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Abstract: The understanding of the kinetics of gene expression in cells infected by viruses is cur-
rently limited. As a rule, the corresponding models do not take viral microRNAs (miRNAs) into
account. Such RNAs are, however, operative during the replication of some viruses, including, e.g.,
herpesvirus. To clarify the kinetics of this category (with emphasis on the information available
for herpesvirus), I introduce a generic model describing the transient interplay of cellular mRNA,
protein, miRNA and viral miRNA. In the absence of viral miRNA, the cellular miRNA is considered
to suppress the populations of mRNA and protein due to association with mRNA and subsequent
degradation. During infection, the viral miRNA suppresses the population of cellular miRNA and via
this pathway makes the mRNA and protein populations larger. This effect becomes appreciable with
the progress of intracellular viral replication. Using biologically reasonable parameters, I investigate
the corresponding mean-field kinetics and show the scale of the effect of viral miRNAs on cellular
miRNA and mRNA. The scale of fluctuations of the populations of these species is illustrated as well
by employing Monte Carlo simulations.

Keywords: intracellular viral kinetics; gene expression; mRNA and miRNA; mean-field kinetic
equations; Monte Carlo simulations

1. Introduction

Kinetic models are widely used in order to illustrate and clarify various aspects of gene
expression in intact cells (reviewed in [1–6]; see also recent articles [7–11] and references
therein) and during their infection by viruses (reviewed in [12–14]; see also [15–28] and
references therein). The models of the former category are usually focused on proteins,
mRNAs, and non-coding RNAs (ncRNAs), e.g., miRNAs. The models of the latter category
typically operate with the populations of cellular proteins and mRNAs; and viral proteins,
RNAs, or DNAs; and virions. Now, there is, however, evidence that various host miRNAs
are involved in a cellular antiviral response and that active miRNAs can also be encoded by
a viral genome and expressed in the host [29]. For COVID-19, for example, the correspond-
ing literature is reviewed in [30,31]. Overall, the intracellular pathways, including host
and viral miRNAs, are complex and not yet fully understood. The corresponding kinetic
models with various feedbacks have in fact not been explored theoretically and obviously
merit attention.

In this context, I can note that the interplay of viral miRNA and host mRNA and
protein (P) was analyzed earlier theoretically [27] by using a four-variable kinetic mean-
field model for the populations of these species, with the following mechanistic steps:

Gene→ Gene + mRNA,
mRNA→ mRNA + P,
G→ G + miRNA,
mRNA + miRNA→ Ø,
mRNA→ Ø, P→ Ø, and miRNA→ Ø,
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where Gene and G represent the host and viral genomes. The cellular ncRNA was, however,
not taken there into account.

Herein, I present a more complete generic kinetic model describing the interplay of
viral miRNAs and cellular mRNAs, miRNAs, and proteins. To validate this work, I can
refer to the replication of herpesvirus, the formation of the corresponding viral miRNAs,
and their interactions with cellular ncRNAs (see, e.g., experiments [32–34]); regarding
antiviral miRNAs, see [35]). The cellular ncRNAs can influence the population of cellular
mRNAs, and accordingly the population of the corresponding cellular proteins can be
influenced as well.

As a general remark for introducing the math, I recall that in kinetic models of gene
expression in cells, the formation and degradation of proteins, mRNAs, and ncRNAs are
usually viewed as the key elementary steps [2–6]. In reality, these steps occur via numerous
substeps [1]. In other words, the steps under consideration are almost always coarse-
grained—i.e., a single step represents a few substeps—and each substep often represents
in turn a few substeps of a lower level. The extent of detalization of steps and substeps
depends on the goals of an analysis. Usually, a theoretical treatment has a few goals,
and accordingly, the extent of detalization can be different even in one study. With this
reservation, I first introduce below a set of steps in order to keep the links with numerous
earlier theoretical models [2–6] and a relevant experiment [34] and then simplify them in
order to keep the math compact and suitable for general readership (Section 2). The results
of the corresponding mean-field calculations and Monte Carlo (MC) simulations are given
afterwards (Section 3) and followed by the conclusion (Section 4).

