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Abstract: Currently, the synthesis of active photocatalysts for the evolution of hydrogen, including
photocatalysts based on graphite-like carbon nitride, is an acute issue. In this review, a comprehensive
analysis of the state-of-the-art studies of graphic carbon nitride as a photocatalyst for hydrogen
production under visible light is presented. In this review, various approaches to the synthesis
of photocatalysts based on g-C3N4 reported in the literature were considered, including various
methods for modifying and improving the structural and photocatalytic properties of this material. A
thorough analysis of the literature has shown that the most commonly used methods for improving
g-C3N4 properties are alterations of textural characteristics by introducing templates, pore formers
or pre-treatment method, doping with heteroatoms, modification with metals, and the creation of
composite photocatalysts. Next, the authors considered their own detailed study on the synthesis of
graphitic carbon nitride with different pre-treatments and respective photocatalysts that demonstrate
high efficiency and stability in photocatalytic production of hydrogen. Particular attention was
paid to describing the effect of the state of the platinum cocatalyst on the activity of the resulting
photocatalyst. The decisive factors leading to the creation of active materials were discussed.

Keywords: g-C3N4; hydrogen; photocatalysis; platinum

1. Introduction

Fossil fuels are a limited and exhaustible resource for conventional energy production
that induces reasonable concerns of energy and economic crises [1]. Besides, wide use of
fossil fuels causes environmental and human health impacts [2]. In this context, triggering
hydrogen as an alternative energy source is a promising trend, since hydrogen is an
environmentally benign fuel [3–5]. Currently, numerous industrial processes to produce
hydrogen are available, but they all are energy intensive, require high temperatures, and
appear economically efficient only at large scales [6]. In this regard, the photocatalytic
production of hydrogen attracts particular interest as the process proceeding at ambient
conditions and simulating photosynthesis, i.e., the direct conversion of solar energy into
the energy of chemical bonds [7–16].

The process of photocatalytic splitting of water using TiO2 catalysts under UV radia-
tion was pioneered by Fujishima and Honda in 1972 [17]. Since that time, a great number of
research has been performed to produce hydrogen by photocatalytic splitting of water with
various semiconductor photocatalysts [18–22]. However, this process has an intrinsic prob-
lem of hydrogen-oxygen recombination [23]. To improve the process’ quantum efficiency,
photocatalytic reduction of water is carried out with the use of electron donor agents, such
as various organic and inorganic compounds capable of donating electrons and thereby
reducing the recombination of electron-hole pairs on the photocatalyst surface [24–26].

Promising photocatalysts activated by UV and visible light include TiO2 [27–30],
ZnO [31], Fe2O3 [32], CdS [33], Cd1−xZnxS [34], Bi2WO6 [35], BiVO4 [36], Ta2O5 [37],
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Ta3N5 [38], and TaON [39]. Nowadays, the research and development of high-performance
semiconductor photocatalysts for solving the problems of energy shortages and environ-
mental safety are particularly important. Recently, visible-light-activated photocatalysts
have been developed, which allow efficient use of the solar spectrum containing a large frac-
tion of visible light (about 43%) [17]. Traditional semiconductor photocatalysts, such as TiO2,
have a large band gap and, therefore, are unable to absorb visible light, and can be activated
only by UV light, which constitutes a small fraction of the solar radiation spectrum [40–42].
Extensive searches for reliable visible-light-activated semiconductor photocatalysts re-
vealed the next generation photocatalyst based on a polymeric semiconductor—graphitic
carbon nitride [43–46].

2. Graphitic Carbon Nitride as a Photocatalyst

Carbon nitride, albeit known for a long time, has been tested as a photocatalyst only
since 2009 [47]. Every year, the interest of researchers in this material increases, as shown
in Figure 1a. It can also be seen in Figure 1b that, to date, about 10–12% of all studies on the
photocatalytic H2 production devoted to the synthesis and study of photocatalysts based
on g-C3N4 and their applications.
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It reveals various allotropic forms, such as α-C3N4, β-C3N4, graphitic, cubic, and
pseudocubic [48]. The most stable modification is a polymeric graphitic structure in which
s-triazine or tri-s-triazine (s-heptazine) units are bound to each other through tertiary
amines [47]. Graphitic carbon nitride g-C3N4 has the band gap of 2.7 eV and the conduction
band-edge potential −1.3 V vs. NHE, which enables an efficient hydrogen production
process [47]. This material is thermally and chemically stable, safe for the environment,
acid and alkali resistant; its surface can be modified without infringing its composition
and structure [49]. It is easily synthesized by thermal polycondensation of inexpensive
nitrogen-containing precursors, such as dicyandiamide, cyanamide, melamine, urea, and
thiourea [46,50–52]. The downside of this process is that it yields materials with low
specific surface areas and high electron-hole recombination rates that provokes the loss in
the catalytic activity [53]. To stabilize the photocatalytic activity of g-C3N4, the following
approaches are used:

• Alteration of textural characteristics by introducing templates, pore formers, or pre-
treatment method [54–66];

• Doping with heteroatoms [67–73];
• Modification with metals [74–90];
• Creation of composite photocatalysts [91–100].
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The formation of graphitic carbon nitride proceeds by various routes at thermal
condensation of the abovementioned precursors. At thermal pyrolysis, the cyclization of
any of the above mentioned nitrogen-containing precursors yields melamine [49]. The
dimerization of melamine at 350 ◦C yields melem and melon that transforms into polymeric
g-C3N4 at temperatures above 500 ◦C (Figure 2).

Int. J. Mol. Sci. 2023, 24, x FOR PEER REVIEW 3 of 20 
 

 

• Alteration of textural characteristics by introducing templates, pore formers, or pre-
treatment method [54–66]; 

• Doping with heteroatoms [67–73]; 
• Modification with metals [74–90]; 
• Creation of composite photocatalysts [91–100]. 

The formation of graphitic carbon nitride proceeds by various routes at thermal con-
densation of the abovementioned precursors. At thermal pyrolysis, the cyclization of any 
of the above mentioned nitrogen-containing precursors yields melamine [49]. The dimer-
ization of melamine at 350 °C yields melem and melon that transforms into polymeric g-
C3N4 at temperatures above 500 °C (Figure 2). 

 
Figure 2. Thermal condensation of dicyandiamide to form g-C3N4. 

Graphitic carbon nitride is known to have a defect-rich structure, which results from 
incomplete deamination during thermal polycondensation [49]. For this reason, synthe-
sizing high-crystalline g-C3N4 is a difficult task, albeit exact crystallinity (correct arrange-
ment of atoms) is a critically important parameter affecting the band structure and charge 
recombination rate (e-/h+) of a photocatalytically active material. A large number of struc-
tural defects increases the charge recombination rate, and thus impedes photocatalyst ac-
tivity. Texture controlling can improve the chemical, physical, and optical properties of g-
C3N4 [101]. The relationship between the g-C3N4 morphology and photocatalytic hydrogen 
evolution performance is discussed below. 

2.1. Textural Characteristics and Methods to Control Them 
2.1.1. The Use of Templates 

The textural and morphological characteristics, such as porosity, specific surface 
area, and pore size distribution, of a carbon nitride based material can be controlled by 
using appropriate templates, which are subdivided into hard and soft ones. Hard tem-
plates are, for example, SiO2 and Al2O3 [56,57]. Graphitic carbon nitrides, synthesized us-
ing these templates, possess high specific surface area and porosity, and a large number 
of the surface active sites. Nevertheless, soft templates, such as starch and glucose, seem 
much more attractive, as they are safe for the environment, require no corrosive chemicals 
for elimination [58,59], and provide g-C3N4 with a specific surface area of > 60 m2 g−1 [58]. 
After elimination of solvents and templates, the g-C3N4 nanoporous structure turns quite 
delicate (fragile) and easily destroyable, which presents one of the main problems of cre-
ating polymeric hollow nanospheres. A green soft-template approach allows synthesizing 
various g-C3N4 structures through relatively simple routes, keeping these structures du-
rable even after template removal. Amphiphilic molecules, surfactants, ionic liquids, and 
gas bubbles are used as soft templates [60]. However, the template polymeric materials 

Figure 2. Thermal condensation of dicyandiamide to form g-C3N4.

Graphitic carbon nitride is known to have a defect-rich structure, which results from
incomplete deamination during thermal polycondensation [49]. For this reason, synthesiz-
ing high-crystalline g-C3N4 is a difficult task, albeit exact crystallinity (correct arrangement
of atoms) is a critically important parameter affecting the band structure and charge
recombination rate (e−/h+) of a photocatalytically active material. A large number of
structural defects increases the charge recombination rate, and thus impedes photocatalyst
activity. Texture controlling can improve the chemical, physical, and optical properties
of g-C3N4 [101]. The relationship between the g-C3N4 morphology and photocatalytic
hydrogen evolution performance is discussed below.

