoplasm |
FaMAPK17-1 | 1010 | 7286 | 115.25 | 8.21 | 50.90 | −0.770 | Nucleus |
FaMAPK17-2 | 966 | 7019 | 109.89 | 8.21 | 51.00 | −0.773 | Nucleus |
FaMAPK17-3 | 580 | 5173 | 66.33 | 7.07 | 38.18 | −0.548 | Chloroplast |
FaMAPK17-4 | 582 | 5018 | 66.35 | 7.34 | 39.18 | −0.546 | Chloroplast |
FaMAPK19-1 | 691 | 5431 | 78.60 | 9.29 | 33.20 | −0.246 | Cytoplasm |
FaMAPK19-2 | 607 | 4715 | 68.88 | 9.34 | 31.18 | −0.392 | Cytoplasm |
FaMAPK19-3 | 597 | 4641 | 67.93 | 9.23 | 32.44 | −0.414 | Cytoplasm |
FaMAPK20-1 | 633 | 5919 | 72.43 | 9.11 | 38.10 | −0.446 | Cytoplasm |
FaMAPK20-2 | 618 | 6221 | 70.66 | 9.23 | 37.11 | −0.484 | Cytoplasm |
Expression Level | ABA Content | Sucrose Content | Titratable Acid Content | Total Anthocysnin Content | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
FaMAPK1-3 | FaMAPK3-3 | FaMAPK4-1d | FaMAPK7-4 | FaMAPK9-3 | FaMAPK13-3 | FaMAPK17-2 | FaMAPK20-1 | |||||
ABA content | 0.280 | 0.955 * | 0.999 ** | 0.923 | 0.632 | 0.943 | 0.628 | −0.360 | 1 | |||
Sucrose content | −0.012 | 0.864 | 0.789 | 0.646 | 0.170 | 0.606 | 0.128 | −0.175 | 0.816 | 1 | ||
Titratable acid content | 0.651 | 0.838 | 0.615 | 0.298 | −0.128 | 0.392 | −0.092 | 0.470 | 0.641 | 0.707 | 1 | |
Total anthocysnin content | −0.099 | 0.855 | 0.893 | 0.853 | 0.482 | 0.798 | 0.434 | −0.473 | 0.906 | 0.941 | 0.524 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Li, B.; Yang, M.; Wang, L.; Hou, G.; Lin, Y.; Zhang, Y.; Zhang, Y.; Chen, Q.; Wang, Y.; et al. Genome-Wide Identification and Expression of MAPK Gene Family in Cultivated Strawberry and Their Involvement in Fruit Developing and Ripening. Int. J. Mol. Sci. 2022, 23, 5201. https://doi.org/10.3390/ijms23095201
Li M, Li B, Yang M, Wang L, Hou G, Lin Y, Zhang Y, Zhang Y, Chen Q, Wang Y, et al. Genome-Wide Identification and Expression of MAPK Gene Family in Cultivated Strawberry and Their Involvement in Fruit Developing and Ripening. International Journal of Molecular Sciences. 2022; 23(9):5201. https://doi.org/10.3390/ijms23095201
Chicago/Turabian StyleLi, Mengyao, Binghua Li, Min Yang, Liangxin Wang, Guoyan Hou, Yuanxiu Lin, Yunting Zhang, Yong Zhang, Qing Chen, Yan Wang, and et al. 2022. "Genome-Wide Identification and Expression of MAPK Gene Family in Cultivated Strawberry and Their Involvement in Fruit Developing and Ripening" International Journal of Molecular Sciences 23, no. 9: 5201. https://doi.org/10.3390/ijms23095201
APA StyleLi, M., Li, B., Yang, M., Wang, L., Hou, G., Lin, Y., Zhang, Y., Zhang, Y., Chen, Q., Wang, Y., He, W., Wang, X., Tang, H., Yang, G., & Luo, Y. (2022). Genome-Wide Identification and Expression of MAPK Gene Family in Cultivated Strawberry and Their Involvement in Fruit Developing and Ripening. International Journal of Molecular Sciences, 23(9), 5201. https://doi.org/10.3390/ijms23095201