Consecutive Aromatic Residues Are Required for Improved Efficacy of β-Sheet Breakers
Abstract
:1. Introduction
2. Results and Discussion
2.1. Docking of 627 Sixtapeptides to the Aβ-Fibril-Model
2.2. Dissecting BSB Binding Conformations on the Basis of MDS Trajectories and Their Post-Processing
2.3. Dissociations of Selected Chains of Aβ-fFbril in Three MD Simulations
2.3.1. MIFFFE_ie–Chains A and B
2.3.2. LIWWFD_ie–Chain E
2.3.3. LLWFFD–Chain A
2.4. The Variety of BSB Targets
2.5. Role of Consecutive Aromatic Residues in β-Sheet Breakers
3. Methods
3.1. Generation of Virtual Library of 627 Sixtapeptides as Potential Inhibitors of β-Amyloidogenesis
3.2. Molecular Docking of Sixtapeptides from the 627-Member Library to the Model of Aβ-Fibril
3.3. Molecular Dynamics Simulations of Selected Poses from Docking
3.4. Post-Processing of the Trajectories from MDS
3.4.1. Clustering Analysis Protocol
3.4.2. Free Energy of Binding Computations
3.4.3. Additional Analyses of MDS Trajectories
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Selkoe, D.J. Resolving Controversies on the Path to Alzheimer’s Therapeutics. Nat. Med. 2011, 17, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- Gazit, E. A Possible Role for Pi-Stacking in the Self-Assembly of Amyloid Fibrils. FASEB J. 2002, 16, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Gazit, E. Mechanisms of Amyloid Fibril Self-Assembly and Inhibition: Model Short Peptides as a Key Research Tool. FEBS J. 2005, 272, 5971–5978. [Google Scholar] [CrossRef] [PubMed]
- Soto, C.; Sigurdsson, E.M.; Morelli, L.; Kumar, R.A.; Castaño, E.M.; Frangione, B. Beta-Sheet Breaker Peptides Inhibit Fibrillogenesis in a Rat Brain Model of Amyloidosis: Implications for Alzheimer’s Therapy. Nat. Med. 1998, 4, 822–826. [Google Scholar] [CrossRef]
- Jarmuła, A.; Stępkowski, D. The β-Sheet Breakers and π-Stacking: β-SHEET BREAKERS. J. Pept. Sci. 2013, 19, 345–349. [Google Scholar] [CrossRef] [PubMed]
- Jarmuła, A.; Ludwiczak, J.; Stępkowski, D. β-Sheet Breakers with Consecutive Phenylalanines: Insights into Mechanism of Dissolution of β-Amyloid Fibrils. Proteins 2021, 89, 762–780. [Google Scholar] [CrossRef]
- Mayans, E.; Alemán, C. Revisiting the Self-Assembly of Highly Aromatic Phenylalanine Homopeptides. Molecules 2020, 25, 6037. [Google Scholar] [CrossRef]
- Koshti, B.; Kshtriya, V.; Nardin, C.; Gour, N. Chemical Perspective of the Mechanism of Action of Antiamyloidogenic Compounds Using a Minimalistic Peptide as a Reductionist Model. ACS Chem. Neurosci. 2021, 12, 2851–2864. [Google Scholar] [CrossRef]
- Lührs, T.; Ritter, C.; Adrian, M.; Riek-Loher, D.; Bohrmann, B.; Döbeli, H.; Schubert, D.; Riek, R. 3D Structure of Alzheimer’s Amyloid-Beta (1–42) Fibrils. Proc. Natl. Acad. Sci. USA 2005, 102, 17342–17347. [Google Scholar] [CrossRef] [Green Version]
- Wälti, M.A.; Ravotti, F.; Arai, H.; Glabe, C.G.; Wall, J.S.; Böckmann, A.; Güntert, P.; Meier, B.H.; Riek, R. Atomic-Resolution Structure of a Disease-Relevant Aβ (1–42) Amyloid Fibril. Proc. Natl. Acad. Sci. USA 2016, 113, E4976–E4984. [Google Scholar] [CrossRef] [Green Version]