2. Methods
2.1. General Scheme

For genes of one type (as in the model under consideration), the steps resulting in the
mRNA and protein formation are usually schematically presented as [2–6]

Gene1 → Gene1 + mRNA1, (1)

mRNA1 → mRNA1 + P1, (2)

mRNA1 → Ø, and P1 → Ø. (3)

Genes can be transcribed also into ncRNAs, or more specifically (in the context under
consideration), into miRNAs, which are short compared to mRNA [6,36]. Mechanistically,
it occurs via the formation of precursors (long premiRNAs); i.e., the corresponding steps
can be represented as

Gene2 → Gene2 + premiRNA2, (4)

premiRNA2 → miRNA2, (5)

premiRNA2 → Ø, and miRNA2 → Ø. (6)

Comparing steps (1) and steps (4) and (5), one can notice that the former step does not
include pre-mRNA, whereas the latter steps contain pre-miRNA2, and this might appear
inconsistent because in reality the formation of mRNA includes pre-mRNA as well (see,
e.g., Figure 1 in [1]). As in many other kinetic models of gene expression [2–6], I do not
introduce the substeps including pre-mRNA because they are not coupled with other
substeps and accordingly are not important in the context under consideration.

The conventional scheme of the interaction of mRNA and miRNA includes their
reversible association and degradation [6,37],

mRNA1 + miRNA2 
 mRNA1 ·miRNA2, (7)

mRNA1 ·miRNA2 → miRNA2 + Ø, and
mRNA1 ·miRNA2 → Ø.

(8)
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As is usual in molecular biology, these steps resemble those of the classical enzyme kinetics
(with miRNA2 being the enzyme and mRNA1 the substrate to be degraded).

After infection of a cell, virions use the cellular machinery for the formation of various
species needed for their replication. The corresponding steps are numerous. In the context
under consideration, the attention can be focused on the viral genome transcription into
viral pre-miRNA with subsequent conversion to viral miRNA (as, e.g., in the case of
herpesvirus [34]),

G→ G + premiRNA3 and premiRNA3 → miRNA3, (9)

association of viral miRNA with cellular pre-miRNA,

premiRNA2 + miRNA3 
 premiRNA2 ·miRNA3, (10)

and degradation of these species,

premiRNA3 → Ø,
miRNA3 → Ø,
premiRNA2 ·miRNA3 → miRNA3 + Ø, and
premiRNA2 ·miRNA3 → Ø.

(11)

In addition, there are viral genome replication and degradation:

G→ 2G and G→ Ø. (12)

The G replication is here represented as one coarse-grained lumped step. The G loss is
shown as one lumped step as well. The latter step is assumed to describe all the channels of
the loss, including the G degradation and the formation of premature and mature virions
and their departure from a cell.

The mechanistic steps above do not contain the cellular DNA replication, and in the
context of the analysis presented, this means that all the processes occur in a cell during
one cell cycle. The focus on this situation is biologically reasonable and can be validated
comparing the timescales of various processes occurring in human cells. In particular, the
timescales of the formation and degradation of proteins, mRNA, and miRNA are typically
shorter or comparable with one hour (see, e.g., Section 3.6 in [6] or [38]). The timescale
of the viral genome replication is usually a few hours (see, e.g., Figure 2 for HIV-1 and
IVA viruses in [21]). In contrast, the length of the cycle of human fast-dividing cells grown
outside the body under optimal conditions is typically longer (approximately 24 h [38]),
and the lengths of the cycles of many other cells which are relevant for infections are often
much longer both in vivo and in vitro (see, e.g., the data for transformed human hepatocyte
growth [39]). Taken together, this information means that the number of viral genomes
formed in a cell during the cell cycle is often large, and accordingly, it makes sense to focus
on this case.

