Usefulness of Molecular Methods for Helicobacter pylori Detection in Pediatric Patients and Their Correlation with Histopathological Sydney Classification
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Histopathological Data
4.2. Culture of a Reference Strain
4.3. DNA Isolation
4.4. H. pylori DNA Detection
4.5. Verification Methods—ureA Gene Detection and DNA Sequencing
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kotilea, K.; Kalach, N.; Homan, M.; Bontems, P. Helicobacter Pylori Infection in Pediatric Patients: Update on Diagnosis and Eradication Strategies. Paediatr. Drugs 2018, 20, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Almashhadany, D.A.; Zefenkey, Z.F.; Zaki, A.M. Dental Risk Factors Associated with Oral Helicobacter Pylori Infection: A Cross-Sectional Study Based on Saliva Antigen Test. J. Infect. Dev. Ctries. 2022, 16, 516–521. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.-L.; Yeh, C.; Kwong, W.-G.; Lee, S.-D. A Novel One-Step Helicobacter Pylori Saliva Antigen Test. J. Chin. Med. Assoc. 2015, 78, 96–100. [Google Scholar] [CrossRef] [Green Version]
- Cardos, A.I.; Maghiar, A.; Zaha, D.C.; Pop, O.; Fritea, L.; Miere Groza, F.; Cavalu, S. Evolution of Diagnostic Methods for Helicobacter Pylori Infections: From Traditional Tests to High Technology, Advanced Sensitivity and Discrimination Tools. Diagnostics 2022, 12, 508. [Google Scholar] [CrossRef]
- Jones, N.L.; Koletzko, S.; Goodman, K.; Bontems, P.; Cadranel, S.; Casswall, T.; Czinn, S.; Gold, B.D.; Guarner, J.; Elitsur, Y.; et al. Joint ESPGHAN/NASPGHAN Guidelines for the Management of Helicobacter Pylori in Children and Adolescents (Update 2016). J. Pediatr. Gastroenterol. Nutr. 2017, 64, 991–1003. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.-J.; Chen, Y.-Z.; Tang, Z.-H.; Fu, L.-F.; Yang, L.; Wang, B.-N. Sensitivity Comparison Experiment of Four Testing Methods for Helicobacter pylori. Sichuan Da Xue Xue Bao Yi Xue Ban 2022, 53, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Aguilera Matos, I.; Diaz Oliva, S.E.; Escobedo, A.A.; Villa Jiménez, O.M.; Velazco Villaurrutia, Y.D.C. Helicobacter Pylori Infection in Children. BMJ Paediatr. Open 2020, 4, e000679. [Google Scholar] [CrossRef]
- Kalach, N.; Zrinjka, M.; Bontems, P.; Kori, M.; Homan, M.; Cabral, J.; Casswall, T.; Chong, S.; Cilleruelo, M.L.; Faraci, S.; et al. Systematic Review and Meta-Analysis of Histological Gastric Biopsy Aspects According to the Updated Sydney System in Children. J. Pediatr. Gastroenterol. Nutr. 2022, 74, 13–19. [Google Scholar] [CrossRef]
- Sabbagh, P.; Javanian, M.; Koppolu, V.; Vasigala, V.R.; Ebrahimpour, S. Helicobacter Pylori Infection in Children: An Overview of Diagnostic Methods. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1035–1045. [Google Scholar] [CrossRef]
- Godbole, G.; Mégraud, F.; Bessède, E. Review: Diagnosis of Helicobacter Pylori Infection. Helicobacter 2020, 25 (Suppl. 1), e12735. [Google Scholar] [CrossRef]
- Pohl, D.; Keller, P.M.; Bordier, V.; Wagner, K. Review of Current Diagnostic Methods and Advances in Helicobacter Pylori Diagnostics in the Era of next Generation Sequencing. World J. Gastroenterol. 2019, 25, 4629–4660. [Google Scholar] [CrossRef] [PubMed]
