
Citation: Zhang, D.; Xu, S.; Wu, H.;

Liu, J.; Wang, Y.; Zhu, G. Melatonin Is

Neuroprotective in Escherichia coli

Meningitis Depending on Intestinal

Microbiota. Int. J. Mol. Sci. 2023, 24,

298. https://doi.org/10.3390/

ijms24010298

Academic Editor: Rita Rezzani

Received: 29 November 2022

Revised: 19 December 2022

Accepted: 20 December 2022

Published: 24 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Melatonin Is Neuroprotective in Escherichia coli Meningitis
Depending on Intestinal Microbiota
Dong Zhang 1,2,3,†, Shu Xu 1,2,3,†, Hucong Wu 1,2,3, Jiaqi Liu 1,2,3, Yiting Wang 1,2,3 and Guoqiang Zhu 1,2,3,*

1 College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
2 Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal

Diseases and Zoonoses of Jiangsu Higher Education Institutions, Jiangsu Co-Innovation Center for
Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China

3 Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of
China, Yangzhou University, Yangzhou 225009, China

* Correspondence: yzgqzhu@yzu.edu.cn
† These authors contributed equally to this work.

Abstract: Avian meningitis Escherichia coli (E. coli) can cause acute bacterial meningitis which threat-
ens poultry health, causes great economic losses in the poultry industry, and has recently been
speculated as a potential zoonotic pathogen. Melatonin can counteract bacterial meningitis-induced
disruption of the blood–brain barrier (BBB), neuroinflammation, and reduce mortality. There are
increasing data showing that melatonin’s beneficial effects on bacterial meningitis are associated
with intestinal microbiota. In this study, our data showed that melatonin alleviated neurological
symptoms, enhanced survival rate, protected the integrity of the BBB, reduced the bacterial load in
various tissues and blood, and inhibited inflammation and neutrophil infiltration of brain tissue in an
APEC TW-XM-meningitis mice model. The results of 16S rRNA showed that melatonin pretreatment
significantly maintained the composition of intestinal microbiota in APEC-meningitis mice. The
abundance and diversity of intestinal microbiota were disturbed in APEC TW-XM-meningitis mice,
with a decreased ratio of Firmicutes to Bacteroides and an increased the abundance of Proteobacteria.
Melatonin pretreatment could significantly improve the composition and abundance of harmful
bacteria and alleviate the decreased abundance of beneficial bacteria. Importantly, melatonin failed to
affect the meningitis neurologic symptoms caused by APEC TW-XM infection in antibiotic-pretreated
mice. In conclusion, the results suggest that melatonin can effectively prevent meningitis induced
by APEC TW-XM infection in mice, depending on the intestinal microbiota. This finding is helpful
to further explore the specific target mechanism of melatonin-mediated intestinal microbiota in the
prevention of and protection against Escherichia coli meningitis.

Keywords: bacterial meningitis; APEC TW-XM; melatonin; blood–brain barrier; inflammation;
intestinal microbiota

1. Introduction

Avian pathogenic Escherichia coli (APEC) are an important extraintestinal pathogenic
Escherichia coli (ExPEC) [1]. Due to different serotypes, it can cause different diseases, such
as diarrhea, pneumonia, endocarditis, septicemia, and meningitis in poultry. In addition,
researchers have also found that meningitis-causing APEC and neonatal meningitis Es-
cherichia coli (NMEC) have similar genome structures and the same animal model; there
are also high similarities in genetic evolution and ecological distribution [2,3]. These
evidence suggest that meningitis-causing APEC has a potential risk of zoonosis, which
not only causes huge economic losses in the poultry industry, but also threatens human
health. APEC TW-XM can infect Muscovy ducks, chickens, and mice and cause severe
acute septicemia and meningitis, which show obvious meningitis neurological symptoms
with a high probability of acute death [4]. At the same time, it was also found that the
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host produced severe systemic inflammation, systemic infection, and the destruction of
the blood–brain barrier (BBB). In addition, the BBB is key to establishing and maintaining
homeostasis in the brain. Moreover, it was found that, clinically, the symptoms of bacterial
meningitis infection include anorexia, vomiting, and diarrhea, which reflect the changes
in the intestinal homeostasis and affect the development of the disease [5]. For example,
Listeria monocytogenes infection can change the intestinal microbiota of the host, which
induces an increase in the abundance of Alloprevotella, Allobaculum, and Streptococcus in
the intestinal tract, which destroys the integrity of the intestinal barrier and enters the
abdominal blood circulation to promote severe septicemia or meningitis [6]. At present, the
use of antibiotics to treat Escherichia coli meningitis can reduce mortality, but it leads to the
emergence of more drug-resistant Escherichia coli and increases the difficulty of treatment.