2.2. Coarse-Grained Steps

The kinetic equations corresponding to the steps introduced above are somewhat cum-
bersome. To simplify the treatment, I keep steps (1)–(3) for the formation and degradation
of mRNA1 and P1, steps for the miRNA2 and miRNA3 degradation (in (6) and (11)), and
using one of the common approximations in the models of gene expression, replace steps
(4), (5), and (9) for the miRNA2 and miRNA3 formation with two lumped steps,

Gene2 → Gene2 + miRNA2, (13)

G→ G + miRNA3. (14)
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Along this line, I replace the mRNA1-miRNA2 association step (7) and the corresponding
degradation steps (8) by one lumped step

mRNA1 + miRNA2 → Ø. (15)

By analogy, the premiRNA2-miRNA3 association step (10) and the corresponding degrada-
tion steps (11) are replaced by one lumped step as well:

miRNA2 + miRNA3 → Ø. (16)

In this framework, the intermediates, pre-miRNA2 and pre-miRNA3; and complexes,
mRNA1 ·miRNA2 and premiRNA2 ·miRNA3, are not described explicitly, and accordingly,
the degradation steps of these species ((8) and in (11)) can be excluded from the math. This
procedure is intuitively clear. Mathematically, it is a matter of introduction of the effective
rate constants (see, e.g., Section 4.2 in [6]).

2.3. Mean-Field Kinetic Equations

The coarse-grained scheme introduced above contains cellular mRNA1, P1, and
miRNA2; viral miRNA3; and G. The corresponding populations are designated as n1,
np, n2, n3, and ng. The conventional mean-field kinetic equations for the former four
variables are as follows:

dn1/dt = w1 − k1n1 − κ12n1n2,
dnp/dt = κpn1 − kpnp,
dn2/dt = w2 − k2n2 − κ12n1n2 − κ23n2n3,
dn3/dt = κ3ng − k3n3 − κ23n2n3,

(17)

where w1 and w2 are the rates of formation of mRNA1 and miRNA2; κp is the rate constant
of the P1 formation; κ3 is the rate constant of the miRNA3 formation; κ12 and κ23 are the
association rate constants; and k1, kp, k2, and k3 are the degradation rate constants.

According to (17), the P1 population does not influence other populations, and under
steady-state conditions this population is just proportional to the mRNA1 population.
Under such conditions, it can in principle be excluded from the analysis. I keep P1 for
possible extensions of the model. The key argument in favor of P1 is that cellular and viral
proteins are widely considered to be main regulators of virus fitness [22,41]. For example,
one can assume that P1 regulates the G growth and describe this effect formally by using,
e.g., the Hill expression for κg (see below) or in more detail (provided the corresponding
information is available).

In addition to (17), I need the equation describing the G replication. The initial phase
of this process is expected to be close to exponential. Later on, the exponential growth of the
G population is terminated (due to regulation of replication and/or exhaustion of cellular
resources), and then this population may diminish (e.g., in the case of cell death). These
features follow from numerous experiments with various virus-cell assays (for the types
of assays, see [12]) and also from available kinetic models (see, e.g., [21,28] and references
therein). In particular, one of the consequences of the exponential growth is that in the
corresponding kinetics (e.g., those measured in assays), the logarithm of concentration is
customarily shown as a function of time. Phenomenologically, the kinetics of this type can
be described as

dng/dt = κg(1− ng/n∗)ng, (18)

where κg is the replication rate constant and n∗ is the maximum G population. This equation
predicts the exponential growth of the G population at ng � n∗ with subsequent saturation
ng → n∗. Formally, the two terms, κgng and κgn2

g/n∗, can be assumed to correspond to
forward and backward reactions. Alternatively, the growth can be assumed to be limited
by unspecified feedback, and κg(1− ng/n∗) can considered to represent the effective ng-
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dependent replication rate constant. In the mean-field approximation, the equation is
applicable in both cases.

