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Abstract: Endocannabinoid system activity declines with age in the hippocampus, along with the
density of the cannabinoid receptor type-1 (CB1). This process might contribute to brain ageing,
as previous studies showed that the constitutive deletion of the CB1 receptor in mice leads to
early onset of memory deficits and histological signs of ageing in the hippocampus including
enhanced pro-inflammatory glial activity and reduced neurogenesis. Here we asked whether the CB1
receptor exerts its activity locally, directly influencing hippocampal ageing or indirectly, accelerating
systemic ageing. Thus, we deleted the CB1 receptor site-specifically in the hippocampus of 2-month-
old CB1flox/flox mice using stereotaxic injections of rAAV-Cre-Venus viruses and assessed their
social recognition memory four months later. Mice with hippocampus-specific deletion of the CB1
receptor displayed a memory impairment, similarly as observed in constitutive knockouts at the
same age. We next analysed neuroinflammatory changes in the hippocampus, neuronal density and
cell proliferation. Site-specific mutant mice had enhanced glial cell activity, up-regulated levels of
TNFα in the hippocampus and decreased cell proliferation, specifically in the subgranular zone of
the dentate gyrus. Our data indicate that a local activity of the CB1 receptor in the hippocampus is
required to maintain neurogenesis and to prevent neuroinflammation and cognitive decline.

Keywords: CB1 receptor; hippocampus; ageing; social memory; rAAV-mediated deletion

1. Introduction

Healthy ageing is associated with a decline in cognitive abilities due to the cumulative
effect of increasing neuroinflammatory glial activity, elevated levels of toxic aggregates of
macromolecules, decreasing synapse densities and neuronal loss [1]. Importantly, there is
an enormous variance in the speed of brain ageing between individuals and also in the onset
and intensity of age-related changes between brain areas [2]. The reason for this variability
is not fully understood, but it is hypothesized that the activity of the endocannabinoid
system (ECS) plays a significant role in this process [3,4].

The ECS consists of the G protein-coupled cannabinoid receptor type-1 (CB1) and
type 2 (CB2), their endogenous ligands and their synthesizing and degrading enzymes [5].
The endogenous cannabinoids (endocannabinoids) including anandamide (AEA) and
2-arachidonoylglycerol (2-AG), are produced on demand by lipid precursors [6] and can
serve as retrograde transmitters in neuron-neuron communication, but they also mediate
neuron-glia interaction [7] and are probably involved in intracellular signaling regulating
mitochondrial activity [8].

In the brain, CB1 is the most abundant G-protein coupled receptor present mostly in
neurons [9], whereas the expression of CB2 is low and localized mainly on glial cells [10].
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The expression levels of CB1 receptors in the brain are strongly cell-type specific. In the hip-
pocampus, the majority of cholecystokinin-positive, and a subset of calbindin-positive
GABAergic interneurons, contain an extraordinarily high level of CB1 receptors [11],
whereas the glutamatergic principal neurons have only a moderate expression [12]. CB1
receptor is present at very low levels in astrocytes [13] or resting microglia [14], but its
expression is up-regulated when activated. Endocannabinoids, by activating microglial
cannabinoid receptors (mostly CB2), reduce the inflammatory glial effect driving the M1
microglial phenotype to the anti-inflammatory M2 or the resting M0 states [15]. Simi-
larly, synthetic cannabinoids exert an anti-inflammatory effect on isolated microglia [16].
Furthermore, homeostatic, surveying microglia release 2-AG and anandamide, and its
production increases upon activation. Because 2-AG up-regulates microglial expression of
CB1, while AEA increases the expression of CB2 receptors [17], it is feasible that this step is
responsible for the elevated cannabinoid receptor expression in activated microglia. This
process helps to terminate the inflammatory reaction promoting the anti-inflammatory,
protective microglial phenotype [18]. Failure in the termination of inflammatory processes
significantly contributes to the pathogenesis of neuroinflammation during ageing [19] or in
neurodegenerative diseases [20]. Indeed, a persistent pro-inflammatory environment acti-
vates chronically microglia and astrocytes [21] and leads to axonal degeneration, synaptic
impairments [22] and eventually to cognitive deficits. Considering the neuroprotective ef-
fect of cannabinoids, it was suggested that the increased CB1 receptor density in the brain of
Alzheimer’s disease (AD) patients is a compensatory effect to the enhanced cytotoxicity and
thus can be used as a therapeutic target [20]. In vitro study showing that 2-AG protected
primary pyramidal neurons against amyloid beta-induced cytotoxicity supported this
hypothesis [23]. Moreover, in vivo preclinical studies demonstrated that chronic treatment
with the phytocannabinoid CB1 receptor agonist ∆9-Tetrahydrocannabinol (THC), together
with cannabidiol slowed down the development of Alzheimer-like pathology [24] and
reduced the symptoms [25] in the advanced phase of the disease in the APP/PS1 transgenic
mouse model of AD. In the clinical trials, however, only alleviation of some symptoms was
observed in THC-treated AD patients [26]. In Parkinson’s disease, there is no definitive
change in CB1 or CB2 receptor levels [27]. In preclinical animal models of the disease, the
CB2 agonists JW015 and AM1241 as well as the CB1 agonists WIN 55,212-2 and HU210
showed neuroprotective and anti-inflammatory effects [20]. In humans in clinical trials,
similarly as in AD, only improvement in some symptoms was reported by administering
the synthetic cannabinoid nabilone [28] or cannabidiol [29]. Lastly, in multiple sclerosis
(MS) the combination of analgesic and motor effects with the anti-inflammatory and neuro-
protective effects of cannabinoids is especially beneficial. Post-mortem histological analysis
of MS patients revealed that cannabinoid receptors were present in several cell types around
the injured axons [30]. Pharmacological treatment with cannabinoids effectively reduces
symptoms of pain and spasticity in MS patients, thus significantly improving their quality
of life without altering substantially the disease development [31].