Melatonin (MT), originally found to be an indole neuroendocrine hormone, is synthe-
sized and secreted by the pineal gland of the brain [7,8]. The amphiphilic melatonin can
easily cross the BBB to enter the central nervous system and cerebrospinal fluid [9,10]. This
is particularly important for the effective prevention and treatment of central nervous sys-
tem diseases after exogenous melatonin supplementation. It is well known that melatonin
regulates circadian rhythm, sleep, and reproduction. Subsequently, a large number of stud-
ies have shown that melatonin has many other important functions, such as antibacterial,
antioxidant, anti-inflammatory, and antiapoptosis functions, as well as the regulation of the
immune system and intestinal microbiota [11–13]. Clinically, the preventive or therapeutic
use of melatonin should be alternatively considered. Therefore, as a natural small molecular
substance, melatonin is relatively safe compared to antibiotics. It has a low risk of side
effects, so it can be used as a candidate for alternative antidrugs [14]. At present, it has
been reported that melatonin had the beneficial effects of on protecting the integrity of
the BBB, inhibiting neuronal and glial damage in various central nervous system disease
models [11–13]. It was reported that 100 mg/kg of melatonin as a therapeutic agent de-
creased proinflammatory cytokine levels and the number of apoptotic neurons in Klebsiella
pneumoniae-infected rats [12]. Recently, it is worth noting that melatonin can influence
intestinal microbiota [15–18]. Melatonin supplements can reshape the composition of in-
testinal microbiota, resulting in the alleviation of weanling-induced stress [15]. Meanwhile,
melatonin was also demonstrated to reduce the bacterial load of enterotoxigenic Escherichia
coli (ETEC) in weanling mice, depending on the intestinal microbiota [15].

Although the effect of melatonin on intestinal microbiota has been noticed, until
recently few investigations have focused on the beneficial preventive effects of melatonin
on Escherichia coli meningitis by regulating intestinal microbiota. Therefore, 3-week-old
ICR mice were injected intraperitoneally with different concentrations of melatonin, and
then infected with meningitis strain APEC TW-XM after pretreatment for one week in this
study. The incidence and death of Escherichia coli meningitis in mice were observed, and
the effects of melatonin supplements on APEC TW-XM pathogenicity, the BBB integrity,
inflammation, intestinal microbiota were explored.

2. Results
2.1. Melatonin Supplementation Decreases APEC TW-XM Pathogenicity in ICR Mice

To determine the preventive effects of melatonin on TW-XM pathogenicity in ICR
mice, three-week-old male ICR mice were intraperitoneally injected either with melatonin
(10 mg/kg/day; 30 mg/kg/day; 60 mg/kg/day) [12,15,19,20] or NS for seven consecutive
days before TW-XM infection. As shown in Supplementary Figure S1 and Figure 1A,
8 h after infection, mice in the TW-XM and TW-XM+MT10 mg/kg groups began to de-
velop neurological symptoms of meningitis, including mental malaise, anorexia, increased
eye secretions, and unformed feces. After about 12 h, the mice developed convulsions,
neck stiffness, and, finally, frequently died of angular arch reversal. The mice in the TW-
XM+MT30 mg/kg group and the TW-XM + MT60 mg/kg group still showed lethargy, less food
intake, partial eye secretion to a certain extent, and a few phenomena such as unformed
feces, convulsions, and neck stiffness, which were significantly lower than those in the
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TW-XM group (p < 0.05). As shown in Supplementary Figure S2 and Figure 1B, the sur-
vival rates of the TW-XM group and the TW-XM + MT10 mg/kg group were significantly
lower than that of the TW-XM + MT30mg/kg group and the TW-XM + MT60 mg/kg group,
that is, the mortality rates of the TW-XM group, TW-XM + MT10 mg/kg group, TW-XM +
MT30 mg/kg group, and TW-XM+MT60 mg/kg group were 90%, 90%, 30%, and 40%, respec-
tively. The above results show that the pretreatment of melatonin at the doses of 30 mg/kg
and 60 mg/kg can significantly improve the survival rates of mice and effectively prevent
the occurrence of meningitis in mice infected with APEC TW-XM. Therefore, melatonin
at the dose of 30 mg/kg was chosen as the concentration to prevent the occurrence and
development of meningitis.
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Figure 1. The effect of melatonin on neurological symptoms, survival rates, and bacterial counts
of tissues and blood in TW−XM−infected ICR mice. (A) The neurological symptom scores of ICR
mice in different groups were analyzed at 12 h post infection. (B) The survival rates of ICR mice in
different groups were analyzed. (C) The loads of TW−XM in brain, spleen, liver, heart, lungs, and
blood were analyzed in the TW−XM group and the TW-XM+MT group at 12 h post infection. Each
point represents one mouse. All data were determined by one-way ANOVA and expressed as means
± SEM. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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Then, bacterial counts in the brain, spleen, liver, heart, lungs, and blood were, respec-
tively, analyzed, and the results showed that the bacterial counts in the above tissues and
blood were more strongly reduced when compared with the TW-XM group (Figure 1C).
Collectively, these data demonstrated that melatonin could significantly reduce APEC
TW-XM pathogenicity in ICR mice.

2.2. Melatonin Supplementation Protects the BBB Integrity in APEC TW-XM-Infected Mice

Then, we explored the effects of melatonin on the BBB integrity during meningitis TW-
XM infection. To test this, the BBB permeability was evaluated by Evans blue infiltration
assay, qualitatively and quantitatively, at 12 h post infection, after pretreatment with
melatonin for seven consecutive days. As shown in Figure 2A,B, EB could not infiltrate
the brain because of its complete BBB in the NS and MT groups. In addition, the brain
picture in the TW-XM group showed a deep blue color after EB treatment, suggesting that
TW-XM infection severely disrupted the integrity of the BBB with increased permeability,
while in the TW-XM + MT group, melatonin administration significantly attenuated the
increased permeability of the BBB when compared with the TW-XM group (p < 0.001).
Meanwhile, there was no statistically significant difference between the NS group and
TW-XM + MT group (p > 0.05) (Figure 2A,B). These data suggest that the pretreatment of
melatonin protects the BBB integrity after APEC TW-XM infection.
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were determined by one−way ANOVA and expressed as means ± SEM. **** p < 0.0001, ns p > 0.05.
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2.3. Melatonin Supplementation Inhibits the Inflammatory Response and Infiltration of
Neutrophils in APEC TW-XM-Infected Mice

As shown in Figure 3A, the qPCR results showed that the mRNA expressions of IL-1β,
IL-6, and TNF-α in the brain tissue of mice in the TW-XM group and the TW-XM + MT group
were significantly higher than those in the NS group (p < 0 01). ELISA data further validate the
results of qPCR, indicating that APEC TW-XM infection can cause severe inflammation in the
brain of mice. However, the expression of IL-1β, IL-6, and TNF-α in the brain tissue of mice
in the TW-XM + MT group was significantly lower than that in the TW-XM group, indicating
that melatonin can significantly reduce the excessive inflammatory response caused by APEC
TW-XM infection and exert an anti-inflammatory effect.