- Gremer, L.; Schölzel, D.; Schenk, C.; Reinartz, E.; Labahn, J.; Ravelli, R.B.G.; Tusche, M.; Lopez-Iglesias, C.; Hoyer, W.; Heise, H.; et al. Fibril Structure of Amyloid-β (1–42) by Cryo–Electron Microscopy. Science 2017, 358, 116–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viet, M.H.; Siposova, K.; Bednarikova, Z.; Antosova, A.; Nguyen, T.T.; Gazova, Z.; Li, M.S. In Silico and in Vitro Study of Binding Affinity of Tripeptides to Amyloid β Fibrils: Implications for Alzheimer’s Disease. J. Phys. Chem. B 2015, 119, 5145–5155. [Google Scholar] [CrossRef] [PubMed]
- Kanchi, P.K.; Dasmahapatra, A.K. Enhancing the Binding of the β-Sheet Breaker Peptide LPFFD to the Amyloid-β Fibrils by Aromatic Modifications: A Molecular Dynamics Simulation Study. Comput. Biol. Chem. 2021, 92, 107471. [Google Scholar] [CrossRef]
- Shuaib, S.; Narang, S.S.; Goyal, D.; Goyal, B. Computational Design and Evaluation of Β-sheet Breaker Peptides for Destabilizing Alzheimer’s Amyloid-β 42 Protofibrils. J. Cell. Biochem. 2019, 120, 17935–17950. [Google Scholar] [CrossRef]
- Jani, V.; Sonavane, U.; Joshi, R. Destabilization Potential of Beta Sheet Breaker Peptides on Abeta Fibril Structure: An Insight from Molecular Dynamics Simulation Study. RSC Adv. 2021, 11, 23557–23573. [Google Scholar] [CrossRef]
- Dutta, M.S.; Basu, S. Identifying the Key Residues Instrumental in Imparting Stability to Amyloid Beta Protofibrils—A Comparative Study Using MD Simulations of 17–42 Residues. J. Biomol. Struct. Dyn. 2021, 39, 431–456. [Google Scholar] [CrossRef]
- Kanchi, P.K.; Dasmahapatra, A.K. Destabilization of the Alzheimer’s Amyloid-β Peptide by a Proline-Rich β-Sheet Breaker Peptide: A Molecular Dynamics Simulation Study. J. Mol. Model. 2021, 27, 356. [Google Scholar] [CrossRef] [PubMed]
- Koike, H.; Iguchi, Y.; Sahashi, K.; Katsuno, M. Significance of Oligomeric and Fibrillar Species in Amyloidosis: Insights into Pathophysiology and Treatment. Molecules 2021, 26, 5091. [Google Scholar] [CrossRef]
- Krivov, G.G.; Shapovalov, M.V.; Dunbrack, R.L. Improved Prediction of Protein Side-Chain Conformations with SCWRL4. Proteins 2009, 77, 778–795. [Google Scholar] [CrossRef] [Green Version]
- Iadanza, M.G.; Jackson, M.P.; Hewitt, E.W.; Ranson, N.A.; Radford, S.E. A New Era for Understanding Amyloid Structures and Disease. Nat. Rev. Mol. Cell Biol. 2018, 19, 755–773. [Google Scholar] [CrossRef] [PubMed]
- Kurcinski, M.; Jamroz, M.; Blaszczyk, M.; Kolinski, A.; Kmiecik, S. CABS-Dock Web Server for the Flexible Docking of Peptides to Proteins without Prior Knowledge of the Binding Site. Nucleic Acids Res. 2015, 43, W419–W424. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.T. Protein Secondary Structure Prediction Based on Position-Specific Scoring Matrices. J. Mol. Biol. 1999, 292, 195–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krivák, R.; Hoksza, D. Improving Protein-Ligand Binding Site Prediction Accuracy by Classification of Inner Pocket Points Using Local Features. J. Cheminform. 