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Abstract: Peracetic acid (PAA) disinfectants are effective against a wide range of pathogenic mi-
croorganisms, including bacteria, fungi, and viruses. Several studies have shown the efficacy of
PAA against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, its efficacy in
SARS-CoV-2 variants and the molecular mechanism of action of PAA against SARS-CoV-2 have not
been investigated. SARS-CoV-2 infection depends on the recognition and binding of the cell receptor
angiotensin-converting enzyme 2 (ACE2) via the receptor-binding domain (RBD) of the spike protein.
Here, we demonstrated that PAA effectively suppressed pseudotyped virus infection in the Wuhan
type and variants, including Delta and Omicron. Similarly, PAA reduced the authentic viral load of
SARS-CoV-2. Computational analysis suggested that the hydroxyl radicals produced by PAA cleave
the disulfide bridges in the RBD. Additionally, the PAA treatment decreased the abundance of the
Wuhan- and variant-type spike proteins. Enzyme-linked immunosorbent assay showed direct inhibi-
tion of RBD-ACE2 interactions by PAA. In conclusion, the PAA treatment suppressed SARS-CoV-2
infection, which was dependent on the inhibition of the interaction between the spike RBD and ACE2
by inducing spike protein destabilization. Our findings provide evidence of a potent disinfection
strategy against SARS-CoV-2.

Keywords: SARS-CoV-2; peracetic acid; spike protein; receptor-binding domain; ACE2

1. Introduction

Toward the end of 2019, an outbreak of an unusual viral pneumonia caused by a new
coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), occurred in
Wuhan, China. Being highly transmissible, this novel coronavirus infection, also known as
coronavirus disease 2019 (COVID-19), has spread rapidly around the world and become a
serious threat to global public health [1–3].

Since the global pandemic caused by SARS-CoV-2, several studies on the environ-
mental stability of SARS-CoV-2 have been reported. The stability of SARS-CoV-2 and
severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) is similar under various
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experimental environments, such as plastic, stainless steel, and copper. SARS-CoV-2 and
other human coronaviruses (HCoVs) have remarkably short persistence on copper and
latex compared to other surfaces such as stainless steel, plastics, and glass [4,5]. In general,
the stability of a particular virus in the environment is important for its spread. However, in
addition to the virus characteristics, the characteristics of the biotic or abiotic environmental
surface and the environmental conditions, particularly temperature and relative humidity,
are important factors in determining the infectivity retention and extent and speed of the
spread of the virus [4,6,7]. Therefore, when new viruses such as SARS-CoV-2 become
widespread, their long-term persistence on the environmental surface and fomites is ex-
pected. Surface disinfection can reduce the potential risk of fomite-mediated transmission
due to virus persistence on the environmental surface [8]. Fomite-mediated transmission is
not the primary route of SARS-CoV-2 infection [9]. However, the high transmission rate of
variants of concern (VOCs), such as the Omicron variant, raises questions and concerns
regarding the enhanced environmental stability of the virus. To date, differences in the
environmental stability of VOCs have not been reported consistently. The Alpha and Beta
variants do not exhibit any difference in environmental stability on silver, copper, and
stainless-steel discs [10]. However, the Beta variant was more thermostable than the other
variants at physiological temperatures, which was correlated with plaque size [11]. Fur-
thermore, the Alpha, Beta, Delta, and Omicron variants exhibited approximately two-fold
longer survival times on plastic surfaces than the Wuhan strain. In particular, the Omicron
variants (BA.1 and BA.2) have the longest survival times [12]. Considering the difference
in environmental stability of SARS-CoV-2 variants, it is necessary to evaluate the effect of
surface disinfection on the spread of these variants.