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 5 of 19 
 

 

group were significantly higher than those in the NS group (p < 0 01). ELISA data further 
validate the results of qPCR, indicating that APEC TW-XM infection can cause severe in-
flammation in the brain of mice. However, the expression of IL-1β, IL-6, and TNF-α in the 
brain tissue of mice in the TW-XM + MT group was significantly lower than that in the 
TW-XM group, indicating that melatonin can significantly reduce the excessive inflam-
matory response caused by APEC TW-XM infection and exert an anti-inflammatory effect. 

 
Figure 3. The effect of melatonin on the inflammatory response of brain and serum and the infiltra-
tion of neutrophils in the brain in APEC TW−XM−infected mice. (A) The mRNA expression and 
production of inflammatory factors in brain tissues of mice in each group by qPCR. (B) The infiltra-
tion of neutrophils in the brain was analyzed qualitatively and quantitatively by hematoxylin–eosin 
staining(bar=100μm). (C) The production of inflammatory factors in serum of mice in each group 
by ELISA. All data were determined by one-way ANOVA and expressed as means ± SEM. * p < 0.05, 
** p < 0.01, *** p < 0.001,. 

As shown in Figure 3B, a large number of neutrophils infiltrated the brain tissue of 
mice in the TW-XM group compared to the brain tissue sections of mice in the NS group 
and the MT group, while the number of neutrophils in the brain tissue of mice in the TW-

Figure 3. The effect of melatonin on the inflammatory response of brain and serum and the infiltration
of neutrophils in the brain in APEC TW−XM−infected mice. (A) The mRNA expression and
production of inflammatory factors in brain tissues of mice in each group by qPCR. (B) The infiltration
of neutrophils in the brain was analyzed qualitatively and quantitatively by hematoxylin–eosin
staining (bar = 100 µm). (C) The production of inflammatory factors in serum of mice in each group
by ELISA. All data were determined by one-way ANOVA and expressed as means ± SEM. * p < 0.05,
** p < 0.01, *** p < 0.001.
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As shown in Figure 3B, a large number of neutrophils infiltrated the brain tissue of
mice in the TW-XM group compared to the brain tissue sections of mice in the NS group
and the MT group, while the number of neutrophils in the brain tissue of mice in the
TW-XM + MT group was significantly less than that in the TW-XM group. The results
showed that melatonin could significantly alleviate the brain infiltration of a large number
of neutrophils in APEC TW-XM-infected mice.

ELISA results showed the levels of IL-1β, IL-6, and TNF-α in the serum of mice. As
shown in Figure 3C, the production of IL-1β, IL-6, and TNF-α in the serum of the TW-XM
group and the TW-XM+MT group was significantly higher than that in the NS group and
the MT group. Similarly, the production of IL-1β, IL-6, and TNF-α in the serum of the
TW-XM+MT group was significantly lower than that in the serum of the TW-XM group.
The above results show that melatonin can significantly reduce the systemic inflammation
caused by APEC TW-XM infection in mice.

2.4. Melatonin Supplementation Maintains Intestinal Microbiota in APEC TW-XM-Infected Mice

It has been suggested that the TW-XM infection affected intestinal microbiota in the
above clinical symptoms of bacterial meningitis. The effects of melatonin on the intestinal
microbiota composition were evaluated by sequencing the 16S rRNA V3 + V4 region. As
shown in Figure 4A, the TW-XM group and the TW-XM+MT group had similar α-diversity
of colonic intestinal microbiota compared with the NS group, but the α-diversity of colonic
intestinal microbiota in the MT group was significantly higher than that in the NS group.
Similarly, Simpson (see Figure 4B) quantitatively described the biodiversity of a region
and reflected the diversity of the intestinal microbial community. The α-diversity of the
NS group was similar to that of the TW-XM group and the TW-XM + MT group, while the
α-diversity of the MT group was significantly higher than that of the other three groups.
The abundance of Chao1 (see Figure 4C) was consistent with the diversity of Shannon,
Simpson, indicating that melatonin pretreatment could increase the diversity of intestinal
microorganisms in mice, while APEC TW-XM infection did not significantly affect the
diversity of intestinal microbiota.

According to the results of PCoA (Figure 4D), clusters of four groups can be found, that
is, the points of each group are concentrated in their respective regions. Compared with the
NS group, the MT group is the closest, followed by the TW-XM+MT group and the TW-XM
group. It can be seen that APEC TW-XM infection can affect the species composition
of intestinal microbiota, and melatonin can prevent the changes in intestinal microbiota
species composition induced by the APEC TW-XM infection.