Regarding the initial exponential growth predicted by (18), one can for analogy refer to
frequently-observed exponential growth of bacteria (briefly reviewed in [42]). In the latter
case, the deviations from the exponential growth are sometimes observed as well (briefly
reviewed in [43]). Compared to bacterial or cellular DNA, the viral genomes are, however,
relatively short, and by analogy with the formation of cellular mRNA and proteins (in the
absence of regulation), one can expect that the initial first-order law in (18) is fairly accurate.

Concerning (18), I can add that cellular mRNAs, proteins, and miRNAs, and viral
miRNAs, can influence the viral-genome growth due to feedback. In human herpesvirus
6A, for example, virus-encoded miR-aU14 selectively inhibits the processing of multiple
miR-30 family members, subsequent activation of the miR-30-p53-DRP1 axis triggers a
profound disruption of mitochondrial architecture, and this impairs induction of type
I interferons and is necessary for both productive infection and virus reactivation [34].
Although the full-scale analysis of these steps is obviously very interesting, its realization
is challenging. One of the already mentioned options is to introduce formal feedback of
the Hill type [27,40]. For example, one can admit that the replication rate is positively or
negatively regulated by P1 and represent κg in Equation (18) for ng, respectively, as

κg = κ◦g + κ∗g
nm

g

Km + nm
p

or κg = κ◦g + κ∗g
Km

Km + nm
p

,

where κ◦g, κ∗g, K, and m are the Hill parameters. To solve Equation (18), np should be
expressed via ng. It can be done by employing Equations (17) above or (19) below. This
approach will, however, not really extend the understanding of the mechanistic details. For
this reason, I focus on the interplay of mRNA1, P1, miRNA2, and miRNA3 and do not take
the effect of these species on the G growth into account—i.e., Equation (18) describing the
G replication is considered to be not coupled to Equations (17).

As already noticed, the G-replication timescale, 1/κg (Equation (18)), is longer than
the timescales characterizing other steps (in (17)), and accordingly, the latter steps can
be described in the steady-state approximation by setting dn1/dt = dnp/dt = dn2/dt =
dn3/dt = 0. In this approximation, Equations (17) can be rewritten as

n1 = w1/(k1 + κ12n2),
n2 = w2/(k2 + κ12n1 + κ23n3),
n3 = κ3ng/(k3 + κ23n2),
np = κpn1/kp.

(19)

In these equations for n1, np, n2, and n3, ng can be considered to be a time-dependent
governing parameter determined by (18) as

ng =
n∗ exp(κgt)

n∗ − 1 + exp(κgt)
. (20)

This expression shows explicitly ng as a function of κgt. For any given ng, the other
populations, n1, np, n2, and n3, are determined by (19). Thus, n1, np, n2, and n3 can be
calculated as a function of κgt as well.

2.4. Stochasticity

Stochasticity arising in gene expression from fluctuations in transcription and transla-
tion has attracted interest for many years because of its implications for cellular regulation
and non-genetic individuality (reviewed in [2,3]; see also recent articles [7,10] and refer-
ences therein). Compared to conventional chemical systems, the role of fluctuations is
here more appreciable because many mRNAs, ncRNAs, and proteins are present in low
numbers per cell. During virus replication in cells, the numbers of viral genome, mRNA,
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ncRNA, and protein copies are often low as well, especially in the beginning. Although the
corresponding fluctuations have already been shown theoretically (see, e.g., [15,21,24,25]),
the full-scale understanding of their role in real systems is still limited.