Various liquid disinfectants are routinely used to disinfect different surfaces in medical
facilities [13,14]. The Centers for Disease Control and Prevention recommends the use of
Environmental Protection Agency (EPA)-registered disinfectants for surface hygiene for
COVID-19 patient care in healthcare settings. Several peracetic acid (PAA) formulations
have been registered as COVID-19-specific disinfectants on EPA’s List N. PAA is a potent
oxidant and microbicide; it can inactivate bacterial spores, fungi, and viruses [15–17]. In the
medical field, it is widely used to disinfect endoscopes, sterilize bone allogeneic implants,
and disinfect the surfaces of various medical equipment [18–20]. However, studies on the
efficacy of PAA against coronaviruses are limited [21,22]; a previous study on SARS-CoV-2
has demonstrated the effects of dry fogging on the test surfaces of medical facilities that
used PAA [14]. Furthermore, no previous study has investigated the mechanism underlying
the disinfecting effect of PAA against SARS-CoV-2.

Viral infection is initiated by the binding of viral particles to host surface cellular recep-
tors. In HCoVs such as SARS-CoV-1, the entry process is mediated by envelope-embedded,
surface-located, spike glycoproteins [23]. The spike glycoprotein is a homotrimer, and each
monomer contains two subunits: S1 and S2. The S1 subunit consists of the N-terminal
domain and receptor-binding domain (RBD), and RBD recognizes and binds to the cellular
receptor human angiotensin-converting enzyme 2 (hACE2) [24]. After the RBD binds to
hACE2, the viral membrane fuses with the host cell membrane and the viral genome enters
human cells to initiate the infection process [25–27]. Therefore, inhibiting the interaction
between RBD and ACE2 can prevent SARS-CoV-2 infection, and RBD can be an effective
target of disinfectants. The disinfecting effect of plasma-activated water is due to the
inhibition of the RBD-ACE2 interaction via inactivation of the spike protein [28].

To date, there have been several reports showing the disinfecting effect of the PAA
disinfectants against SARS-CoV-2; however, no study has demonstrated the disinfecting
effect and mechanism against variant strains. In the present study, we examined the
effects of PAA on the infectivity of SARS-CoV-2 variants and the alteration and function of
the spike proteins.
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2. Results
2.1. PAA Inhibited Pseudotyped SARS-CoV-2 Infectivity

We used a pseudotyped system with spike protein of SARS-CoV-2 to investigate the
antiviral activity of PAA. At a final PAA concentration of 0.002%, the infectious activity of
the Wuhan-type pseudotyped viruses was significantly suppressed, and the infectivity of
variant strains was also suppressed (Figure 1A–F). Furthermore, we investigated the cyto-
toxicity at the concentration that inhibited infectivity. No cytotoxicity was observed in Vero
E6/TMPRSS2 and HEK293T cells at these concentrations (Supplementary Figure S1A,B).
This concentration was low, compared with the PAA concentrations used for disinfection of
SARS-CoV-2 reported to date [14,29]. These results indicate that the pseudovirus infection
was effectively inhibited by the PAA treatment at concentrations much lower than those of
commonly used the PAA disinfectants.
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final concentration of 0.002%, followed by two-fold serial dilutions. (A) Wuhan-type (WT), (B) D614G,
(C) Alpha (UK), (D) K417N/E484K/N501Y (KEN), (E) Delta, and (F) Omicron (BA.1). Experiments
were independently repeated three times, and similar results were obtained. Data from sextuple
samples are expressed as means ± SD. Statistical analysis was performed using one-way ANOVA
and subsequent Dunnett’s test. * indicates p < 0.05, ** indicates p < 0.01, *** indicates p < 0.001, and
**** indicates p < 0.0001, ns: not significant. N.T: no treatment.