In order to determine the specific bacterial taxa related to melatonin, the differences in
intestinal microbiota of mice in the NS group, MT group, TW-XM group, and TW-XM +
MT group were compared using the linear discriminant analysis (LDA) effect size (LEfSe)
method. The distribution histogram in each group was used to directly analyze the species
with significant differences in abundance among the three groups. In addition, the length of
the histogram represents the abundance of species with significant differences. As shown
in Figure 4E, there were 9 species with significant differences in the NS group, 10 species
with significant differences in the MT group, 8 species with significant differences in the
TW-XM group, and 15 species with significant differences in the TW-XM+MT group.
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Figure 4. Melatonin maintained intestinal microbiota homeostasis in APEC TW−XM−infected mice.
(A) Shannon index in α−diversity analysis. (B) Simpson index in α−diversity analysis. (C) Chao1
in α-diversity analysis. All data were determined by one−way ANOVA and expressed as means ±
SEM. ** p < 0.01. (D) PCoA plot analysis from each sample. (E) The taxa whose abundance differed
in each group obtained from LEfSe sequence analysis. The cutoff value of ≥4.0 used for the linear
discriminant analysis (LDA) is shown. (F) The microbiota compositions at the phylum, order, and
genus levels.

Then, we further analyzed the relative abundance of species in Figure 4F. At the
phylum level, Firmicute had the highest relative abundance of intestinal microbial structures
in the NS group and the MT group. In contrast, the relative abundance of Firmicute
decreased significantly and Proteobacteria had the highest abundance of intestinal microbial
structures in the TW-XM group. Compared with the TW-XM group, melatonin pretreatment
could elevate the relative abundance of Firmicute and reduce the relative abundance of
Proteobacteria in the TW-XM+MT group. At the order level, Lactobacillales, Clostridiales, and
Bacterioidales are the dominant strains of NS and MT. Although the relative abundance of
Xanthomonadales in the intestinal microbiota of the MT group was relatively high compared
with the NS group, it was still lower than that of the TW-XM group. In the TW-XM group,



Int. J. Mol. Sci. 2023, 24, 298 8 of 19

Xanthomonadales, Enterobacteriales, and Bacterioidales were the dominant strains in the group.
In the TW-XM+MT group, melatonin pretreatment could significantly reduce the relative
abundance of Xanthomonadales and Enterobacteriales and increase the relative abundance
of Clostridiales and Lactobacillales compared with the TW-XM group. At the genus level,
Lactobacillus was the major dominant strain in the NS group, MT group, and TW-XM +
MT group, and Stenotrophomonas, Helicobacter, and Bacteroides were the major dominant
strains in the TW-XM group. In the TW-XM+MT group, melatonin pretreatment could
significantly reduce the relative abundance of Stenotrophomonas, Helicobacter, and Bacteroides,
and increase the relative abundance of Lactobacillus compared to the TW-XM group. These
results suggest that APEC TW-XM infection can induce changes in the species composition
and relative abundance of intestinal microbiota in mice, while melatonin can prevent and
improve changes in the species and relative abundance of intestinal microbiota induced by
bacteria.

2.5. Microbiota Depletion by Antibiotic Block the Anti-Infection Effects of Melatonin in APEC
TW-XM-Infected Mice

The above studies have proved that melatonin can prevent meningitis caused by APEC
TW-XM infections in mice and found that melatonin can also protect intestinal microbiota
homeostasis in meningitis mice. As such, it was speculated that intestinal microbiota may
be involved in the potential mechanism of melatonin in preventing bacterial meningitis.
Mice were supplemented with normal saline, melatonin, and melatonin+antibiotics for 1
week.

Based on the symptom-scoring criteria of meningitis, the symptoms of the APEC
TW-XM and TW-XM + MT + Antibiotic groups were compared one week later to evaluate
whether melatonin alleviated the symptoms of meningitis by mediating intestinal micro-
biota in mice. As shown in Figure 5A, the symptoms in the TW-XM + MT group were
significantly slighter than those in the TW-XM group, while the severity of the symptoms
in the TW-XM + MT + Antibiotic group was significantly higher than that in the TW-XM +
MT group (p < 0.05). There was no significant difference in meningitis symptoms between
the TW-XM + MT + Antibiotic group and the TW-XM group: most of the mice showed
lethargy, anorexia, increased eye discharge, and unformed feces at about 12 h. Then, the
mice developed convulsions, neck stiffness, and died after frequent angular arch rever-
sal. To sum up, melatonin needs the participation of intestinal microbiota to relieve the
neurological symptoms of meningitis in APEC TW-XM-infected mice.

The death onset time of the three groups was about 12–14 h in Figure 5B. In the
following time, the survival rates of mice in the TW-XM group and the TW-XM + MT +
Antibiotic group decreased. At about 72 h, the final survival rate of mice in both groups was
10%, and that of the TW-XM+MT group was 70%. The above results suggest that intestinal
microbiota is involved in melatonin improving the survival rate of APEC TW-XM-infected
mice.