2.1. Textural Characteristics and Methods to Control Them
2.1.1. The Use of Templates

The textural and morphological characteristics, such as porosity, specific surface area,
and pore size distribution, of a carbon nitride based material can be controlled by using
appropriate templates, which are subdivided into hard and soft ones. Hard templates are,
for example, SiO2 and Al2O3 [56,57]. Graphitic carbon nitrides, synthesized using these
templates, possess high specific surface area and porosity, and a large number of the surface
active sites. Nevertheless, soft templates, such as starch and glucose, seem much more
attractive, as they are safe for the environment, require no corrosive chemicals for elimi-
nation [58,59], and provide g-C3N4 with a specific surface area of >60 m2·g−1 [58]. After
elimination of solvents and templates, the g-C3N4 nanoporous structure turns quite delicate
(fragile) and easily destroyable, which presents one of the main problems of creating poly-
meric hollow nanospheres. A green soft-template approach allows synthesizing various
g-C3N4 structures through relatively simple routes, keeping these structures durable even
after template removal. Amphiphilic molecules, surfactants, ionic liquids, and gas bubbles
are used as soft templates [60]. However, the template polymeric materials are inclined
to early decomposition that results in some carbon residue in the material, which induces
pores isolating, and thus affects negatively the g-C3N4 structure and photocatalytic activity.

2.1.2. The Use of Pore-Forming Agents

Pore-forming agents can significantly improve the photocatalytic characteristics of
graphitic carbon nitride due to their affecting of its textural characteristics. Ammonium
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chloride [61] and urea [62] are among the most commonly used pore-forming agents
reported in the literature. This approach ensures the synthesis of complex porous structures,
such as ultrathin nanosheets [61]. Favorably compared to hard templates, the pore-forming
agents require no eliminating from the target material by using harmful compounds or
procedures. For example, ammonium chloride (NH4Cl) additive in the g-C3N4 precursor
decomposes at temperatures of 280–370 ◦C into NH3 and HCl thus facilitating the formation
of a loose ultrathin nanosheet structure (thickness 1–2.4 nm or 3–7 atomic layers) with a
defective matrix [61,63]. The bottleneck of this process is the cost-efficiency and ecological
issues; obviously, the cheaper and environmentally benign pore-forming agents should
be developed.

2.1.3. Pretreatment Method

There are many studies in which precursors are modified prior to calcination in order
to obtain g-C3N4 with improved properties [64–66]. One such modification method is the
pretreatment of the precursor with acids (H2SO4, HNO3), which makes it possible to obtain
a much higher specific surface area of resulting g-C3N4 [65]. The strong oxidizing power of
the acids separates the g-C3N4 layers into thinner nanosheets, weakening the van der Waals
force between them [65]. The addition of strong alkalis (NaOH) also facilitates the creation
of ultrathin nanosheets. However, despite the ability to improve textural characteristics,
it is difficult to control the yields and reproducibility of the resulting material in these
pretreatment methods [65].

2.2. Doping Heteroatoms

The polymeric structure of graphitic carbon nitride is suitable for doping by other
atoms or molecules by means of appropriate chemical procedures. The introduction
of various atoms affects the electronic structure of the polymer material. Doping with
nonmetals or anions leads to the g-C3N4 band gap narrowing. It is assumed that the
band gap narrowing results from the formation of localized states and elevation of the
valence band maximum due to the presence of doping atoms [67]. Besides doping with
mono-nonmetal heteroatoms, co-doping with several heteroatoms is applied to provide
more efficient band gap width variation [68–70].

Particular attention is focused on the doping of graphitic carbon nitride with halogens:
Br, I, Cl [71,72]. For example, doping with bromine increases optical absorption, conductiv-
ity, charge carrier transfer rate, and photocatalytic activity without disturbing the g-C3N4
structural stability. It is assumed that halogen doping shifts the optical absorption spectrum
towards longer wavelengths in the UV-visible spectrum [72]. The hindering of the charge
carrier recombination at the introduction of Br atoms is attributed to the delocalization of
the Br valence electrons to π-conjugated g-C3N4 structures. Graphitic carbon nitride doped
with halogen atoms (F, Cl, Br, I) exhibited enhanced optical absorption and improved
photocatalytic characteristics [72]. It was found that electronegativity of the halogen atoms
affects the photocatalytic properties of g-C3N4. The higher the halogen atomic number, the
lower is its electronegativity, and more electrons can transfer from the halogen atom to
g-C3N4, thus leading to the gradually uplifting Fermi level and decreasing work function.
Doping halogen atoms facilitate the electron escape from the g-C3N4 surface to participate
in photocatalytic reactions.