2.2. Computational Analysis Showed That PAA Cleaves the Disulfide Bridges in the
SARS-CoV-2 Spike Protein

The SARS-CoV-2 RBD contains four disulfide bridges, of which three disulfide pairs
(Cys336-361, Cys379-432, and Cys391-525) help to stabilize the β sheet structure of the spike
protein [26]. The remaining pair (Cys480-488) is located in the receptor-binding motif (RBM)
(Figure 2A) and contributes to the interaction with ACE2 [26,30]. Next, we confirmed the
expression of the spike protein in the Wuhan-type, D614G, and Cys488A mutants, and
demonstrated that the Cys488A-mutant pseudotyped virus had reduced infectious activity
(Figure 2B). PAA produces hydroxyl radicals and breaks the -SH and disulfide bridges
in proteins [31]. However, it remains unclear whether the hydroxyl radicals disrupt the
disulfide bridges in the RBD of the SARS-CoV-2 spike protein. Therefore, we investigated
the reaction between the hydroxyl radicals and disulfide pairs in the RBD using computer
analysis. We first obtained the three-dimensional structure of the RBD in both closed
and open spike proteins using molecular dynamics (MD) simulation for 50 ns. Next, we
performed density functional theory (DFT) using the resulting structure to investigate the
reaction between the hydroxyl radicals and disulfide pairs in the RBM, which plays an
important role in binding with ACE2. DFT calculations showed that the hydroxyl radicals
reacted with the Hβ2 or Hβ3 atom, which is bonded with the β carbon (Cβ) next to the
disulfide-bonded sulfur atom and was converted to water. Consequently, the bond between
the Cβ atom and sulfur atom became a double bond, resulting in a cleaved disulfide bond
(Figure 2C). The disulfide pairs in biological molecules react with the hydroxyl radicals [32],
whereas Hβ2 or Hβ3 atom coordinates with the exterior of the three-dimensional structure,
not the interior. To evaluate the ability of Hβ2 or Hβ3 to coordinate with hydroxyl radicals,
we calculated the solvent accessible surface area (SASA), which indicates whether atoms
are exposed to the solvent or hydroxyl radicals, using 100 structures obtained from MD
simulation. In both open and closed states, the spike protein underwent a conformation in
which Hβ atoms were exposed to the hydroxyl radicals (Figure 2D,E). These results suggest
that the hydroxyl radicals produced by PAA cleave the disulfide bridges in the RBD.

2.3. PAA Led to the Destabilization of the SARS-CoV-2 Spike Protein

Reducing the disulfide stabilizer bridges of the SARS-CoV-2 spike protein induces
the unfolding of recombinant spike protein and leads to spike protein destabilization [33].
Therefore, to determine whether the cleavage of the disulfide bridges affects spike pro-
tein destabilization, we assessed spike protein alteration in cell lysates following PAA
treatment. The PAA treatment for 10 min at a final concentration of 0.01% led to spike
protein alteration. Furthermore, this alteration was consistent in all the variant strains,
including the Omicron variant (Figure 3A,B). Even with commercially available PAA disin-
fectants, the alteration of the spike protein was confirmed at the same concentration and
processing time (Supplementary Figure S2A). On the other hand, SARS-CoV-2 nucleocap-
sid protein alteration was not confirmed by the PAA and commercial PAA disinfectant
treatments (Supplementary Figure S2B). These results suggest that PAA selectively leads to
the destabilization of the SARS-CoV-2 spike protein.

2.4. PAA Reduced the RBD-ACE2 Interaction

We demonstrated that PAA cleaves the disulfide bridges in the spike protein, leading
to its alteration. Next, we investigated whether this effect on the spike protein affects the
interaction between the RBD and ACE2. The binding ability of the RBDs of the Wuhan as
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well as the variant (Alpha, Beta, Gamma, Delta, Omicron) strains to ACE2 was markedly
reduced with the 0.01% and 0.1% PAA treatment compared with that of untreated strains
(Figure 4A–F). Furthermore, the IC50 value was highest in the Alpha variant and lowest in
the Omicron variant, having a difference of approximately 2-folds. Similar results were
obtained using commercially available PAA disinfectants (Supplementary Figure S3A–F).
The effect was observed at a PAA concentration lower than the concentration used in
a general PAA disinfectant. These results suggest that PAA reduces the infectivity of
SARS-CoV2 by blocking the RBD-ACE2 interaction.
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Figure 2. Disulfides bind with Cys480-Cys488 of SARS-CoV-2 spike RBM. (A) Three-dimensional
structure of SARS-CoV-2 RBM colored in red. (B) Expression of Cys488A mutant spike proteins
detected by Western blot analysis (upper panel). The infectivity of the pseudotyped viruses expressing
each mutant spike protein were assessed by reporter luciferase activities in VeroE6/TMPRSS2 cells
(lower panel). Data from triplicated samples were expressed as means ± SD. Statistical analysis
was performed using Welch’s t-test. * indicates p < 0.001. (C) Using DFT calculation in Material
Studio, hydroxyl radicals and six residues (Pro479-Cys480-Asn481, Asn487-Cys488-Tyr489) were
reacted. (D,E) SASA (Å2) calculated on CβH atoms of each frame in MD simulation, which are next
to disulfide-bonded sulfur.
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were expressed in HEK293T cells, and cell lysates were treated with PAA at a concentration of 0.01%.
(B) Alteration of SARS-CoV-2 spike protein in PAA-treated cell lysates was detected by Western blot
analysis. GAPDH is shown as a loading control. Experiments were repeated at least twice, and the
representative data of the independent experiments are shown.