At 12 h after intraperitoneal injection of APEC TW-XM, the tissues and blood samples
of mice were collected to detect the amounts of bacteria. As shown in Figure 5C, there
was no significant difference in the number of APEC TW-XM colonization in the brain,
spleen, liver, heart, lungs, or blood between the TW-XM group and the TW-XM + MT +
Antibiotic group. Compared with the TW-XM + MT group, the bacterial load in the brain,
spleen, liver, heart, lungs, and blood in the TW-XM + MT + Antibiotic group increased
significantly. These results suggest that intestinal microbiota participated in melatonin
reducing the colonization of APEC TW-XM in various tissues and blood of mice.
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increase survival rates, and reduce bacterial counts of tissues and blood in TW−XM−infected ICR
mice. (A) The neurological symptom scores of ICR mice in different groups were analyzed at 12 h
postinfection. (B) The survival rates of ICR mice in different groups were analyzed. (C) The loads of
TW−XM in brain, spleen, liver, heart, lungs, and blood were analyzed in the TW−XM group and
the TW−XM + MT group at 12 h postinfection. Each point represents one mouse. All data were
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2.6. Microbiota Depletion by Antibiotic Block the Protection of the Integrity of the BBB from
Melatonin in APEC TW-XM-Infected Mice

The EB staining of the brain of the three groups of mice is shown in Figure 6A. The
brains of the TW-XM group and the TW-XM + MT + Antibiotic group were stained blue and
there was no significant difference in EB content, indicating that the integrity of the BBB
was damaged. The degree of staining and EB content in the brain of the TW-XM+MT group
was significantly lighter than that of the TW-XM group and the TW-XM + MT + Antibiotic
group. These results suggest that melatonin can reduce the increase in BBB permeability
induced by APEC TW-XM infection in mice, depending on intestinal microbiota.
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Figure 6. In the absence of intestinal microbiota, melatonin failed to protect the BBB integrity in
APEC TW−XM−infected mice. (A,B) The BBB integrity, analyzed qualitatively and quantitatively
by Evans blue infiltration assay. All data were determined by one−way ANOVA and expressed as
means ± SEM. * p < 0.05, ns p > 0.05.

2.7. Microbiota Depletion by Antibiotic Block the Effects of Melatonin on Inhibiting the
Inflammatory Response and Infiltration of Neutrophils in APEC TW-XM-Infected Mice

As shown in Figure 7A, there was no significant difference in the relative expression
of IL-1β, IL-6, and TNF-α between the TW-XM group and the TW-XM + MT + Antibiotic
group, but the relative expression of IL-1β, IL-6, and TNF-α in the TW-XM + MT + An-
tibiotic group was significantly higher than that in the TW-XM+MT group. The results of
ELISA detection in Figure 7A showed that the expression levels of IL-1β and TNF-α in the
TW-XM + MT + Antibiotic group were significantly higher than those in the TW-XM group.
There was no significant difference in IL-6, but the expression levels of IL-1β, IL-6, and
TNF-α were significantly higher than those in the TW-XM+MT group (p < 0.001).

We analyzed the pathological changes of HE in the brains of mice. As shown in
Figure 7B, there were a large number of neutrophil infiltrations in the brains in the TW-XM
+ MT + Antibiotic group compared with the TW-XM group, and the neutrophil infiltration
in the TW-XM + MT + Antibiotic group was significantly lower than that of the TW-XM +
MT group. Therefore, the above results suggest that melatonin inhibits a large number of
neutrophil infiltrations, requiring the involvement of intestinal microbiota in the brain of
APEC TW-XM-infected mice.

The expression of inflammatory factors in serum was detected, as shown in Figure 7C.
There was no significant difference in the expression of IL-1β and IL-6 in the brain tissue of
mice in the TW-XM group and the TW-XM + MT + Antibiotic group, but the expression
of TNF-α was significantly decreased in the TW-XM + MT + Antibiotic group compared
with the TW-XM group. The expression levels of IL-1β, IL-6, and TNF-α in the brain tissue
of the TW-XM + MT + Antibiotic group were significantly increased compared with the
TW-XM+MT group (p < 0.05). It can be seen that melatonin can reduce the expression of
inflammatory factors caused by APEC TW-XM infection in mice, depending on intestinal
microbiota.
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Figure 7. In the absence of intestinal microbiota, melatonin failed to inhibit the inflammatory response
of the brain and serum and the infiltration of neutrophils in the brain in APEC TW−XM−infected
mice. (A) The mRNA expression and production of inflammatory factors in brain tissues of mice in
each group by qPCR. (B) The infiltration of neutrophils in the brain by hematoxylin–eosin staining
(bar=100µm). (C) The production of inflammatory factors in serum of mice in each group by ELISA.
All data were determined by one-way ANOVA and expressed as means ± SEM. * p < 0.05, ** p < 0.01,
ns p > 0.05.

3. Discussion

Intestinal microbiota is closely correlated with bacterial meningitis [5,21]. The pathogenic
mechanism of Escherichia coli meningitis is complex, and bacteremia caused by bacterial
invasion of blood, destruction of the blood–brain barrier (BBB), and excessive inflammation
are the main factors of meningitis and brain injury [22,23]. Many studies have demon-
strated the protective effects of melatonin on nerve injury, the integrity of the BBB, and
anti-inflammation in bacterial meningitis [24,25], but its effects on intestinal microbiota had
not been explored. In this experiment, we illustrated that melatonin intraperitoneal admin-
istration for one week could significantly prevent the occurrence of bacterial meningitis,
protect the integrity of the BBB, reduce the bacterial loads in tissues and blood, and alleviate
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systemic inflammation. Importantly, melatonin was found to maintain the composition of
intestinal microbiota, for which the changes induced were closely related to APEC TW-XM
infection.