Despite having an important homeostatic role, the ECS activity is not stable throughout
life but changes during pathological conditions [32,33] and in physiological ageing [34,35].
The activity of ECS in the brain declines in advanced age because of a decreased den-
sity of CB1 receptors [36], their reduced coupling with G-proteins [37,38] and diminished
levels of 2-AG due to a lowered expression of its main synthesizing enzyme diacylglyc-
erol lipase alpha [39]. Because of the neuroprotective and anti-inflammatory activity of
cannabinoid signaling [18], its decline probably contributes to the age-related increase in
pro-inflammatory glial effect [19]. Although the presence and intensity of these changes
vary between brain areas, all of them are present and prominent in the hippocampus [8,39].
Changes in ECS activity can substantially influence the ageing process because cannabi-
noid signaling is involved in the regulation of key homeostatic processes identified as
hallmarks of ageing [40]: it mediates intercellular communication [7], influences neuronal
stem cell activity [41], mitochondrial activity [8] and regulates autophagy, thus proteosta-
sis [42]. Indeed, deletion of the CB1 receptor gene (Cnr1) led to several signs of early onset
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systemic ageing in mice, such as skin and testis atrophy [3] as well as osteoporosis [43].
Behavioral tests revealed that Cnr1 null mutants mice (referred to as Cnr1–/–) showed
learning deficits already at the age of 6 months in the partner recognition test and im-
paired spatial and operant learning at the age of 12 months [44,45]. These cognitive deficits
were associated with pro-inflammatory glial activity, enhanced accumulation of the ageing
marker lipofuscin [46], and reduced neurogenesis as well as neuronal loss, specifically
in the hippocampus [13,47]. All these ageing-related changes in the hippocampus could
be responsible for the learning deficits observed in the Cnr1–/– mice. However, whether
exacerbated hippocampal ageing is a result of a locally reduced CB1 receptor activity or
an indirect consequence of a generally accelerated systemic ageing is not known. In the
present study, we asked whether the hippocampus-specific deletion of the CB1 receptor
elicits similar learning impairments and enhanced pro-inflammatory glial activity in the
hippocampus as in mice with the constitutive deletion of the receptor.

2. Results
2.1. Validation of Site-Specific Deletion of CB1 in the Hippocampus

To assess the level of rAAV-mediated deletion of the CB1 receptor in the hippocampus,
we measured the Cnr1 mRNA expression levels by RT-PCR and the CB1 protein levels
by immunohistochemistry 4 months after the viral injection, in 6-month-old CB1flox/flox