The mean-field equations presented above do not take fluctuations into account. To
illustrate the scale of fluctuations, one can simulate the steps under consideration by using
the MC technique. To simplify simulations, one can notice that the G population is typically
smaller than the mRNA1 and miRNA2 populations and often smaller than the miRNA3
population. This means that the generation of an additional G copy results in a rapid,
appreciable increase or decrease in numbers of copies of other species at the mean-field
level. Under such conditions, the fluctuations of the mRNA1, P1, miRNA2, and miRNA3
populations are related primarily to those of the G population, and accordingly, the MC
technique, or more specifically, the standard Gillespie algorithm, can be used in order to
describe only this population, i.e., ng (Equation (18)), whereas the populations of other
species can be tracked at any given ng at the mean-field level by employing (19). The
realization of the corresponding MC simulations depends slightly on the interpretation
of Equation (18). To be specific, I consider that the G growth is limited by unspecified
feedback so that κg(1− ng/n∗) represents the effective replication rate constant. In this
framework, the time interval corresponding the generation of an additional G copy is
given by ∆t = ln(q)/[κg(1 − ng/n∗)ng], where 0 < q ≤ 1 is a random number, and
κg(1− ng/n∗)ng is the replication rate (in (18)).

3. Results and Discussion
3.1. Mean-Field Kinetics

The coarse-grained model introduced above is focused on five key species, including
cellular mRNA1, P1, and miRNA2; viral miRNA3; and G. Equations (19) and (20) for the
corresponding populations, n1, np, n2, n3, and ng, contain many kinetic parameters. In
principle, the model can be used in order to describe real kinetics of infection of indi-
vidual cells, and ideally, the parameters can/should be specified by using independent
experiments. In practice, with the current state of the art, this is impossible because the
available experimental data are far from sufficient. Under such circumstances, my goal is
less ambitious. Specifically, I focus on the typical shape of the kinetics under consideration
with biologically reasonable populations of various species. Following this line, I show
below the populations of cellular mRNA1 and miRNA2, n1 and n2; viral miRNA3, n3; and
G, ng. The P1 population, np = κpn1/kp (in (19)), is not shown, because this population is
just proportional to the mRNA1 population.

To keep the presentation of the result transparent and compact, I set the rate constants
of degradation of mRNA1, miRNA2, and miRNA3 to be equal (to k), i.e., k1 = kp = k2 =
k3 ≡ k. In addition, I took into account that, in fact, the solution of Equations (19) depends
only on the ratios of various rate constants, and accordingly, one can operate by using
these ratios. The corresponding dimensionless values should be chosen to have biologically
reasonable populations of mRNA1, miRNA2, and miRNA3. In human cells, the populations
of these species are well known to be in a wide range, roughly from 10 to 104 per cell (see,
e.g., [6]). To be in this range, I used somewhat arbitrarily the following set of the parameters:
w1/k = 200, w2/k = 400, κ12/k = 0.01, κ23/k = 0.01, and κ3/k = 10.

The steady-state dependence of the mRNA1, miRNA2, and miRNA3 populations, n1,
n2, and n3, on the G population, ng, predicted by (19), with the chosen values of the kinetic
parameters is shown in Figure 1. The temporal mean-field kinetics under consideration; or
more specifically, the mRNA1, miRNA2, miRNA3, and G populations calculated according
to Equations (19) and (20) as a function of κgt are exhibited in Figure 2.
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Figure 1. mRNA1, miRNA2, and miRNA3 populations as a function of the G population according
to (19) with w1/k = 200, w2/k = 400, κ12/k = κ23/k = 0.01, and κ3/k = 10. The model contains
also the P1 population. The latter population (not shown here and below in other figures) is just
proportional to the mRNA1 population.

Figure 2. Cont.
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Figure 2. mRNA1, miRNA2, miRNA3, and G and populations as a function of κgt according to
Equations (19) and (20) with ng(0) = 1 for n∗ = 20 (a), 50 (b), and 100 (c) and the other parameters
(w1/k = 200, w2/k = 400, κ12/k = κ23/k = 0.01, and κ3/k = 10) as in Figure 1. In this model, the
infection of a cell is possible by one virion [ng(0) = 1], in agreement with the so-called independent
action hypothesis [40]. In the absence of virus (ng = 0 and n3 = 0), the mRNA1 and miRNA2

population are n1 = 56 and n2 = 256 (Figure 1).