2015, 7, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Case, D.A.; Ben-Shalom, L.Y.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E., III; Cruzeiro, V.W.D.; Darden, T.A.; Duke, R.E.; Ghoreishi, D.; Giambasu, G.; et al. AMBER 18; University of California: San Francisco, CA, USA, 2019. [Google Scholar]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. Ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from Ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorgensen, W.; Chandrasekhar, J.; Madura, J.; Impey, R.; Klein, L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef] [Green Version]
- Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H.J.C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. J. Comput. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef] [Green Version]
- York, D.M.; Darden, T.A.; Pedersen, L.G. The Effect of Long-range Electrostatic Interactions in Simulations of Macromolecular Crystals: A Comparison of the Ewald and Truncated List Methods. J. Chem. Phys. 1993, 99, 8345–8348. [Google Scholar] [CrossRef]
- Essmann, U.; Perera, L.; Berkowitz, M.L.; Darden, T.; Lee, H.; Pedersen, L.G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8593. [Google Scholar] [CrossRef] [Green Version]
- Roe, D.R.; Cheatham, T.E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef]
- Shao, J.; Tanner, S.W.; Thompson, N.; Cheatham, T.E. Clustering Molecular Dynamics Trajectories: 1. Characterizing the Performance of Different Clustering Algorithms. J. Chem. Theory Comput. 2007, 3, 2312–2334. [Google Scholar] [CrossRef] [PubMed]
- Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, PAMI-1, 224–227. [Google Scholar] [CrossRef]
- Calinski, T.; Harabasz, J. A Dendrite Method for Cluster Analysis. Commun. Stat.-Theory Methods 1974, 3, 1–27. [Google Scholar] [CrossRef]
- Wright, S. Correlation and Causation. J. Agric. Res. 1921, 20, 557–585. [Google Scholar]
- Kollman, P.A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; et al. Calculating Structures and Free Energies of Complex Molecules: Combining Molecular Mechanics and Continuum Models. Acc. Chem. Res. 2000, 33, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Onufriev, A.; Bashford, D.; Case, D.A. Exploring Protein Native States and Large-Scale Conformational Changes with a Modified Generalized Born Model. Proteins Struct. Funct. Bioinforma. 2004, 55, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Weiser, J.; Shenkin, P.; Still, W. Approximate Atomic Surfaces from Linear Combinations of Pairwise Overlaps (LCPO). J. Comput. Chem. 1999, 20, 217–230. [Google Scholar] [CrossRef]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA Methods to Estimate Ligand-Binding Affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef]
- Miller, B.R.; McGee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef]
2BEG Complex with | No. of Clusters 100 ns | No. of Clusters 100 ns ds | No. of Clusters Extended MDS | No. of Clusters Extended MDS ds |
---|---|---|---|---|
LIWFFD | 6 | |||
PAFFWD | 7 | |||
apo 2BEG | 10 | |||
LVYWFD | 11 | |||
VLFFFE | 11 | |||
PIFFWD | 13 | |||