mice. We found a significant down-regulation of Cnr1 in rAAV-Cre-Venus injected mice
(p = 0.0288) (Figure 1A), as well as a decreased positive area stained by CB1 in cornu
ammonis 1 (CA1) (p = 0.0010), dentate gyrus (DG) (p = 0.0110) and cornu ammonis 3
(CA3) (p = 0.0291) regions of the hippocampus of rAAV-Cre-Venus mice, compared to their
age-matched controls, injected with the empty vector (Figure 1B,C). We also measured the
area covered by the reporter protein Venus and we found that it was the same between the
two groups (Figure 1C).
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Figure 1. (A) mRNA expression levels of Cnr1 in the hippocampus. (B) Confocal microscopy
pictures representing the CB1 (red), Venus (yellow) and DAPI (blue) immunofluorescence and
(C) quantification of the CB1-IR and Venus positive areas in the cornu ammonis 1 (CA1), cornu
ammonis 3 (CA3) and dentate gyrus (DG) hippocampal regions of 6-month-old rAAV-Cre-Venus
and rAAV-Venus (control) injected CB1flox/flox mice. Scale bar 100 µm. Individual data points, mean
value ± SEM are shown. Student’s unpaired t-test. * p < 0.05; ** p < 0.01.
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2.2. Microglia and Astrocytes Activity in the Hippocampus

We next asked if the deletion of the CB1 receptor in the hippocampus promoted any
pro-inflammatory glial activity in rAAV-Cre-Venus mice.

Therefore, we analysed the density of ionized calcium-binding adapter molecule 1
(Iba1)-positive microglia and the area-covered by glial fibrillary acidic protein (GFAP)-
positive astrocyte in the hippocampus. We found that in rAAV-Cre-Venus mice the den-
sity of Iba1 positive cells was significantly enhanced compared to the age-matched con-
trols in all the three regions of the hippocampus (CA1: p = 0.0249; CA3: p = 0.0130;
DG: p = 0.0093) (Figure 2A,B). On the other hand, the area covered by GFAP showed a promi-
nent change only in the CA1 hippocampal region of rAAV-Cre-Venus mice (p = 0.0495) than
the rAAV-Venus group (Figure 2C,D).
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Figure 2. (A,C) Representative confocal photomicrographs of Iba1 (green), GFAP (red) and DAPI (blue)
immunostaining in the cornu ammonis 1 (CA1), in the cornu ammonis 3 (CA3) and in the dentate gyrus
(DG) regions of the hippocampus and (B,D) their quantification. Scale bar 50 µm. Individual data points
and mean value ± SEM are shown. Student’s unpaired t-test. * p < 0.05; ** p < 0.01.

2.3. Hippocampal mRNA Expression of Pro-Inflammatory Cytokines

Activation of microglia and astrocytes is accompanied by increased secretion of pro-
inflammatory molecules such as cytokines, chemokines and other inflammatory mediators
that lead to a progressive state of chronic inflammation in the brain [48,49]. To determine
if the CB1 receptor exerts a local anti-inflammatory activity in the hippocampus, we mea-
sured the hippocampal mRNA expression levels of tumour necrosis factor-alpha (TNFα),
interleukin 6 (IL-6) and interleukin 1 beta (IL-1β) using Real-Time PCR in 6-month-old mice.
Mice lacking the CB1 receptor in the hippocampus showed a significant up-regulation of
TNFα mRNA expression, compared to their age-matched controls (p = 0.0192) (Figure 3A).
On the other hand, mRNA expression analysis from IL-6 and IL-1β did not reveal any
difference between the two groups (Figure 3B,C).
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Figure 3. Hippocampal mRNA expression levels of the pro-inflammatory cytokines (A) TNFα;
(B) IL-6 and (C) IL-1β. Individual data points, and mean value ± SEM are shown. Student’s unpaired
t-test. * p < 0.05.

2.4. Cell Proliferation in the Subgranular Zone of DG and in the Subventricular Zone of the
Lateral Ventricle

We then investigated whether the deletion of the CB1 receptor in the hippocampus
affected the neurogenesis in the DG. Analysis of Ki-67, a marker for cell proliferation,
revealed that rAAV-Cre-Venus mice had a considerably decreased number of proliferating
cells in the subgranular zone (SGZ) of the DG (p = 0.0072) compared to rAAV-Venus injected
mice (Figure 4A,C). To test if the reduction in the cell proliferation observed in Cre-injected
mice was due to a site-specific loss of the CB1 receptor, we next counted the number of
Ki-67 positive cells in the subventricular zone (SVZ) of the lateral ventricle. We did not find
any difference between the two groups, thus proving the local activity of CB1 (Figure 4B,C).

2.5. Neuronal Densities in the Hippocampus

Next, we stained neurons with the neuronal nuclear protein NeuN to evaluate if the
number of neurons differed between the two groups. Interestingly, neuronal densities of
rAAV-Cre-Venus mice and their age-matched controls were similar in all the three hip-
pocampal regions (Figure 5A,B).