Doping is an effective approach to improve the photocatalyst light absorption capacity,
oxidizability, and separation efficiency of photoinduced charge carriers [73].

2.3. Doping Metals

One of the most frequently used and quite simple methods to modify the surface
of graphitic carbon nitride is the use of metal dopants. The nanoparticles of noble and
non-noble metals improve photocatalyst ability to absorb visible light and resist recom-
bination of photoinduced charges. Also, metal nanoparticles can act as catalysts for the
formation of molecular hydrogen. Noble metals attract particular attention, as they have
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the most suitable electronic and optical characteristics [74,75]. The Schottky barrier, also
known as the space charge separation region, is formed at the noble metal-semiconductor
heterojunction; it impedes electron migration from one material to another, and reduces the
charge recombination. The creation of the Schottky barrier allows for the accumulation of
additional negative charges (electrons) and positive charges (holes) in the noble metal and
semiconductor, respectively. Noble metals also have the ability to absorb visible light owing
to the plasmon resonance effect. There are two main approaches for depositing noble metal
particles on the catalyst surface: impregnation with a precursor followed by reduction
with NaBH4 [76] or another reductant [83], and photodeposition under the action of ultra-
violet radiation [77,84]. There is also a possibility to attach pre-synthesized nanocrystals
of desired sizes and shapes on graphitic carbon nitride nanosheets through electrostatic
attraction [85]. The chlorocomplexes are common precursors for the deposition of noble
metals onto a g-C3N4 surface [86–88]: for example, hexachloroplatinic acid (H2PtCl6) is
usually used as the platinum precursor [78,84,89]. The photodeposition method does not
use high-temperature treatments or hazardous materials. The downside of using noble
metals as cocatalysts is that they are very expensive, especially in view of the high metal
loading in the catalysts (1–5 wt.%) [79]. Currently, many studies are aimed at replace noble
metals with non-noble ones, such as copper or nickel, which are much less expensive and
are able to absorb visible light [80,81,90].

Although metal doping facilitates significant acceleration of the hydrogen production
reaction, an excess of cocatalyst on the surface reduces the catalyst ability to absorb light in
the visible region and acts as an electron trap [82].

2.4. Development of Composite Photocatalysts

In order to provide efficient light utilization and enhanced the redox ability of a
material, it is common practice to shift the energy levels of the valence and conduction
bands by creating a composite of two different materials. Composite materials are used
to develop photocatalysts with enhanced light absorption in the visible region, efficient
charge separation retarding charge recombination, and improved redox performance.
There are various composite photocatalysts differing by heterojunction types: type I [91],
type II [91,92], S-scheme [93,94], Z-scheme [95–97].

The creation of effective composites between two different compounds depends on
their crystal structures, electron affinities, band structures, and the strength of the in-
terfacial interaction. The type I heterojunctions assume that the valence band (VB) of
semiconductor 1 lies higher than the VB of semiconductor 2, and the conduction band (CB)
lies lower; in such a system, both electrons and holes are transferred to one semiconductor,
where redox reactions occur [91]. Such a transfer of photogenerated charges from one
semiconductor to another does not improve the efficiency of charge separation.

In type II heterojunctions, the level of VB and CB potentials of semiconductor 1 are
higher than the level of VB and CB potentials of semiconductor 2. Here, the separation
of photogenerated electrons and holes occurs through double charge transfer: an electron
migrates from the CB of semiconductor 1 to the CB of semiconductor 2; a hole moves
from the VB of semiconductor 2 to the VB of semiconductor 1. Electrons are accumulated
in the CB of semiconductor 2, while holes accumulate in the VB of semiconductor 1,
which facilitates efficient charge separation and reduced recombination [91,92]. Although
traditional type II heterojunctions improve charge separation, they reduce the initial redox
ability of electrons and holes.