2.5. PAA Reduced Authentic Viral Load of SARS-CoV-2

Although spike, envelope, and membrane proteins together envelop the SARS-CoV-2
virion, most of the reported pseudotyped viruses are composed exclusively of spike pro-
tein. The presence of envelope and membrane proteins increases the virion infectivity
by promoting the spike protein priming [34]. In addition, inconsistent results between
the authentic and pseudotyped viruses have been reported in studies on neutralizing
antibodies [35]. Since the pseudotyped viruses containing only spike proteins have limi-
tations, we assessed the antiviral effect of PAA on authentic virus isolates. Similar to the
results of the pseudotyped viruses, 30 min of the PAA treatment at a final concentration of
0.0018% significantly reduced the amount of viral RNA (Figure 5A,B). This result indicates
that PAA is an effective disinfectant against authentic as well as pseudotyped SARS-CoV-2.
Collectively, Figure 6 summarizes possible models of PAA disinfection mechanisms against
SARS-CoV-2. We suggest that PAA exerts its antiviral effect by inhibiting the SARS-CoV-2
spike protein-mediated entry into host cells.
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Figure 4. PAA impaired SARS-CoV-2 RBD interaction with ACE2 in vitro. Dose-dependent inhibition
of recombinant RBD protein binding to ACE2 by PAA. The recombinant RBD protein was pretreated
with PAA for 30 min, and its ACE2 binding was examined using ELISA. (A) WT, (B) Alpha, (C) Beta,
(D) Gamma, (E) Delta, and (F) Omicron (BA.1). Experiments were independently repeated three
times, and similar results were obtained. The 50% inhibitory concentration (IC50) was calculated
using the GraphPad Prism software, version 9.4.1.
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Int. J. Mol. Sci. 2023, 24, 20 9 of 15

SARS-CoV-2 spike RBD and break the disulfide bond in the spike protein. As a result, it reduces
the abundance of intact spike proteins and reduces the binding of the SARS-CoV-2 spike RBD
to its host cell receptor, ACE2. PAA exhibits disinfection effects by inhibiting SARS-CoV-2 spike
protein-mediated entry into the host cells. Schemas were created using BioRender.com.

3. Discussion

The COVID-19 pandemic has led to a rapid increase in the use of disinfectants world-
wide to prevent microbial infections [36–38]. However, excessive use of disinfectants poses
a threat to living organisms and the environment [39–41]. Studies providing disinfection
information for selecting effective and safe disinfectants against this virus are essential.
PAA is a considerably safe disinfectant with a wide range of effects against pathogenic
microorganisms [15–17]. However, few studies have demonstrated its disinfecting effect
against SARS-CoV-2, and none have investigated the molecular mechanism of this effect.
The present study examining the disinfecting effect of PAA against SARS-CoV-2 is the first
to confirm that PAA affects this virus, including its variants, and demonstrate the molecular
mechanism of its effect.