2.6. Evaluation of the Social Memory in the Partner Recognition Test

To assess the social memory in the 6-month-old mice, we used the partner recognition
test as the behavioural paradigm. In the first session of the test, the social preference of mice
was measured as the total time spent exploring the partner or an object. rAAV-Venus control
mice and rAAV-Cre-Venus mice with a site-specific deletion of Cnr1 performed similarly,
displaying a significant preference for the mouse over the object on both experimental
days (day 1: rAAV-Venus p = 0.0001; rAAV-Cre-Venus p < 0.0001. Day 2: rAAV-Venus
p = 0.0033; rAAV-Cre-Venus p = 0.0001) (Figure 6A,B). These findings suggest that the
hippocampal CB1 receptor does not play a significant role in the sociability of mice. In
session two, when we assessed the social novelty preference, rAAV-Venus mice showed
a higher preference for the novel partner after a delay of 1 h (p = 0.0426) compared to
rAAV-Cre-Venus mice (Figure 6C), as they spent significantly more time interacting with
the unfamiliar mouse (p = 0.0212) (Figure 6E). Most importantly, their locomotor activity,
measured as speed and distance travelled, was indistinguishable between the two groups
(Figure 6G,H). Thus, these data suggest that mice with reduced hippocampal CB1 receptor
activity cannot discriminate between familiar and novel partners due to a memory deficit.
We also noted that after an inter-trial interval of 2 h, there was no significant difference in
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the interaction time between the two trials in the control group, suggesting they also failed
to recognize the previously encountered mouse (Figure 6D,F).
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Figure 4. Representative confocal microscopy photomicrographs showing Ki-67 (red) and DAPI
(blue) staining (A) in the subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus and
(B) in the subventricular zone (SVZ) of the lateral ventricle (LV) and (C) their quantification. Scale
bar 50 µm. Individual data points and mean value ± SEM are shown. Student’s unpaired t-test.
** p < 0.01.

CA1 CA3

DG

rA
AV
-Ve
nu
s

rA
AV
-C
re-
Ve
nu
s

0.0030

0.0035

0.0040

0.0045

0.0050

N
eu

N
+ 

ce
lls

/µ
m

2

rA
AV
-Ve
nu
s

rA
AV
-C
re-
Ve
nu
s

0.000

0.005

0.010

0.015

N
eu

N
+ 

ce
lls

/µ
m

2

rA
AV
-Ve
nu
s

rA
AV
-C
re-
Ve
nu
s

0.010

0.012

0.014

0.016

0.018

0.020

N
eu

N
+ 

ce
lls

/µ
m

2

rA
AV
-V
en
us

rA
AV

-C
re
-V
en
us

DGCA1 CA3

DAPI 
NeuN

A B

Figure 5. (A) Confocal microscopy pictures of NeuN (red) and DAPI (blue) immunofluorescence and
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Figure 6. Social recognition memory in 6-month-old mice. (A) Social preference on Day 1 and
(B) Day 2 of the social preference task. Social memory as social novelty preference (C,E) after 1 h on
Day 1 and (D,F) 2 h on Day 2 inter-trial intervals. Locomotor activity of mice measured as (G) distance
travelled and (H) velocity. Individual data points, and mean value ± SEM are shown. Two-way
ANOVA, followed by Bonferroni post-hoc test for the social preference and Student’s unpaired and
paired t-test for the social novelty preference. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