AMYFFD | 15 | |||
MIFFFE_c | 16 | |||
MVWFFD | 18 | |||
GVFFFD | 20 | |||
LIFWYD | 21 | |||
LIWWFD_c | 23 | |||
LPFFFD | 26 | |||
LLWFFD | 42 | 30 | 82 | 50 |
GPWFWD | 46 | |||
VVFFWD | 52 | |||
LMWWFD | 60 | |||
LLFFFD | 61 | |||
VVYFFD | 70 | |||
MIFFFE_ie | 154 | 107 | 488 | 380 |
LIWWFD_ie | 186 * | 127 * | 371 | 264 |
Complex of 2BEG with | ΔEele | ΔEvdW | ΔGGB | ΔGnp | ΔGsolv | ΔGbind |
---|---|---|---|---|---|---|
LIWFFD | −60.9 | −51.8 | 90.4 | −7.1 | 83.4 | −29.4 (8.2) |
PAFFWD | −17.0 | −43.6 | 38.3 | −5.6 | 32.7 | −27.8 (9.4) |
LVYWFD | −13.1 | −39.3 | 40.9 | −5.4 | 35.5 | −16.9 (8.3) |
VLFFFE | 2.3 | −36.6 | 19.7 | −5.2 | 14.5 | −19.8 (13.7) |
PIFFWD | −12.2 | −42.2 | 36.2 | −5.8 | 30.4 | −24.0 (9.3) |
AMYFFD | −211.3 | −40.4 | 229.9 | −6.5 | 223.4 | −28.3 (9.4) |
MIFFFE_c | −25.0 | −19.9 | 39.4 | −3.0 | 36.3 | −8.5 (7.9) |
MVWFFD | 73.6 | −53.5 | −42.2 | −7.0 | −49.2 | −29.1 (8.9) |
GVFFFD | −51.9 | −37.5 | 72.3 | −5.4 | 66.9 | −22.5 (9.3) |
LIFWYD | −42.7 | −33.2 | 60.7 | −4.6 | 56.1 | −19.8 (7.8) |
LIWWFD_c | −63.8 | −50.2 | 85.5 | −6.8 | 78.7 | −35.3 (13.1) |
LPFFFD | 34.4 | −33.6 | −13.3 | −4.5 | −17.8 | −17.0 (6.8) |
LLWFFD | 29.5 | −38.9 | −5.8 | −5.2 | −11.0 | −20.3 (10.1) |
GPWFWD | −17.5 | −26.4 | 37.4 | −3.9 | 33.5 | −10.5 (9.5) |
VVFFWD | 27.6 | −31.3 | −4.2 | −4.2 | −8.5 | −12.2 (11.3) |
LIWWFD_ie | −92.2 | −47.2 | 120.3 | −6.6 | 113.7 | −25.7 (9.4) |
LMWWFD | −10.4 | −27.2 | 28.8 | −3.8 | 25.0 | −12.6 (7.8) |
LLFFFD | −23.7 | −17.2 | 37.1 | −2.5 | 34.6 | −6.3 (7.3) |
VVYFFD | 26.3 | −20.5 | −14.0 | −3.1 | −17.1 | −11.2 (10.9) |
MIFFFE_ie | −6.4 | −26.9 | 26.1 | −4.0 | 22.1 | −11.1 (10.3) |
Complex of 2BEG with | ΔEele | ΔEvdW | ΔGGB | ΔGnp | ΔGsolv | ΔGbind |
---|---|---|---|---|---|---|
LLWFFD rep. 2 | 33.4 | −36.8 | −12.1 | −5.1 | −17.2 | −20.6 (8.3) |
LLWFFD rep. 1 + rep. 3 | 27.6 | −39.9 | −2.8 | −5.2 | −8.0 | −20.2 (10.8) |
LIWWFD_ie rep. 1 * | −101.9 | −45.2 | 125.0 | −6.3 | 118.8 | −28.3 (9.8) |
LIWWFD_ie rep. 2 + rep. 3 * | −105.8 | −48.3 | 132.2 | −7.0 | 125.3 | −28.8 (9.5) |
MIFFFE_ie rep. 3 | 12.9 | −10.1 | −4.2 | −1.5 | −5.7 | −3.0 (5.7) |
MIFFFE_ie rep. 1 + rep. 2 | −15.7 | −35.2 | 41.0 | −5.2 | 35.8 | −15.1 (9.6) |
2BEG Complex with | 100 ns All | 100 ns ds | 100 ns nds | 200 ns All | 200 ns ds | 200 ns nds | 300 ns All | 400 ns All | 400 ns ds | 400 ns nds | 500 ns All | 500 ns ds | 500 ns nds | 600 ns All | 600 ns ds | 600 ns nds |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AMYFFD | 15.2 | 15.0 | ||||||||||||||
GPWFWD | 16.6 | |||||||||||||||
GVFFFD | 15.2 | |||||||||||||||
LIFWYD | 15.1 | |||||||||||||||
LIWFFD | 14.8 | 14.9 | ||||||||||||||
LIWWFD_c | 15.6 | 15.4 | ||||||||||||||
LIWWFD_ie | 16.2 | 15.6 | 16.6 | 19.1 | 24.6 | 16.4 | 24.3 | 40.6 | 16.2 | |||||||
LLFFFD | 16.3 | 16.4 | ||||||||||||||
LLWFFD | 15.7 | 16.5 | 15.3 | 15.7 | 15.8 | 15.7 | ||||||||||
LMWWFD | 16.3 | 16.1 | ||||||||||||||
LPFFFD | 15.1 | |||||||||||||||
LVYWFD | 15.0 | |||||||||||||||
MIFFFE_c | 14.8 | |||||||||||||||
MIFFFE_ie | 21.1 | 31.0 | 16.1 | 22.8 | 37.0 | 15.6 | ||||||||||
MVWFFD | 15.3 | 15.4 | ||||||||||||||