- Makristathis, A.; Hirschl, A.M.; Mégraud, F.; Bessède, E. Review: Diagnosis of Helicobacter Pylori Infection. Helicobacter 2019, 24 (Suppl. 1), e12641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonamico, M.; Strappini, P.M.; Bonci, E.; Ferri, M.; Crisogianni, M.; Guido, M.; Thanasi, E.; Nenna, R.; Macchia, S.; Luzzi, I.; et al. Evaluation of Stool Antigen Test, PCR on ORAL Samples and Serology for the Noninvasive Detection of Helicobacter Pylori Infection in Children. Helicobacter 2004, 9, 69–76. [Google Scholar] [CrossRef]
- Falsafi, T.; Favaedi, R.; Mahjoub, F.; Najafi, M. Application of Stool-PCR Test for Diagnosis of Helicobacter Pylori Infection in Children. World J. Gastroenterol. 2009, 15, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Ou, Z.; Xiong, L.; Li, D.-Y.; Geng, L.; Li, L.; Chen, P.; Yang, M.; Zeng, Y.; Zhou, Z.; Xia, H.; et al. Evaluation of a New Fluorescence Quantitative PCR Test for Diagnosing Helicobacter Pylori Infection in Children. BMC Gastroenterol. 2013, 13, 7. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.-H.; Zhu, X.; Li, B.-M.; Li, H. The Effect of Virulence Genotypes of Helicobacter Pylori on Eradication Therapy in Children. Saudi J. Gastroenterol. 2018, 24, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Gastli, N.; Allain, M.; Lamarque, D.; Abitbol, V.; Billoët, A.; Collobert, G.; Coriat, R.; Terris, B.; Kalach, N.; Raymond, J. Diagnosis of Helicobacter Pylori Infection in a Routine Testing Workflow: Effect of Bacterial Load and Virulence Factors. J. Clin. Med. 2021, 10, 2755. [Google Scholar] [CrossRef]
- Milani, M.; Moaddab, Y.; Sharifi, Y. One Piece Biopsy for Both Rapid Urease Test and Cultivation of Helicobacter Pylori. J. Microbiol. Methods 2019, 164, 105674. [Google Scholar] [CrossRef]
- Jeon, J.-S.; Kim, J.K.; Kim, G.-Y. Detection of Clarithromycin-Resistant Helicobacter Pylori by Polymerase Chain Reaction Using Residual Samples from Rapid Urease Test. Indian J. Med. Microbiol. 2017, 35, 406–409. [Google Scholar] [CrossRef]
- Skrebinska, S.; Megraud, F.; Daugule, I.; Santare, D.; Isajevs, S.; Liepniece-Karele, I.; Bogdanova, I.; Rudzite, D.; Vangravs, R.; Kikuste, I.; et al. Who Could Be Blamed in the Case of Discrepant Histology and Serology Results for Helicobacter Pylori Detection? Diagnostics 2022, 12, 133. [Google Scholar] [CrossRef]
- Akeel, M.; Elhafey, A.; Shehata, A.; Elmakki, E.; Aboshouk, T.; Ageely, H.; Mahfouz, M.S. Efficacy of Immunohistochemical Staining in Detecting Helicobacter Pylori in Saudi Patients with Minimal and Atypical Infection. Eur. J. Histochem. 2021, 65, 3222. [Google Scholar] [CrossRef]
- A Castaneda, C.; Castillo, M.; Sanchez, J.; Casavilca, S.; Sanchez, J.; A Bernabe, L.; Suarez, N.; Chavez, I.; Ruiz, E.; Tello, K.; et al. Detection of Helicobacter Pylori in Gastric Cancer Tissue through Histopathology, Immunohistochemistry and Real-Time Reverse Transcription-PCR. Future Microbiol. 2020, 15, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- Dechant, F.-X.; Dechant, R.; Kandulski, A.; Selgrad, M.; Weber, F.; Reischl, U.; Wilczek, W.; Mueller, M.; Weigand, K. Accuracy of Different Rapid Urease Tests in Comparison with Histopathology in Patients with Endoscopic Signs of Gastritis. Digestion 2020, 101, 184–190. [Google Scholar] [CrossRef]