3. Discussion

Previous studies have suggested that ECS activity significantly influences the ageing
process: reduced CB1 receptor activity in mice with constitutive or GABAergic neuron-
specific deletion of Cnr1 led to an early onset of age-related deficits [13], whereas phar-
macological elevation of CB1 receptor activity in aged mice restored several symptoms of
brain ageing [50]. Understanding the mechanism by which CB1 receptor activity influences
cognitive ageing is necessary to utilize the potential anti-ageing effect of CB1 receptor
activation [51,52]. Although most of the histological changes were restricted in the hip-
pocampus of the Cnr1–/– mice, it is not known whether it is due to a higher sensitivity of this
brain area to a generally accelerated systemic ageing or due to the local effect of decreased
CB1 receptor activity. Our study now clearly shows that an approximately 50% reduction
in CB1 receptor levels is enough to elicit similar learning deficit and pro-inflammatory
glial activity as observed in the constitutive knockouts, thus suggesting the importance
of local effects. Previously, we showed that young (2–3-month-old) null mutants mice do
not display any histological change in the hippocampus and their learning ability is at
least as good as in wild-type mice in the spatial or working-memory tests, in operant or
skill-learning paradigms [44] whereas their social [53] and object recognition memory [54]
is even better than their wild-type siblings. In the 6-month-old age group, however, an
increasing number of Iba1-positive microglia and elevated GFAP-positive areas suggested
an increased pro-inflammatory glial activity in the hippocampus, whereas the cortex and
striatum remained unaltered from these changes [13]. Importantly, we found the first sign
of significant learning deficit in Cnr1–/– mice in this age group, namely in the social recog-
nition test [53] which was the most sensitive model to age-related changes in our hands. In
older mice, as the recognition ability of wild-type animals also started to wane, the differ-
ence between the genotypes decreased and in older age groups practically disappeared [44].
Additionally, Cnr1–/– mice reported several signs of accelerated bodily ageing: they dis-
played atrophy in the subdermal fat and testis earlier than their wild-type siblings [53].
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Several lines of evidence showed that age-related changes in peripheral organs trigger
or accelerate brain ageing, thus cognitive decline. During the pathophysiology of many
age-related peripheral conditions such as osteoarthritis or chronic kidney disease, there is
an increase in cellular senescence, while clearance of these senescent populations mitigated
tissue damage [55,56]. Intriguingly, recent meta-analysis studies of ageing populations
with either osteoarthritis or chronic kidney disease revealed a link between these clinical
conditions to dementia, to support that they independently contribute to it [57,58]. It was
demonstrated that blood-born factors mediate the effects of peripheral ageing on the brain
because young blood reversed cognitive deficits and reduced neurogenesis in aged animals
and vice versa [59,60]. Our results make this scenario that accelerated systemic ageing
is responsible for the cognitive decline and ageing symptoms in the hippocampus now
unlikely. We hypothesize, instead, that a local effect of the reduced CB1 receptor activity is
responsible for the observed phenotype in Cnr1–/– because a partial hippocampal deletion
of the CB1 receptor has induced a similar partner recognition deficit as found in the null mu-
tants. The motor activity or social preference did not change in the hippocampus-specific
mutants, showing the specificity of the effect of reduced CB1 signaling on the cognitive
domain. Although previous studies revealed that the ECS has an important role in social
interaction [61] and reward [62] by influencing the mesolimbic dopaminergic system [63],
we now show that a 50% reduction in hippocampal CB1 receptor activity does not influence
this function.

A characteristic histological change in the hippocampus after site-specific deletion of
the CB1 receptor was the enhanced pro-inflammatory glial activity. Neurons exert an in-
hibitory control on the microglia through soluble factors [64] as well as through directly
interacting proteins [65]. Deletion of a limited neuronal population, like basal forebrain
cholinergic neurons, leads to an enhanced microglial pro-inflammatory activity and to
disturbance in ECS signaling [66]. The ECS plays an important role in microglial activity reg-
ulation: cannabinoid receptor antagonists increase pro-inflammatory activity [67] whereas
agonists decrease it [68]. It has been hypothesized that the ECS modulates microglial
activity mostly indirectly, because cannabinoid receptors are expressed at very low levels
in resting microglia [69,70]. As observed in a recent study, although present to a low extent,
the CB1 receptor might influence microglial activity, because microglia-specific deletion of
CB1 receptors led to a reduced reactivity to LPS in males, but not in females [71], without
altering the behaviour. The fact that microglia-specific deletion of CB1 receptors did not
lead to any peculiar phenotype, suggests that the effect of microglial endocannabinoids
on autoreceptors is rather limited. Microglial cells synthesize both 2-AG and anandamide
in an activity-dependent manner: when activated, they significantly increase the syn-
thesis and release of endocannabinoids [17]. The released microglial endocannabinoids
bind and activate mostly neuronal CB1 receptors. Cannabinoid signaling plays a crucial
role in the communication between microglia and GABAergic neurons, which express
exceptionally high levels of CB1 receptors [72]. GABAergic but not glutamatergic neuron-
specific deletion of the CB1 receptor induced a similar increase in pro-inflammatory glial
activity associated with learning/memory deficits, as previously observed in constitutive
knockouts [47] or hippocampus-specific knockouts, as found in the present study. We,
therefore, hypothesized that 2-AG produced by microglia activates the CB1 receptors
on GABAergic neurons and provides a continuous feedback control on glial activity. If
this feedback signaling is reduced, the inhibitory control loosens, allowing a more pro-
inflammatory microglial phenotype.