To interpret the kinetics shown in Figures 1 and 2, one can notice that in the absence
of the mRNA1-miRNA2 and miRNA2-miRNA3 interactions, the model with the chosen
parameters predicts that the mRNA1 and miRNA2 populations should be n1 = w1/k = 200
and n2 = w2/k = 400. These values are typical for abundant mRNAs and miRNAs. In
the absence of the miRNA2–miRNA3 interaction, the mRNA1–miRNA2 interaction results
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in a decrease in the mRNA1 and miRNA2 populations down to n1 = 56 and n2 = 256
(this case corresponds to ng = 0 in Figure 1). The scale of this decrease is typical for the
mRNA–miRNA interaction. In the presence the miRNA2–miRNA3 interaction, the effect
of miRNA3 on the mRNA1 and miRNA2 populations is first nearly negligible as long as
the miRNA3 population is low. With increasing G and miRNA3 populations, the effect of
miRNA3 on the miRNA2 population becomes larger, and the latter population drops, and
accordingly, the suppression of the mRNA1 population becomes weaker. Thus, the mRNA1
population grows. If the miRNA3 population eventually reaches an appreciable value (as,
e.g., in Figure 2c), the mRNA1 population increases up to 140, i.e., by a factor of 2.

To illustrate the effect of the variation of parameters on the kinetics, it is instructive
to increase the rate constants of the formation of mRNA1, miRNA2, and miRNA3 by one
order of magnitude up to w1/k = 2000, w2/k = 4000, and κ3/k = 100 and to keep other
parameters the same as above (κ12/k = 0.01 and κ23/k = 0.01). In this case, the initial
miRNA2 population becomes larger, roughly by one order of magnitude (cf. Figures 2b
and 3). The initial mRNA1 population increases only by a factor of 2 because the increase
in w1/k is compensated by the increase in the initial miRNA2 population. Globally, the
kinetics are qualitatively the same. Quantitatively, the final relative increase in the mRNA1
population and decrease in the miRNA2 population (compared to the initial values) are
more appreciable.

For arbitrary parameters, the relative roles of various processes can be clarified by
analogy under the steady-state conditions (by using (19), first in the case before infection
(with ng = 0) and then for an appreciable ng, e.g., 100, or under transient conditions (by
employing (19) and (20)).

Figure 3. As Figure 2 for w1/k = 2000, w2/k = 4000, κ12/k = κ23/k = 0.01, κ3/k = 100, and n∗ = 50.
Compared to the parameters used to construct Figure 2, w1/k, w2/k, and κ3/k are here increased
by one order of magnitude, whereas n∗ = 50 is as in Figure 2b. In the absence of virus (ng = 0 and
n3 = 0), the mRNA1 and miRNA2 population are n1 = 91 and n2 = 2091.



Int. J. Mol. Sci. 2023, 24, 122 10 of 15

3.2. Monte Carlo Simulations

Typical temporal MC kinetics (Figure 4) exhibit appreciable fluctuations. Such kinet-
ics can be characterized by calculating average populations, 〈n〉, and the corresponding
standard deviations (Figure 5),

σ = 〈(∆n)2〉1/2. (21)

To interpret the results presented (Figure 5), I recall that in the context of gene ex-
pression in cells, each standard deviation (e.g., that corresponding to protein) is usually
represented as a sum of three counterparts (see, e.g., [7] and note that the terminology I use
is slightly different),

σ = σin + σex + σdiv, (22)

where σin is the intrinsic part (under steady-state conditions, this term is associated with
Poisson noise); σex is the extrinsic part related to regulation, or in other words, to the
upstream noise (e.g., the fluctuations in mRNA copy number in the case of protein); and
σdiv is the part related to partitioning noise due to the cell division. The Poisson distribution
is well known to yield

σP = 〈n〉1/2, (23)

and under steady-state conditions with detailed balance, one is expected to have σ =
σin = σP. Using 〈n〉, σP can formally be calculated under transient conditions as well
(Equation (23)). In the latter case, σ can deviate from σP.