- Bazin, T.; Nchare Mfondi, A.; Julie, C.; Émile, J.-F.; Raymond, J.; Lamarque, D. Contribution of Genetic Amplification by PCR for the Diagnosis of Helicobacter Pylori Infection in Patients Receiving Proton Pump Inhibitors. United Eur. Gastroenterol. J. 2018, 6, 1267–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansari, S.; Yamaoka, Y. Helicobacter Pylori Infection, Its Laboratory Diagnosis, and Antimicrobial Resistance: A Perspective of Clinical Relevance. Clin. Microbiol. Rev. 2022, e0025821. [Google Scholar] [CrossRef]
- Gallardo Padilla, M.; León Falconi, J.L.; Sánchez-Nebreda Arias, R.; Gómez Santos, C.; Muñoz Egea, M.D.C.; Orden Izquierdo, E. la Impact of the Use of Molecular Techniques (PCR) on Detection and Eradication Success against Helicobacter Pylori. An. Pediatr. 2022, 96, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Sulo, P.; Šipková, B. DNA Diagnostics for Reliable and Universal Identification of Helicobacter Pylori. World J. Gastroenterol. 2021, 27, 7100–7112. [Google Scholar] [CrossRef]
- Syahniar, R.; Wahid, M.H.; Syam, A.F.; Yasmon, A. Detecting the Helicobacter Pylori 16S RRNA Gene in Dyspepsia Patients Using Real-Time PCR. Acta Med. Indones. 2019, 51, 34–41. [Google Scholar]
- Elnosh, M.; Altayb, H.; Hamedelnil, Y.; Elshareef, W.; Abugrain, A.; Osman, E.; Albasha, A.; Abdelhamid, A.; Moglad, E.; AbdAlla, A.; et al. Comparison of Invasive Histological and Molecular Methods in the Diagnosis of Helicobacter Pylori from Gastric Biopsies of Sudanese Patients: A Cross-Sectional Study. F1000Research 2022, 11, 113. [Google Scholar] [CrossRef]
- Abdelmalek, S.; Shokry, K.; Hamed, W.; Abdelnaser, M.; Aboubakr, A.; Elenin, S.A.; Ali, M.; Mostafa, M.; Abou-Okada, M. The Validity Evaluation of Different 16srRNA Gene Primers for Helicobacter Detection Urgently Requesting to Design New Specific Primers. Sci. Rep. 2022, 12, 10737. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Yin, B.; Wang, C.; Huo, H.; Aziziaram, Z. Risk Assessment of Gastric Cancer in the Presence of Helicobacter Pylori CagA and HopQII Genes. Cell. Mol. Biol. 2022, 67, 299–305. [Google Scholar] [CrossRef]
- Kabir, S. Detection of Helicobacter Pylori DNA in Feces and Saliva by Polymerase Chain Reaction: A Review. Helicobacter 2004, 9, 115–123. [Google Scholar] [CrossRef]
- Diouf, A.; Martinez-Gomis, J.; Miquel, M.; Quesada, M.; Lario, S.; Sixou, M. Comparison of four different primer sets for detection of Helicobacter pylori in gastric biopsies and oral samples by using real-time PCR. Pathol. Biol. 2009, 57, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, S.; Kato, S.; Matsukura, N.; Ohtani, M.; Ito, Y.; Suto, H.; Yamazaki, Y.; Yamakawa, A.; Tokudome, S.; Higashi, H.; et al. Identification of Helicobacter Pylori and the CagA Genotype in Gastric Biopsies Using Highly Sensitive Real-Time PCR as a New Diagnostic Tool. FEMS Immunol. Med. Microbiol. 2005, 44, 261–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beer-Davidson, G.; Hindiyeh, M.; Muhsen, K. Detection of Helicobacter Pylori in Stool Samples of Young Children Using Real-Time Polymerase Chain Reaction. Helicobacter 2018, 23. [Google Scholar] [CrossRef] [PubMed]
- Hnatyszyn, A.; Szalata, M.; Skrzypczak-Zielinska, M.; Wielgus, K.; Stanczyk, J.; Dziuba, I.; Mikstacki, A.; Dobrowolska, A.; Waszak, M.; Hnatyszyn, P.T.; et al. DNA Variants in Helicobacter Pylori Infected Patients with Chronic Gastritis, Dysplasia and Gastric Cancer. Adv. Med. Sci. 2019, 64, 79–84. [Google Scholar] [CrossRef]