Thus, a decreasing expression of CB1 receptors during ageing may significantly impair
the regulatory effect of the cannabinoid system on microglial activity and contribute to the
enhanced pro-inflammatory glial activity in the ageing brain.

In pathophysiological conditions like traumatic brain injury, ischemia or other causes
of hypoxia, there is a long-term rise of glutamate levels in the synaptic cleft leading then to
extrasynaptic glutamate spillover [73]. High glutamate levels, probably as a compensatory
mechanism, leads to enhanced production of inhibitory endocannabinoids [74,75]. Glu-
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tamate release induces microglial process extension toward neurons [76], whereas 2-AG
induces chemotaxis in microglial cells acting on their CB2 receptors [74,77].

Several lines of evidence suggest that intrinsic and extrinsic factors significantly reg-
ulate adult neurogenesis and ECS activity has a strong influence on it: pharmacological
elevation of cannabinoid receptor activity could elevate the proliferative capacity of pro-
genitor cells and survival of neurons [78], whereas genetic deletion of CB1 receptor [79,80]
or Dagla [81] reduces neurogenesis in a cell-type specific manner [82]. Our results show-
ing reduced neurogenesis locally, in the subgranular zone but not in the more distant
subventricular zone, which was free from the AAV-mediated deletion of CB1 receptors,
demonstrate the importance of local CB1 receptor signaling in the maintenance of neuronal
progenitor cell proliferation.

It is noteworthy that despite the pro-inflammatory glial activity and a lower ratio of
neurogenesis the number of pyramidal or granular cells did not differ between the groups.
We cannot exclude, however, that in advanced age all these age-associated changes lead to
reduced neuronal numbers as observed in 12-month-old constitutive knockouts [47].

We hypothesize that reduced neurogenesis and increased pro-inflammatory glial activ-
ity in the hippocampus of the site-specific CB1 receptor knockouts are responsible for their
learning deficits. We, therefore, assume that endocannabinoid signaling influences brain
ageing locally, through the modulation of neuron-glia communication and neurogenesis.

4. Materials and Methods
4.1. Animals

All the experiments were performed with young (2–3 months) and middle age
(6 months) B6.cg Cnr1 tm1.2Ltz (CB1flox/flox) male mice. Mice were group-housed in
standard laboratory cages, under reversed light/dark cycle. Water and food were provided
ad libitum. Care of the animals and conduction of all experiments were approved by the
Landesamt fuer Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (LANUV
NRW; 81-02.04.2019.A421).

4.2. Stereotaxic Viral Injections

The site-specific deletion of the floxed Cnr1 gene was performed through stereotaxic
viral injections in 2–3-month-old CB1flox/flox mice. Recombinant adeno-associated viruses
(rAAV1/2) expressing the Cre recombinase and the reporter gene Venus (named as rAAV-
Cre-Venus) or the empty vector containing the reporter gene for the control group (referred
as to rAAV-Venus) were provided by the Viral Platform of the University of Bonn and
were injected bilaterally in the dorsal and ventral hippocampus (coordinates for the dorsal
hippocampus: −1.8, ±1.0, −1.4; coordinates for the ventral hippocampus: −3.1, ±2.7,
−3.6). 30 min before starting the surgery, mice were intraperitoneally given 0.1 mg/kg
buprenorphine. They were then anaesthetized in a box with a mixture of oxygen 3% and
isoflurane 2.5% and head-fixed in a computer-driven (Neurostar) stereotaxic (Stoelting)
injection device. The anaesthesia was maintained at 1% isoflurane until the end of the
surgery. Ear bars were soaked with a lidocaine gel to reduce any sign of discomfort and the
eyes were protected from drying with an eye-protective gel. After the confirmation of the
anaesthesia by tail pinch with forceps, the skin was shaved and disinfected with povidone-
iodine and a 10 mm incision was made with a sterile scalpel. The bregma and lambda were
made white with swabs dipped in hydrogen peroxide 30%. Bilateral hippocampal injections
(1 µL per injection site, 0.2 µL/min for 5 min) was made with a 10 µL Hamilton syringe.
The needle was left in position for an additional 5 min before being slowly withdrawn. At
the end of the surgery, the wound was stitched, mice were returned to the cages to recover
and any signs of discomfort were carefully monitored. The days post-surgery animals
received intraperitoneal injections with 4 mg/kg carprofen.
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4.3. Partner Recognition Test