PAFFWD | 14.7 | 15.0 | ||||||||||||||
PIFFWD | 14.8 | |||||||||||||||
VLFFFE | 14.9 | |||||||||||||||
VVFFWD | 16.2 | 16.2 | ||||||||||||||
VVYFFD | 16.5 | 16.3 | ||||||||||||||
apo 2BEG | 14.6 |
2BEG Complex with | Parallel β-Sheets | Anti-Parallel β-Sheets | Σ of β-Sheets | 3–10 Helix | α-Helix | π (3–14) Helix | Turn | Bend | Coil |
---|---|---|---|---|---|---|---|---|---|
LIWFFD | 38 | 1 | 39 | 1 | 0 | 0 | 4 | 21 | 35 |
PAFFWD | 25 | 2 | 27 | 1 | 0 | 0 | 6 | 22 | 44 |
LVYWFD | 28 | 0 | 28 | 3 | 1 | 0 | 5 | 21 | 42 |
VLFFFE | 31 | 2 | 33 | 1 | 0 | 0 | 6 | 21 | 39 |
PIFFWD | 30 | 0 | 30 | 1 | 0 | 0 | 5 | 25 | 39 |
AMYFFD | 30 | 3 | 33 | 1 | 1 | 0 | 5 | 23 | 37 |
MIFFFE_c | 33 | 1 | 34 | 1 | 0 | 0 | 5 | 25 | 35 |
MVWFFD | 33 | 2 | 35 | 1 | 0 | 0 | 6 | 23 | 35 |
GVFFFD | 32 | 1 | 33 | 1 | 0 | 0 | 4 | 23 | 39 |
LIFWYD | 30 | 1 | 31 | 1 | 0 | 0 | 5 | 0,24 | 39 |
LIWWFD_c | 28 | 1 | 29 | 2 | 0 | 0 | 9 | 22 | 38 |
LPFFFD | 33 | 2 | 35 | 2 | 1 | 0 | 5 | 21 | 36 |
LLWFFD | 12 | 1 | 13 | 1 | 0 | 0 | 7 | 36 | 43 |
GPWFWD | 8 | 1 | 9 | 0 | 0 | 0 | 4 | 30 | 57 |
VVFFWD | 7 | 2 | 9 | 0 | 0 | 0 | 5 | 38 | 48 |
LIWWFD_ie | 8 | 0 | 8 | 0 | 0 | 0 | 6 | 36 | 50 |
LMWWFD | 7 | 2 | 9 | 1 | 0 | 0 | 7 | 32 | 51 |
LLFFFD | 8 | 1 | 8 | 0 | 0 | 0 | 7 | 33 | 51 |
VVYFFD | 9 | 2 | 11 | 1 | 0 | 0 | 6 | 35 | 47 |
MIFFFE_ie | 7 | 1 | 8 | 1 | 0 | 0 | 7 | 33 | 51 |
apo 2BEG | 42 | 1 | 43 | 0 | 0 | 0 | 2 | 20 | 35 |
2BEG Complex with | Global SB Occurrence Inside the Same Chains [%] | Global SB Occurrence between Preceding/Succeeding Chains [%] |
---|---|---|
PIFFWD | 368.2 | 290.4 |
LIWFFD | 341.9 | 319.5 |
MVWFFD | 335.5 | 271.3 |
LPFFFD | 281.0 | 253.7 |
GVFFFD | 274.5 | 195.4 |
PAFFWD | 261.1 | 193.7 |
VVFFWD | 245.2 | 136.7 |
LVYWFD | 234.2 | 113.7 |
MIFFFE_c | 214.2 | 129.1 |
VLFFFE | 210.3 | 88.3 |
GPWFWD | 204.5 | 93.3 |
LIFWYD | 187.1 | 95.8 |
LLFFFD | 159.9 | 106.0 |
LMWWFD | 154.6 | 39.5 |
LIWWFD_c | 153.0 | 72.5 |
LIWWFD_ie | 150.2 | 44.2 |
LLWFFD | 148.5 | 143.7 |
AMYFFD | 130.7 | 87.8 |
VVYFFD | 65.7 | 128.4 |
MIFFFE_ie | 58.4 | 76.2 |
apo 2BEG | 313.6 | 238.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarmuła, A.; Zubalska, M.; Stępkowski, D. Consecutive Aromatic Residues Are Required for Improved Efficacy of β-Sheet Breakers. Int. J. Mol. Sci. 2022, 23, 5247. https://doi.org/10.3390/ijms23095247
Jarmuła A, Zubalska M, Stępkowski D. Consecutive Aromatic Residues Are Required for Improved Efficacy of β-Sheet Breakers. International Journal of Molecular Sciences. 2022; 23(9):5247. https://doi.org/10.3390/ijms23095247
Chicago/Turabian StyleJarmuła, Adam, Monika Zubalska, and Dariusz Stępkowski. 2022. "Consecutive Aromatic Residues Are Required for Improved Efficacy of β-Sheet Breakers" International Journal of Molecular Sciences 23, no. 9: 5247. https://doi.org/10.3390/ijms23095247
APA StyleJarmuła, A., Zubalska, M., & Stępkowski, D. (2022). Consecutive Aromatic Residues Are Required for Improved Efficacy of β-Sheet Breakers. International Journal of Molecular Sciences, 23(9), 5247. https://doi.org/10.3390/ijms23095247