- Deptuła, P.; Suprewicz, Ł.; Daniluk, T.; Namiot, A.; Chmielewska, S.J.; Daniluk, U.; Lebensztejn, D.; Bucki, R. Nanomechanical Hallmarks of Helicobacter Pylori Infection in Pediatric Patients. Int. J. Mol. Sci. 2021, 22, 5624. [Google Scholar] [CrossRef]
- Hays, C.; Delerue, T.; Lamarque, D.; Burucoa, C.; Collobert, G.; Billöet, A.; Kalach, N.; Raymond, J. Molecular Diagnosis of Helicobacter Pylori Infection in Gastric Biopsies: Evaluation of the Amplidiag® H. Pylori + ClariR Assay. Helicobacter 2019, 24, e12560. [Google Scholar] [CrossRef]
- Pichon, M.; Pichard, B.; Barrioz, T.; Plouzeau, C.; Croquet, V.; Fotsing, G.; Chéron, A.; Vuillemin, É.; Wangermez, M.; Haineaux, P.-A.; et al. Diagnostic Accuracy of a Noninvasive Test for Detection of Helicobacter Pylori and Resistance to Clarithromycin in Stool by the Amplidiag H. Pylori+ClariR Real-Time PCR Assay. J. Clin. Microbiol. 2020, 58, e01787-19. [Google Scholar] [CrossRef]
- Pichon, M.; Freche, B.; Burucoa, C. New Strategy for the Detection and Treatment of Helicobacter Pylori Infections in Primary Care Guided by a Non-Invasive PCR in Stool: Protocol of the French HepyPrim Study. J. Clin. Med. 2022, 11, 1151. [Google Scholar] [CrossRef] [PubMed]
- Smirnova, D.N.; Bogacheva, N.V.; Petrov, S.B.; Tuneva, N.A. Comparative Assessment of the Results of Detection of CagA-Positive Strains of Helicobacter Pylori by Molecular-Genetic and Immunochromatographic Methods in Different Biological Materials. Klin. Lab. Diagn. 2022, 67, 48–52. [Google Scholar] [CrossRef]
- Wang, X.; Sun, L.; Yang, Z.; Song, S.; Li, N.; Liu, Y.; Tian, W.; Zhao, Y. Combined detection of Helicobacter pylori 16S rRNA and cagA gene in saliva specimens using multiplex PCR. Nan Fang Yi Ke Da Xue Xue Bao 2021, 41, 1816–1821. [Google Scholar] [CrossRef] [PubMed]
- Gzyl, A.; Dzierzanowska, D.; Rozynek, E.; Celinska-Cedro, D.; Dura, W.; Berg, D.E. PCR-Based Diagnosis of Helicobacter Pylori Infection in Polish Children and Adults. J. Med. Microbiol. 1999, 48, 349–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šeligová, B.; Lukáč, Ľ.; Bábelová, M.; Vávrová, S.; Sulo, P. Diagnostic Reliability of Nested PCR Depends on the Primer Design and Threshold Abundance of Helicobacter Pylori in Biopsy, Stool, and Saliva Samples. Helicobacter 2020, 25, e12680. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.; Øverby, A.; Michimae, H.; Matsui, H.; Takahashi, S.; Mabe, K.; Shimoyama, T.; Sasaki, M.; Terao, S.; Kamada, T.; et al. PCR Analysis and Specific Immunohistochemistry Revealing a High Prevalence of Non-Helicobacter Pylori Helicobacters in Helicobacter Pylori-Negative Gastric Disease Patients in Japan: High Susceptibility to an Hp Eradication Regimen. Helicobacter 2020, 25, e12700. [Google Scholar] [CrossRef]
- Yasuda, T.; Lee, H.S.; Nam, S.Y.; Katoh, H.; Ishibashi, Y.; Yamagata Murayama, S.; Matsui, H.; Masuda, H.; Rimbara, E.; Sakurazawa, N.; et al. Non-Helicobacter Pylori Helicobacter (NHPH) Positive Gastric Cancer. Sci. Rep. 2022, 12, 4811. [Google Scholar] [CrossRef] [PubMed]
- Binmaeil, H.; Hanafiah, A.; Mohamed Rose, I.; Raja Ali, R.A. Development and Validation of Multiplex Quantitative PCR Assay for Detection of Helicobacter Pylori and Mutations Conferring Resistance to Clarithromycin and Levofloxacin in Gastric Biopsy. Infect. Drug Resist. 2021, 14, 4129–4145. [Google Scholar] [CrossRef] [PubMed]