We evaluated the social memory using the partner recognition test in 6-month-old
mice (n = 13 per group). The test was carried out in the active (dark) phase of the animals,
between 9.30 a.m. and 2 p.m., in a dimly lit, low-noise environment. Mice were transferred
to test rooms to adapt at least 20 min before starting the test. The test took place in an open-
field arena (44 cm × 44 cm). The floor of the arena was covered with sawdust soaked
with mice odour, so the mice felt familiar with the environment and their behavior was
not affected by changes in anxiety levels [83]. For 3 consecutive days, the animals were
habituated to the open field arena for 5 min. The experiments started on the fourth day
and consisted of two different sessions. In the first session (trial 1 or social preference
task), animals were put into the familiar arena, and they were exposed to either an object
(an empty grid cage) or a younger male mouse, from the same strain and sex as the
experimental mouse but from another cage. Partner mouse was placed in a grid cage to
avoid any inter-male aggression. The activity of mice was videotaped for 6 min, and the
time spent investigating the partner or the object was calculated by using Noldus Ethovision
System software (NoldusInformation Technology, Wageningen, The Netherlands). In the
second session (trial 2 or novelty preference task) after a variable interval (day 4—1 h,
day 5—2 h) test mice were placed again in the arena with the two grid cages, but in this
session, both cages contained a mouse, the previously seen mouse (familiar) and a new
one (unfamiliar). The activity was videotaped for a total time of 3 min. The animals
were left undisturbed between two experiments for at least 24 h. A significant reduction
in the time the animals spent with social interactions in the second presentation was
considered an indication that the animals recognized the partner. Recognition index (%)
was calculated as follows: (Tunf − Tf)/(Tunf + Tf) × 100, where Tunf represents the time
spent with an unfamiliar mouse and Tf is the time spent with the familiar mouse.

4.4. Real-Time PCR

Mice were perfused with ice-cold phosphate buffer solution (PBS), and the hippocam-
pus was isolated, fresh frozen on dry ice and stored at −80 ◦C until further processing.
Hippocampi (n = 8 per group) were lysed in TRIzol (Life Technologies), and total RNA was
extracted according to the manufacturer’s protocol. Samples were treated with RNase-free
DNase I (1 U/1 µg total RNA) to remove DNA contamination. The quality of the RNA was
assessed by measuring the ratio of the absorbance at 260 nm and 280 nm using a Nanodrop
2000 Spectrometer (ThermoScientific). Probes with a 260/280 ratio of less than 1.9 were
rejected. cDNAs were synthesized using the SuperScriptFirst-Strand Synthesis System for
RT-PCR kit (Invitrogen Corp., Carlsbad, CA, USA) with random hexamer primers. Total
RNA (0.6 µg) was used as starting material for cDNA synthesis. Differences in mRNA
expression were determined in triplicate by custom TaqMan® Gene Expression Assays
(Applied Biosystems, Darmstadt, Germany): Mm00432621_s1 for Cnr1, Mm00446190_m1
for IL-6, Mm00434228_m1 for IL-1β, Mm00443258_m1 for TNFα and Mm01545399_m1
for Hprt, used as a reference gene to standardize the amount of target cDNA. Typically,
a reaction mixture consisted of 1× TaqMan® Gene Expression Master Mix (Applied Biosys-
tems, Darmstadt, Germany), 2 µL cDNA and 1× Custom TaqMan® Gene Expression Assay.
Samples were processed in a 7500 Real-Time PCR Detection System (Applied Biosystems,
Darmstadt, Germany) with the following cycling parameters: 95 ◦C for 10 min (hot start),
40 cycles at 95 ◦C for 15 s (melting) and 60 ◦C for 1 min (annealing and extension). Anal-
ysis was performed using the 7500 Sequence Detection Software version 2.2.2 (Applied
Biosystems, Darmstadt, Germany) and data were obtained as a function of threshold cycle
(Ct). Relative quantitative gene expression was calculated with the 2−∆Ct method.