In the present study, PAA at a final concentration of 0.002% inhibited the infectious
activity of the pseudotyped viruses, including variants, by ≥2 log10. This concentration
was considerably lower than the concentration of PAA usually used in disinfectants. PAA is
substantially less stable than hydrogen peroxide. A 40% PAA solution loses 1–2% of active
ingredients per month, whereas 30–90% hydrogen peroxide solutions lose less than 1% of
active ingredients per year. Diluted PAA solutions are more unstable, with 1% solution
losing half its strength by hydrolysis in 6 days [42]. Proper use of surface disinfectants is
crucial for preventing nosocomial infections [43,44]. PAA-based disinfectants are widely
used in healthcare settings [18–20], but the use of PAA-based disinfectants containing low
disinfectant levels has been reported to increase healthcare-associated Clostridium difficile
infection [45]. Our results suggest that PAA has a disinfecting effect on SARS-CoV-2 at
a low concentration of 0.002%. However, in healthcare settings, it should be used at an
appropriate concentration, considering the stability of the PAA solution and the decrease
in disinfectant levels.

In general, oxidizing compounds, such as PAA, oxidize the thiol groups (-SH) in
cysteine residues, which form the disulfide bridges. As cysteine residues are located in
the active sites of many bacterial enzymes, their oxidation by oxidizing compounds leads
to the inactivation of these enzymes [46]. Reactivity with specific viral components can
be used to identify the most sensitive regions of viral particles during disinfection [47],
and PAA has been shown to be highly reactive with sulfur-containing amino acids such
as cysteine [46,48]. In the present study, computational analysis demonstrated that PAA
treatment cleaves the disulfide bridges in the RBD of the SARS-CoV-2 spike protein, and
in vitro analysis revealed alterations in the spike protein and inhibition of the RBD-ACE2
interaction. These findings confirm the assumption that PAA exhibits a disinfecting effect
by disrupting the -SH and disulfide bridges in the SARS-CoV-2 spike protein. Therefore,
we infer that PAA induces damage to spike proteins by disrupting the disulfide bridges
in RBDs and reduces their abilities to interact with the hACE2 receptor to initiate viral
entry and infection.

Interestingly, the IC50 value of PAA was lowest in the Omicron variant. The affinity
of RBD-ACE2 is higher in the Alpha, Beta, and Gamma variants than in the Delta and
Omicron variants [49]. Moreover, the Omicron variant has a lower affinity than the Delta
variant [50,51], as demonstrated by surface plasmon resonance analysis, MD simulations,
and ELISA bioassays. The differences in RBD-ACE2 affinity between variants might
contribute to the differences in the inhibition of interactions with PAA treatment. The
stability of Omicron BA.1 and BA.2 has been reported to be higher than that of other
variants in alcohol-based disinfection [12]. This study suggests that PAA might be a
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disinfectant that should be used more selectively for non-biological surface disinfection in
Omicron variant epidemics.

In the present study, we demonstrated that PAA has a disinfecting effect even on
authentic viruses. Several studies have reported an association between diarrhea and
gastroenteritis symptoms and infections by HCoVs [52,53], suggesting potential foodborne
and waterborne transmission of SARS-CoV-2. Furthermore, recent studies have shown that
SARS-CoV-2 can survive in wastewater and has a decay half-life of 0.49 day at ambient
temperature [54,55]. Although these previous studies suggest possible transmission of
SARS-CoV-2 through the water environment, the application of conventional disinfectants
at high dosages may generate toxic residual by-products in the water environments. How-
ever, PAA rarely forms toxic disinfection by-products and is widely used as a disinfectant
in water environments as an alternative to chlorine-based disinfectants [42,56]. Our results
suggest that PAA is a safe and effective disinfectant for water environments during the
SARS-CoV-2 epidemic. To verify the effectiveness of disinfectants in SARS-CoV-2 contami-
nated water, it makes it imperative to use infectious SARS-CoV-2 virus rather than viral
RNA, although this would involve a high level of safety to conduct.