In the meningitis-infected APEC TW-XM mice model, the pretreatment of 30 mg/kg
and 60 mg/kg melatonin significantly alleviates the clinical symptoms and improves the
survival rate of bacterial meningitis. This is similar to concentrations of melatonin in
previous studies for relieving weaning stress and effectively enhances the survival rates of
mice infected with P. multocida [15,20]. In K. pneumoniae meningitis, the neuroprotective
treatment effect of melatonin was dose-dependent [12], yet the pretreatment effects of
30 mg/kg and 60 mg/kg melatonin were not dose-dependent in the study. Hence, a
melatonin dose of 30 mg/kg as the concentration was to prevent the occurrence and
development of meningitis. The amount of bacteria in the tissues and blood in a bacterial
infection disease represent systemic infection and bacteremia. After 12 h of APEC TW-XM
infection, the amount of bacteria in the blood of mice reached 105 cfu/mL [26], which
belonged to high bacteremia. The results show that melatonin pretreatment significantly
decreases the amount of bacteria in the blood in APEC TW-XM-infected mice. Although
some mice reached the lowest threshold of bacteremia (103 cfu/mL), most of the bacteria
carrying capacity of the TW-XM + MT group was lower than the lowest threshold of
bacteremia. Similarly, melatonin pretreatment significantly reduced the bacterial load in
brain tissue, indicating that melatonin reduced the bacterial load in blood and affected the
ability of bacteria to invade the brain tissue. In addition, the same results were found in
the spleen, liver, heart, and lungs. Pretreatment of melatonin could significantly reduce
the colonization ability of bacteria in various organs. This is consistent with the role of
melatonin in preventing the reduction in enterotoxigenic Escherichia coli colonization in the
intestines of weaned mice [15] and decreasing bacterial loads in the lungs of mice infected
with P. multocida [20].

The BBB protects the central nervous system and limits the invasion of exogenous
pathogens, peripheral cells, and substances [27,28]. When exogenous pathogens invade
the BBB and enter the central nervous system, they can induce inflammation in brain,
accompanied by an increase in the permeability of the BBB. Escherichia coli K1 invasion and
destruction of the BBB is an important sign to accelerate the incidence of Escherichia coli
meningitis and brain injury [29,30]. Our laboratory has studied how the OmpA protein of
APEC TW-XM promoted bacterial invasion of the BBB and destroyed the integrity of the
BBB (unpublished data). We found that pretreatment of melatonin significantly ameliorated
the BBB damage to protect the integrity of the BBB in the APEC TW-XM-infected mice
model. In previous studies, systemic inflammation induced by Escherichia coli K1 was found
to also increase the permeability of the BBB, of which IL-1β, TNF-α, and IL-6 participate
in increasing the permeability of the BBB [30,31]. The combined action of TNF-α and IL-6
can directly damage the permeability of brain microvascular endothelial cells, which are
the main component of the BBB, and then destroy the BBB. Our studies have shown that
melatonin can significantly reduce systemic inflammation and the expression of IL-1β,
TNF-α, and IL-6 in the brain of infected mice, thus protecting the integrity of the BBB. In
addition, inflammatory factors recruit leukocyte (including neutrophils, monocytes, B cells,
and T cells) into the brain for the purpose of removing pathogenic bacteria, but can cause
an excessive inflammatory response and lead to severe brain injury and even death [32,33].
In the present study, melatonin pretreatment significantly alleviated massive infiltration
of neutrophils in the brain, which suggests that melatonin attenuated the inflammatory
response in the brain.

Intestinal microbiota is mainly composed of bacteria, with the highest density living
in the colon, which promotes the normal growth of the host by ingesting nutrients and
regulates immunity [34–36]. In addition, some studies have indicated that intestinal micro-
biota play a vital role in modulating the inflammatory response of the host. In the healthy
intestinal microbiota, Firmicutes and Bacteroides are usually the dominant microbiota in
mammals, and the changes in the composition of intestinal microbiota are different due
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to different diseases. Therefore, there are some differences in the criteria for judging the
imbalance of intestinal microbiota. It has been proved that the infection by Escherichia coli
K1 can induce the destruction of intestinal homeostasis [37,38], causing changes in the
composition of intestinal microbiota. In this paper, the 16S rRNA sequencing technique
was used to analyze the intestinal microbiota of mice, and it was found that melatonin
pretreatment significantly increased the abundance of Firmicute and decreased the abun-
dance of Proteobacteria in APEC TW-XM-infected mice, which coincided with the results
of the increase in the abundance of Proteobacteria, a marker of microbiota imbalance in the
previous study [39,40]. This result shows that APEC TW-XM infection can induce intestinal
dysbiosis and that melatonin pretreatment can maintain intestinal balance. At the genus
level, the abundance of Stenotrophomonas in the intestinal microbiota in APEC TW-XM-
infected mice was significantly higher than that of the NS group. Stenotrophomonas is an
opportunistic pathogen, which can cause meningitis, bacteremia, and septicemia [41,42].
Thus, the increase in the proportion of Stenotrophomonas could enhance the destruction
of intestinal homeostasis and contribute to the occurrence and development of meningi-
tis induced by APEC TW-XM infection in mice, which may result in host inflammation.
Lactobacillus, as beneficial bacteria, are mainly involved in intestinal immune regulation,
promoting the stability of the intestinal environment [43,44]. APEC TW-XM infection can
significantly reduce the proportion of Lactobacillus in the intestinal tract, leading to reduced
intestinal immunity and indicating that APEC TW-XM infection can inhibit the survival and
replication of beneficial bacteria. Melatonin has been found to play an important role in the
imbalance of microbiota in mice in the study of insomnia and obesity [45–48]. Melatonin
can improve intestinal microbiota, that is, increase the abundance of Lactobacillus. In this
study, melatonin was found to reduce the decrease in the abundance of beneficial bacteria
and the increase in the abundance of harmful bacteria in intestinal microbiota induced by
APEC TW-XM and play a protective role in maintaining the balance of intestinal microbiota.
However, when mice were pretreated with four kinds of antibiotics to eliminate intestinal
microbiota, melatonin pretreatment could not effectively alleviate the clinical symptoms of
meningitis, and the survival rate was only 10%. It is suggested that intestinal microbiota
are involved in the preventive effect of melatonin on APEC TW-XM-induced meningitis.
This result is consistent with the fact that the destruction of microbiota by broad-spectrum
antibiotics weakens the host’s resistance to invasive pathogen colonization [49,50]. Mela-
tonin does not effectively reduce the colonization of enterotoxigenic Escherichia coli in
the intestines of antibiotic-treated weaned mice [15], indicating that melatonin mediates
intestinal microbiota to prevent host resistance to pathogen colonization. In addition,
previous experimental studies have shown that intestinal microbes and their metabolites
play an important role in the formation of the BBB in aseptic mice. Compared with animals
fed routinely, the permeability of the BBB by macromolecules in aseptic mice increased
significantly [51,52], indicating that intestinal microbiota are involved in the integrity of the
BBB. The results show that the integrity of the BBB in mice in the MT + Antibiotics group
was destructed compared with the TW-XM+MT group, indicating that melatonin protected
the integrity of the blood–brain barrier of meningitis mice by maintain healthy intestinal
microbiota. Similarly, it was found that melatonin reduced the expression of inflammatory
factors IL-1β, TNF-α, and IL-6 in serum and brain tissue and inhibited a large number of
neutrophil infiltrations in brain tissue, depending on healthy intestinal microbiota.