Figure 4. Cont.
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Figure 4. (a) G, (b) mRNA1, (c) miRNA2, and (d) miRNA3 populations as a function of κgt for
ng(0) = 1. The mean-field kinetics calculated according to Equations (19) and (20) are shown by solid
lines. Open circles exhibit three runs of the corresponding MC kinetics. The parameters are as in the
case of Figure 2c.

Figure 5. Cont.
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Figure 5. (a) G, (b) mRNA1, (c) miRNA2, and (d) miRNA3 kinetics as a function of κgt for ng(0) = 1.
The mean-field populations (Equations (19) and (20)) are shown by solid lines. The averaged MC
populations, standard deviations (Equation (21)), and Poissonian deviations (Equation (23)) shown
by open circles were calculated by using 100 MC runs (as those exhibited in Figure 4).

In the model under consideration, the growth and division of cells are ignored, and
accordingly, σdiv = 0 for all the species. The viral genome replication (step (12)) is consid-
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ered to be independent of mRNA1, P, miRNA2, and miRNA3—i.e., there is no regulation
(σex = 0)—and accordingly, the fluctuations are intrinsic, i.e., σ = σin. In contrast, mRNA1,
P, miRNA2, and miRNA3 are described at the mean-field level at each G copy number; i.e.,
the fluctuations of these species are related to those of the G population, and this means
that σin = 0 and σ = σex.

The simulations show that for G replication, σ is close to σP in the beginning and end
of the kinetics, and larger than σP by a factor of three in the medium, where the G growth
is fastest (Figure 5a). The miRNA3 population is directly dependent on the G population,
and here σ is much larger than σP (Figure 5d). The mRNA1 and miRNA2 population
are indirectly dependent on the G population, and for them σ is smaller than σP in the
beginning, smaller than or comparable to σP in the end, and appreciably larger than σP in
the medium of the kinetics (Figure 5b,c). Thus, the scales of the maximal fluctuations of the
mRNA1, miRNA2, and miRNA3 populations are rather appreciable compared to σP. As
already noticed, the reason for this feature is that the fluctuations of the populations of these
species are related directly or indirectly to those of the G population. The latter population
is relatively small, the fluctuations of this population with respect to its average value (the
corresponding measure is σ/〈n〉) are relatively large, and accordingly, the fluctuations of
other populations are large as well.

4. Conclusions

Viral miRNAs can influence the kinetics of gene expression during infection of cells.
This is an interesting example of transient kinetics of gene expression. In this study, I
have presented a generic kinetic model and results of mean-field calculations and MC
simulations illustrating the specifics of the interplay of viral miRNAs and cellular mRNAs,
proteins, and miRNAs. The predicted type and scale of the effect of viral miRNA on cellular
species are in qualitative agreement with the experiments reported for herpesvirus [34].
Quantitative theoretical analysis of the experiments is now hardly possible, because, as it
often happens, the reported experimental data viewed from the perspective of the theory
are incomplete.

Finally, I can note that the model presented can be extended in various directions.
(i) For example, the model implies that the protein formed after translation of cellular
mRNA does not regulate the formation of mRNA and other species. In reality, this regula-
tion can take place, and it can result in more complex kinetics, including, e.g., bistability
or oscillations [6]. (ii) The regulation of the replication of viral genomes can be taken into
account (in more detail compared to [27,40]). (iii) Another extension can be aimed at more
detailed analysis of what may happen at high intracellular population of viral genomes
in the limit when the genome kinetic is not exponential (in the spirit of Ref. [21]). (iv) The
cell cycle (or death) can be introduced into the treatment as well (in the spirit of references
[44–46]). (v) Stochastic effects can be analyzed in more detail. (vi) All these extensions
((i)–(v)) can be done at the level of a few species. The specifics of miRNAs is that each such
species can associate with various mRNAs [47], and the corresponding genetic networks
can include multiple steps (up to one hundred). Such large networks can be analyzed
as well.
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