This study has a primary limitation. The purpose of this study was to verify the effect
of PAA against SARS-CoV-2, including variant strains, and the mechanism of its effect.
Thus, it has been limited to investigation under an experimental environment. It has not
been verified whether the same mechanism exerts a disinfection effect in an environment
with many impurities. Therefore, further studies are necessary to determine its efficacy in a
range of environments and situations.

In conclusion, PAA inhibited SARS-CoV-2 infection through a mechanism that cleaves
the disulfide bridges in the RBD, induces spike protein dysfunction, and subsequently
inhibits the interaction of the RBD with ACE2 (Figure 6). Furthermore, in the RBD-ACE2
binding assay, Omicron variants were most sensitive to PAA and showed lower IC50 values
than the other variants. PAA as a disinfectant may be selectively used for epidemics of
Omicron variants. These novel findings provide evidence of a potent disinfection strategy
against SARS-CoV-2.

4. Materials and Methods
4.1. Cells and Reagents

HEK293T and VeroE6/TMPRSS2 (JCRB, JCRB1819) cells were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) supplemented with 7.5% (v/v) fetal bovine serum
(FBS) and kanamycin (50 µg/mL) in 5% CO2 and 95% air at 37 ◦C. PAA solution and
commercial PAA disinfectants were purchased from Sigma-Aldrich (Sigma-Aldrich, Tokyo,
Japan) and Saraya (Saraya Co., Ltd., Osaka, Japan), respectively. PAA and commercial PAA
disinfectants were dissolved at indicated concentrations in DMEM supplemented with
1% (v/v) FBS.

4.2. Preparation of Pseudotyped SARS-CoV-2

Pseudotyped SARS-CoV-2 was prepared as previously described [57]. Briefly, the
plasmid pUC57-2019-nCoV-S (Human), containing synthetic cDNA to express SARS-CoV-2
spike protein with human codon optimization, was purchased from GenScript Japan Inc.
(Tokyo, Japan) and cloned into the expression plasmid pcDNA3.1. Mutant spike cDNAs
were synthesized using GenScript. The plasmids used in this study are listed in Supple-
mentary Table S1. For retrovirus-based pseudotyped virus production, HEK293T cells were
co-transfected with spike-expressing plasmids containing phCMV-Gag-Pol 5349 and re-
porter pTG-Luc126 plasmids using the PEIpro® transfection reagent (Polyplus Transfection,
NY, USA). Briefly, 2 × 106 293T cells were seeded in a T-25 flask on day 1, and the cells were
co-transfected following the manufacturer’s instructions on day 2. On day 3, the growth
medium was added to the flask for an additional two days of culture. The cell supernatant
containing pseudotyped virus was collected, filtered through a 0.45 µm filter, and aliquoted
to be stored at −80 ◦C.
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4.3. Luciferase Assay for Pseudotyped Virus Infection

VeroE6/TMPRSS2 cells were seeded in a 96-well white plate at a density of 2–2.5 × 104 cells
per well and cultured for 24 h. After culturing for 24 h, pseudotyped viruses were added to
each well and cultured for three days. For PAA pretreatment, the virus was preincubated in
a medium containing PAA at the indicated concentration (DMEM containing 1% FBS) for
10 min at room temperature and then added to the wells. After three days, the medium was
removed. Cells were washed once with phosphate-buffered saline (PBS) and subsequently
lysed using a luciferase assay reagent (PicaGene MelioraStar-LT Luminescence Reagent,
TOYO B-NET Co., Ltd., Tokyo, Japan). Luminescence signals were measured using an
EnVision multilabel plate reader (PerkinElmer, 2104-0020, Waltham, MA, USA).

4.4. Cell Counting Kit-8 (CCK-8) Assay

We assessed the cytotoxic effect of PAA on HEK293T and VeroE6/TMPRSS2 cells
using cell counting kit-8 (CCK-8) assay. Cytotoxicity was assessed at concentrations similar
to those used in the luciferase assay for pseudotyped virus infection. To confirm the
cytotoxicity of the disinfectants, the virus solution was not added. Briefly, HEK293T and
VeroE6/TMPRSS2 cells were seeded in 96-well plates at a density of 2 × 104 cells/well
and cultured in the above complete medium for 24 h. Thereafter, PAA was added at the
indicated concentration, and the cells were cultured for three days. Then, we added 10 µL
CCK-8 solution (Dojindo Laboratories, Kumamoto, Japan) to the cells and incubated them
for 3 h at 37 ◦C. A multimode microplate reader (SpectraMax iD3; Molecular Devices,
San Jose, CA, USA) was used to detect the absorbance at 450 nm.