- Salamon, D.; Zapała, B.; Krawczyk, A.; Potasiewicz, A.; Nikiforuk, A.; Stój, A.; Gosiewski, T. Comparison of ISeq and MiSeq as the Two Platforms for 16S RRNA Sequencing in the Study of the Gut of Rat Microbiome. Appl. Microbiol. Biotechnol. 2022. [Google Scholar] [CrossRef]
Method/Result | PCR Result | Number (%) of Samples | ||
---|---|---|---|---|
Positive | Negative | |||
H. pylori colonization in histology evaluation | positive | 39 (37.5%) | 2 (1.9%) | 41 (39.4%) |
negative | 5 (4.8%) | 58 (55.8%) | 63 (60.6%) | |
Total | 44 (42.3%) | 60 (57.7%) | 104 (100%) |
Histopathology results (modified Sydney classification) | Colonization Density Grade | n | (%) | Inflammation Grade | n | (%) | Inflammation Activity/Atrophy/ Metaplasia Grade | n | (%) |
1 | 2 | 3.3 | 2 | 8 | 13.3 | 0 | 60 | 100.0 | |
0 | 6 | 10.0 | |||||||
0 | 32 | 53.3 | 1 | 32 | 53.3 | ||||
0 | 20 | 33.3 | 0 | 20 | 33.3 | ||||
Average grade in a group | 0.03 | 0.80 | 0.00 |
Histopathology results (modified Sydney classification) for H. pylori infection identification | Colonization Density Grade | n | (%) | Inflammation Grade | n | (%) | Inflammation Activity Grade | Atrophy Grade | Metaplasia Grade | n | (%) |
3 | 19 | 43.2 | 3 | 12 | 27.3 | 2 | 0 | 0 | 5 | 11.4 | |
1 | 0 | 1 | 1 | 2.3 | |||||||
1 | 0 | 0 | 4 | 9.1 | |||||||
0 | 0 | 0 | 2 | 4.5 | |||||||
2 | 6 | 13.7 | 2 | 0 | 0 | 1 | 2.3 | ||||
1 | 0 | 0 | 3 | 6.8 | |||||||
0 | 0 | 0 | 2 | 4.5 | |||||||
1 | 1 | 2.3 | 0 | 0 | 0 | 1 | 2.3 | ||||
2 | 11 | 25.0 | 3 | 7 | 15.9 | 2 | 2 | 0 | 1 | 2.3 | |
2 | 0 | 0 | 3 | 6.8 | |||||||
1 | 0 | 0 | 2 | 4.5 | |||||||
0 | 0 | 0 | 1 | 2.3 | |||||||
2 | 4 | 9.1 | 1 | 1 | 0 | 1 | 2.3 | ||||
1 | 0 | 0 | 1 | 2.3 | |||||||
0 | 0 | 0 | 2 | 4.5 | |||||||
1 | 9 | 20.4 | 3 | 3 | 6.8 | 2 | 0 | 0 | 1 | 2.3 | |
0 | 0 | 0 | 2 | 4.5 | |||||||
2 | 4 | 9.1 | 1 | 0 | 0 | 1 | 2.3 | ||||
0 | 0 | 0 | 3 | 6.8 | |||||||
1 | 2 | 4.5 | 0 | 0 | 0 | 2 | 4.5 | ||||
0 | 5 | 11.4 | 2 | 4 | 9.1 | 0 | 0 | 0 | 4 | 9.1 | |
0 | 1 | 2.3 | 0 | 0 | 0 | 1 | 2.3 | ||||
Average grade in a group | 2.00 | 2.39 | 0.80 | 0.07 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogiel, T.; Mikucka, A.; Szaflarska-Popławska, A.; Grzanka, D. Usefulness of Molecular Methods for Helicobacter pylori Detection in Pediatric Patients and Their Correlation with Histopathological Sydney Classification. Int. J. Mol. Sci. 2023, 24, 179. https://doi.org/10.3390/ijms24010179
Bogiel T, Mikucka A, Szaflarska-Popławska A, Grzanka D. Usefulness of Molecular Methods for Helicobacter pylori Detection in Pediatric Patients and Their Correlation with Histopathological Sydney Classification. International Journal of Molecular Sciences. 2023; 24(1):179. https://doi.org/10.3390/ijms24010179
Chicago/Turabian StyleBogiel, Tomasz, Agnieszka Mikucka, Anna Szaflarska-Popławska, and Dariusz Grzanka. 2023. "Usefulness of Molecular Methods for Helicobacter pylori Detection in Pediatric Patients and Their Correlation with Histopathological Sydney Classification" International Journal of Molecular Sciences 24, no. 1: 179. https://doi.org/10.3390/ijms24010179
APA StyleBogiel, T., Mikucka, A., Szaflarska-Popławska, A., & Grzanka, D. (2023). Usefulness of Molecular Methods for Helicobacter pylori Detection in Pediatric Patients and Their Correlation with Histopathological Sydney Classification. International Journal of Molecular Sciences, 24(1), 179. https://doi.org/10.3390/ijms24010179