4.5. Immunohistochemistry

Mice (n = 3 per group) were anaesthetized with a cocktail of xylazine/ketamine
solution were transcardially perfused with ice-cold PBS, followed by a 4% paraformalde-
hyde (PFA) solution and used for CB1, Iba1 and GFAP staining. A second cohort of mice
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(n = 4–5 per group) was additionally injected, perfused with PBS and half brain used for
Ki-67 and NeuN staining. For NeuN staining, mice from the two cohorts were pooled
together. Brains from both cohorts were isolated and placed in 4% PFA for 2 h at +4 ◦C.
Afterwards, they were cryoprotected in 20% sucrose overnight under shaking at +4 ◦C, then
snap-frozen on dry ice-cooled isopentane, and stored at −80 ◦C until further processing.
Coronal slices of the hippocampus were serially sectioned at 18 µm using a cryostat at
−20 ◦C (Microm HM500, Med GmbH) and mounted onto glass slides. Glass slides were
kept at −80 ◦C until further use. For staining, frozen slides were left to dry for 30 min
at 38 ◦C on a hot plate. After drying, slices were framed with a PapPen, washed in PBS
for 5 min at room temperature and permeabilized in PBS containing 0.5% Triton X-100
for 1 h at RT (for Iba1/GFAP co-staining as well as for NeuN staining), and 0.5% Triton
X-100 and 3% BSA. For CB1 staining slides were permeabilized in PBS containing 0.5%
Tween 20. Non-specific binding was avoided by incubating slides for 2 h in PBS contain-
ing 3% bovine serum albumin (BSA) and 0.05% Triton X-100 (for Iba1/GFAP co-staining
and for NeuN) and 0.5% Tween-20 (for CB1). For Iba1 and GFAP co-staining slides were
incubated 24 h at +4 ◦C with primary antibodies rabbit anti-Iba1 (Wako, 1:2000 diluted in
0.3% BSA/0.05% Triton X-100 in PBS) and chicken anti-GFAP (Abcam, 1:1000 diluted in
0.3% BSA/0.05% Triton X-100 in PBS). For NeuN staining slides were incubated 24 h at
+4 ◦C with the primary antibody guinea pig anti-NeuN (Synaptic System 1:1000, diluted in
0.3% BSA in PBS) and with the primary antibody rabbit anti-Ki-67 (Abcam, 1:300 diluted in
0.5% BSA in PBS). For the CB1 staining, slides were incubated for 48 h at +4 ◦C with the
primary antibody rabbit polyclonal anti-CB1 (Calbiochem, 1:500 diluted in 3%BSA/PBS).
Afterwards, slides were washed three times for 10 min in PBS at room temperature, fol-
lowed by incubation with the respective secondary antibody for 2 h at room temperature.
Secondary antibodies used were: AF488 donkey anti-rabbit (Life Technologies, 1:1000 di-
luted in 0.3% BSA/0.05% Triton X-100), AF647 goat anti-chicken (Life Technologies, 1:2000
diluted in 0.3% BSA/PBS), AF647 goat anti-guinea pig (Life Technologies, 1:1000 diluted
in 0.3%/PBS) and AF647 donkey anti-rabbit (Life Technologies, 1:1000, diluted in 0.3%
or 0.5% BSA/PBS). Slides were then washed three times for 10 min in PBS followed by
milli-Q water for 1 min, mounted with 4′,6-diamidino-2-phenylindole (DAPI, Southern
Biotechnology Associates, Birmingham, AL, USA) and covered. Venus autofluorescence
was detected between 515 and 528 nm. Fluorescence images were acquired with an LSM
SP8 confocal microscope (Leica, Wetzler, Germany) with a 20× or 40× objective lenses. Fiji
software (NIH, Bethesda, MD, USA) was used for images quantification. Iba1 positive cells
were counted in all three regions of the hippocampus and divided by the area of interest.
Results are presented as the number of positive cells/µm2. For CB1, GFAP and Venus,
results are presented as % of area covered. The signal intensity above the threshold was
the same for all the probes within the two experimental groups. Neuronal densities were
estimated defining the NeuN positive area within the stratum pyramidale for the CA1 and
CA3 hippocampal regions and within the GCL for the DG. The number of Ki-67 cells was
counted in the SGZ of the DG and in the SVZ of the lateral ventricle. Results are expressed
as the number of positive cells/µm2. At least 4–6 slices per animal were analysed.

4.6. Statistical Analysis

Statistical analysis and data visualization were performed using GraphPad Prism
software (Ver. 9.0.0., GraphPad Software, San Diego, CA, USA). Student’s t-test was used to
detect differences between the two groups. For the social preference test two-way ANOVA
(genotype and target as main factors), followed by Bonferroni multiple comparison test was
performed. For cytokines expression analysis, ROUT test was used to exclude significant
outliers. In the partner recognition test, two control mice that remained mostly immobile in
the corners were excluded from the study. One animal where the expression of the CB1
receptor was not reduced by 50% of the mean CB1 receptor expression in control animals
was excluded from further analysis. Data are presented as means ± SEM.
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