4.5. Computational Analysis

The three-dimensional structures of spike protein were obtained from the closed state
(PDBID: 6VXX, https://www.rcsb.org/structure/6vxx, accessed on 17 February 2022) and
open state (PDBID 6VYB, https://www.rcsb.org/structure/6VYB, accessed on
17 February 2022) downloaded from RSCB PDB (https://www.rcsb.org/) [24]. Both mod-
els had 27–1147 residues, but some loop regions and disulfide bridges were missing. Miss-
ing amino acids were compensated using Discovery Studio (Dassault Systemes Co., Ltd.,
Velizy-Villacoublay, France). Next, all-atom simulations were run using Amber16 (https:
//ambermd.org/), and the parameter sets were modeled in the ff14SB force field. Each
structure was placed in a periodic box of TIP3P water with an 8 Å solvent buffer between
the spike protein and edge of the box. Energy minimization was performed under a
constant volume in 10,000 steps, consisting of 2000 steepest descent and 8000 conjugate
gradient. Heating was performed from 0 to 310 K (0.7 ns) and maintained at 310 K (0.3 ns).
Equilibration was performed using NPT ensemble for 2 ns. The cutoff distance for non-
bonded pair interactions was 10 Å. Finally, production simulation was obtained for 50 ns
trajectories every 0.5 ns under 310 K and one atom. The reaction between hydroxyl radicals
and Cys480-Cys488 in the spike protein was conducted using DFT calculations in Material
Studio (Dassault Systemes Co., Ltd., Velizy-Villacoublay, France). DFT calculates the quan-
tum mechanics of the internal energy of molecules and predicts the reaction. Spike protein
was obtained by MD simulation, and six residues (Pro479-Cys480-Asn481, Asn487-Cys488-
Tyr489) were extracted from a 3 Å region in the center of Cys480-Cys488. The six residues
and hydroxyl radicals were set and reacted using DFT calculations.

4.6. Western Blot Analysis

HEK293T cells were seeded in a 12-well plate at a density of 2 × 105 cells/well and
cultured for 24 h. Next, the cells were transiently transfected with each spike plasmid
and cultured for two days. Thereafter, the cells were lysed using ULTRARIPA A buffer
(BioDynamics Laboratory Inc., Tokyo, Japan). Cell lysates were treated with PAA at the
indicated concentration for 10 min. Then, the amount of protein in the cell lysates was
measured using BCA protein assay kit (Takara Bio Inc., Shiga, Japan). Equal amount of
protein was determined by SDS-PAGE and electrotransferred to an Immobilon-P PVDF

https://www.rcsb.org/structure/6vxx
https://www.rcsb.org/structure/6VYB
https://www.rcsb.org/
https://ambermd.org/
https://ambermd.org/
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membrane (EMD Millipore, Billerica, MA, USA). Western blotting was performed using the
standard method, and the following antibodies were used: anti-SARS-CoV-2 spike (1A9,
GTX632604, mouse monoclonal antibody, GeneTex, Irvine, CA, USA), anti-SARS-CoV-2
nucleocapsid (HL344, GTX635679, rabbit monoclonal antibody, GeneTex), anti-GAPDH
(3H12, M171-3, mouse monoclonal antibody, MBL), and horseradish peroxidase-conjugated
sheep anti-mouse IgG (NA931, Amersham Biosciences, Amersham, UK). Immunoblot
signals were developed using EzWestLumi plus (ATTO Corp., Tokyo, Japan) and recorded
with an ImageQuant LAS4000 mini image analyzer (GE Healthcare, Tokyo, Japan).