4. Materials and Methods
4.1. Bacterial Strains

This study used an APEC TW-XM (wild-type, O2: H7: K1), which was isolated from
the cerebrospinal fluid of Muscovy ducks with meningitis [53]. APEC TW-XM (TW-XM)
was cultured in Luria Bertani (LB) broth medium at 37 ◦C.
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4.2. Mice

ICR male mice (3 weeks of age) were purchased from the Comparative Medical
Center of Yangzhou University (Yangzhou, China); these mice were maintained in a sterile
Trexler-type isolator. The mice were housed in a pathogen-free mouse colony (temperature,
25 ± 2 °C; relative humidity, 45–60%; lighting cycle, 12 h/d; 7:00–19:00 for light) and had
free access to food and drinking water.

4.3. Melatonin Supplementation for Weanling Mice

Three-week-old ICR male mice (without receiving any solid food before the exper-
iment) were divided randomly into six groups (n = 20/group): the NS (normal saline)
group, the MT group, the TW-XM group, and the TW-XM + MT group. The mice in the
TW-XM + MT group were intraperitoneally injected at a dosage of 10 mg/kg, 30 mg/kg,
and 60 mg/kg in the experimental group for 7 consecutive days before TW-XM infection.
In addition, the mice in the MT group and TW-XM + MT group were intraperitoneally
injected at a dosage of 30 mg/kg. Meanwhile, the mice in the NS group and the TW-XM
group received equal amounts of solvent NS by intraperitoneal injection. The dosage of
melatonin used was selected based on previous studies [12,15,19,20]. After one week of MT
supplementation, mice of the TW-XM group and the TW-XM + MT group were infected
with APEC TW-XM (1.0 × 107 CFUs) by intraperitoneal injection, whereas mice of the
solvent NS group and the MT group received equal amounts of NS. The survival rates
and neurological symptoms of mice for 5 days were monitored and recorded. Meanwhile,
all mice were sacrificed (at 08:00 h) to collect blood samples, brain, heart, lungs, spleen,
and liver, which were homogenized aseptically for bacterial counts at 12 h postinfection.
The weights of mice were continuously monitored every day during the treatment period.
Melatonin (M5250) was purchased from Sigma-Aldrich (St. Louis, MO, USA).

4.4. Melatonin Supplementation for Antibiotic-Treated Weanling Mice

Three-week-old ICR male mice (without receiving any solid food before the experi-
ment) were divided randomly into four groups (n = 20/group): the TW-XM group, the
TW-XM + MT group, and the TW-XM + MT + Antibiotic group. The mice in the TW-XM
+ MT group and the TW-XM + MT+ Antibiotic group were intraperitoneally injected at
a dosage of 30 mg/kg in the experimental group for 7 consecutive days before TW-XM
infection. The mice in the TW-XM group were received equal amounts of solvent NS by
intraperitoneal injection. Meanwhile, the mice in the TW-XM group and the TW-XM +
MT group received a basal diet and normal drinking fluid, and the mice in the TW-XM +
MT+ Antibiotic group received a basal diet and drinking fluid containing streptomycin
(1 g/L, Sigma, St. Louis, MO, USA), ampicillin (1 g/L, Sigma), gentamicin (1 g/L, Sigma),
and vancomycin (0.5 g/L, Sigma) to clear intestinal bacteria for 7 consecutive days be-
fore TW-XM infection. The dosages of melatonin and antibiotics were selected based on
previous studies [15]. After one week of MT supplementation and antibiotics treatment,
all mice were infected with APEC TW-XM (1.0 × 107 CFUs) by intraperitoneal injection.
The survival rates and neurological symptoms of mice for 5 days were monitored and
recorded. Meanwhile, all mice were sacrificed (at 08:00 h) to collect blood samples, brain,
heart, lungs, spleen, and liver, which were homogenized aseptically for bacterial counts at
12 h postinfection. Meanwhile, the colon and feces were collected for further analyses. The
weights of mice were continuously monitored every day during the treatment period.