4.7. Preparation of Recombinant RBD and Soluble ACE2

The expression vector encoding the RBD of the Wuhan type and mutants SARS-CoV-
2 spike protein was constructed as previously described [57]. The plasmids of SARS-
CoV-2 spike protein RBD mutants were prepared by site-directed mutagenesis using
the KOD-Plus-Mutagenesis kit (Toyobo, Osaka, Japan). A gene encoding human sol-
uble ACE2 (sACE2, GenBank accession number NM_001371415.1, residues 18–614 aa)
fused to a C-terminal Fc tag was cloned into the pSecTag2 vector (Thermo Fisher Sci-
entific) between the Ig kappa signal peptide and stop codon. Recombinant proteins
were produced using FreeStyle 293-F cells, according to the manufacturer’s instructions
(Thermo Fisher Scientific).

4.8. ELISA for In Vitro Binding Assay

We coated 96-well EIA/RIA plates (Corning-Coaster, Tokyo, Japan) with 100 µL
of 1 µg/mL human sACE2-Fc protein overnight at 4 ◦C. The plates were washed with
PBS containing 0.1% Tween 20 and blocked with 100 µL of 1% bovine serum albumin
(BSA) (fatty acid-free, Fujifilm Wako Pure Chemical, Osaka, Japan) in PBS for 2 h at room
temperature. SARS-CoV-2 RBD peptides (100 ng/well) were preincubated with 100 µL
of 1% BSA in PBS at the indicated concentrations of PAA for 30 min at room temperature
and then added to the wells. After incubation for 2 h at room temperature, the plates were
washed with PBS/Tween and treated with 200 µL PBS/BSA containing mouse Avi-tag
monoclonal antibody (GenScript, Tokyo, Japan, A01738, 1:5000 dilution) for 1 h at room
temperature. After washing with PBS/Tween, the plates were further incubated with
100 µL PBS/BSA containing HRP-conjugated anti-mouse IgG (1:5000 dilution, Jackson
ImmunoResearch Laboratory Inc., West Grove, PA, USA) for 1 h at room temperature.
Bound RBD proteins were detected by adding 100 µL TMB substrate solution (Thermo
Fisher Scientific, Waltham, MA, USA). The reaction was stopped by the addition of 50 µL of
2 M H2SO4. Optical density was measured at 450 nm using a multimode microplate reader
(SpectraMax iD3; Molecular Devices).

4.9. SARS-CoV-2 Viral RNA Extraction and qRT-PCR

VeroE6/TMPRSS2 cells were seeded in 48-well clear plate at a density of 5.0 × 104 cells
per well and cultured for 24 h. After culturing for 24 h, the cells were inoculated with 0.001
TCID 50/cell of SARS-CoV-2 JPN/TY/WK-521 strain and incubated at 37 ◦C in DMEM
supplemented with 2% FBS for 2 h. For PAA pretreatment, virus was preincubated with
2% FBS medium containing PAA at the indicated concentration for 30 min at 37 ◦C, and
then added to well. After 2 h, PAA and virus mixture was removed. Cells were washed
three times with 10% FBS containing medium and subsequently cultured for 22 h. Viral
RNA was extracted from same aliquots of cell suspension using the Blood/Cultured cell
total RNA kit (Favorgen Biotech Corporation, Pingtung, Taiwan). Real-time qPCR was
performed by using THUNDERBIRD probe one-step qRT-PCR kit (Toyobo Co., Ltd., Osaka,
Japan) in a Light Cycler 96 (Roche Diagnostics, Basel, Switzerland) with the virus specific
primers and a TaqMan probe suitable for the detection of SARS-CoV-2 designed by NIID
(N2 set, Eurofins Genomics, Tokyo, Japan).
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4.10. Statistical Analysis

Statistical analyses were performed using the GraphPad Prism software (version 9.4.1).
Data were expressed as mean and standard deviation (SD). Differences between the means
were evaluated using one-way ANOVA and Dunnett’s method for multiple comparisons.
Differences between groups were considered significant if p < 0.05.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24010020/s1.
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