4.5. Tissue Histological Examination

This was performed using hematoxylin and eosin (HE) staining. Briefly, mice brains
and colons were fixed with 4% paraformaldehyde–PBS overnight, and then dehydrated
and embedded in paraffin blocks. Sections of 10 mg were cut for histological analysis. The
sections were deparaffinized and hydrated, and then stained with HE. Then, the tissue
sections were analyzed and photographed through optical microscope (Olympus BX51,
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Tokyo, Japan) with a digital camera. The measurement of neutrophils from each mouse
was measured using Image software (Image J, Maryland, USA) [54].

4.6. Quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR)

Total RNA was extracted and purified from each sample using RNAiso Plus Kit (TIAN-
GEN, Beijing, China) following the manufacturer’s instruction. Purified RNA (2 µg) was
used as a template for cDNA synthesis, which was performed using FastKing gDNA Dis-
pelling RT SuperMix (TIANGEN, Beijing, China) following the manufacturer’s instructions.
qPCR was performed to determine transcription levels of genes using Faststart Universal
SYBR GREEN Master (Roche, Basle, Switzerland) and gene specific primers with 0.5 mg of
total RNA. RNA levels were normalized using the housekeeping gene GAPDH transcript
and the relative fold change was calculated by using the threshold cycle (44CT) method.
Primers were selected according to previous references (Supplementary Table S1). GAPDH
was used as an internal control to normalize target gene transcript levels. qRT PCR was
performed according to our previous studies [55].

4.7. ELISA

Serum levels of IL-1β, IL-6, and TNF-α, as well as brain levels of IL-1 β, IL-6, and
TNF-α were measured using ELISA kits in accordance with the manufacturer’s instructions.
The kits were from Cusabio Biotech Company Limited (Wuhan, China). Briefly, supplied
diluent buffer in the kits was used to dilute standards and serum samples. Next, 100 µL of
the sample or standard in duplicate were added to the wells of a microtiter plate precoated
with antibody. Diluent buffer was used as a negative control. The plates were incubated
for 2 h at 37 ◦C. After incubation, 100 µL of biotin antibody was added to each well after
removing the liquid and incubated for 1 h at 37 ◦C. The wells were washed three times
with 200 µL volume of wash buffer. Next, 100 µL horseradish peroxidase–avidin was
added to each well for 1 h at 37 ◦C. After a final wash, 90 µL of the supplied TMB substrate
was added and incubated for 30 min in the dark at 37 ◦C. The reaction was stopped
with 50 µL of the supplied stop solution and absorbance was measured at 450 nm with a
spectrophotometer. The detection ranges of ELISA kits were for IL-1β, IL-6, and TNF-α
(SIGA). The coefficients of variation within an assay and between assays were CV% < 9%,
and CV% < 10%, respectively. The coefficient of determination of the standard curve was
more than 0.95.

4.8. Counting of Bacteria

Blood samples, brain, heart, lungs, spleen, liver, intestinal tissues, and feces were
homogenized and weighed in PBS and then serial-diluted and plated on MacConkey agar
for APEC TW-XM. Bacteria were determined after 16 h of growth at 37 ◦C. The counts were
further verified by colony PCR with specific primers.

4.9. Evans Blue

The BBB permeability was assessed by measuring Evans blue (Sigma-Aldrich, St.
Louis, MO, USA) extravasations using the modified method of a previous study [39].
Briefly, Evans blue dye (2% in 0.9% saline, 2 mL/kg) was injected into the tail vein immedi-
ately at 9 h postinfection. After 3 h, the animals (n = 6 per group) were anesthetized with
sodium pentobarbital and transcranial perfused with physiological saline, and then decapi-
tated. The brains were removed, and each hemisphere was weighed, homogenized in PBS,
and centrifuged at 2000× g for 15 min at 4 ◦C. Then, 0.5 mL of the resulting supernatant
was added to an equal volume of trichloroacetic acid. After overnight incubation and cen-
trifugation at 2000× g for 15 min at 4 ◦C, the supernatant was taken for spectrophotometric
quantification of extravagated Evans blue dye at 620 nm. The quantitative calculation of
the dye content in the brain was based on external standards dissolved in the same solvent.
The results are expressed as micrograms per gram of brain tissue.
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4.10. Gut Microbiota Profiling

Total-genome DNA from fecal samples in the colon was extracted for amplification
using specific primer with the barcode (16S V3 + V4). Paired-end sequencing was performed
on the Illumina Miseq platform. A phylogenic tree and OUT table were obtained from the
mothur Bayesian classifier. Sequencing libraries were generated and analyzed according to
Yin’s study [56,57]. Principal coordinated analysis (PCoA) was used to obtain the principal
coordinates and visualized from complex, multidimensional data. The complexity of
species diversity was evaluated by using Observed-species, Shannon, Simpson, Chao1, and
ACE.

4.11. Statistical Analysis

All statistical analyses were performed by using the one-way analysis of variance
(ANOVA) to test the homogeneity of variances via Levene’s test and followed with the
Student’s t test (Prism 6.0). Data are expressed as the mean ± SEM. A p value of <0.05 was
considered significant.

5. Conclusions

This study demonstrated that melatonin is a potent preventive agent against APEC
TW-XM-induced mice meningitis, decreasing the incidence of bacterial meningitis. The
preventive effects of melatonin on the integrity of the BBB, reduced bacterial load in various
tissues and blood, and inhibited inflammation and neutrophil infiltration of brain tissue
may be dependent on intestinal microbiota. These findings are helpful to further explore
the specific mechanism of melatonin-mediated intestinal microbiota in the prevention of
and protection against Escherichia coli meningitis.
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