The formation of S-scheme heterojunctions facilitates efficient charge separation with-
out affecting the intrinsic redox ability of semiconductors [93]. To achieve successful
construction of the S-scheme, the position of the CB and the Fermi level of the photocatalyst
on which the reduction reaction proceeds must be higher than respective characteristics
of the photocatalyst which runs the oxidation process. The internal electric field caused
by the band deviation due to the difference in the Fermi levels of the two semiconductors
enhances the charge mobility. The synthesis of two different semiconductors for subse-
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quent integration into an S-scheme is considered rather difficult [94]. To date, the S-scheme
heterojunction approach is considered to be the best choice for the development of photocat-
alysts with high charge separation efficiency and redox ability. Compared to S-scheme, the
Z-scheme heterojunction photocatalysts have higher charge separation efficiency and are
easier to synthesize [97]. Electrons from the CB of semiconductor 1 migrate through electron
mediators (metals) to the VB of semiconductor 2 to recombine with photoinduced holes.

In the case of type I heterojunction photocatalysts [98], the redox process occurs on
one semiconductor. The type II [99] heterojunctions significantly promote the separation
of photoinduced electrons and holes, but have a weak redox ability that is detrimental
for the photocatalytic reaction. Currently, the S-scheme approach is the most promising
with regard to efficient charge separation and redox reactions [100]. However, the creation
of S-scheme heterojunction photocatalysts is a difficult task that requires the structural
modification of both semiconductors.

3. Synthesis of Graphitic Carbon Nitride to Provide Superior Photocatalytic Activity

In this section, the authors present their study performed at the Boreskov Institute of
Catalysis and Nikolaev Institute of Inorganic Chemistry, that allowed the transition from
the traditional precursor calcination method to the advanced synthesis of graphitic carbon
nitride with improved textural and electronic characteristics, and creating highly active
low-platinum catalysts for hydrogen production, which outperform the reaction rate of
other catalysts reported in the literature [76,102–104].

3.1. Synthesis of Graphitic Carbon Nitride by Conventional Thermal Polycondensation

At the first step of the study, g-C3N4 was prepared by the traditional thermal condensa-
tion of organic precursors—melamine and dicyandiamide. The calcination was performed
at varying temperatures (450, 500, 550 or 600 ◦C) and times (2 or 4 h) in air. In order to
prevent charge recombination and increase the catalyst activity, 1–3 wt.% platinum was
loaded by impregnating g-C3N4 with H2PtCl6, and then followed by reducing with a
2.5-fold excess of NaBH4. After several decantations, the obtained samples were dried at
50 ◦C for 4 h. The synthesized photocatalysts were characterized by XRD (Figure 3a) [76].
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The main diffraction peak (2θ ~ 27◦) can be assigned to the (002) plane; it determines
the distance between the 2D layers of graphitic carbon nitride. The second peak at 2θ = 13◦

is due to the distance between tri-s-triazine units (Figure 3a). The specific surface area
of photocatalysts increases significantly with an increase in the calcination temperature
(Figure 3b). The samples calcined at temperatures of 450 and 500 ◦C demonstrate low
specific surface areas of <10 m2·g−1; at calcination temperatures of 550 and 600 ◦C, the
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surface increases to 13–28 m2·g−1. Note that the specific surface area of g-C3N4 synthesized
from melamine exceeds that of g-C3N4 obtained from dicyandiamide.

Figure 4 illustrates photocatalytic activity of the synthesized samples depending on
the calcination conditions.
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Among a large set of synthesized samples differing by precursors, calcination temper-
atures (450 to 600 ◦C) and times (2 or 4 h), the most active photocatalysts were selected
(Figure 4). The higher the calcination temperature of the precursors, the more active the
photocatalyst, most likely, due to the efficient (more complete) decomposition of melamine
and dicyandiamide. Note that the correlation between the catalyst activity and the specific
surface area is non-linear. Indeed, the catalyst, synthesized through melamine calcination
at 600 ◦C for 2 h and having a lower specific surface area of 19.5 m2·g−1 appeared more
active than a similar catalyst calcined for 4 h and having a larger surface area of 27.9 m2·g−1.
This observation may be attributed to the optimal interplanar spacing and crystal size in
the former sample.

Since platinum facilitates efficient separation of photoinduced charges, it was used as a
cocatalyst. The 1 wt. % Pt additive provided a higher catalytic activity than the 3 wt. % one.
As a result of the optimization of catalyst preparation procedure, the highest activity for
hydrogen production—0.45 mmol gcat

−1·h−1 (apparent quantum efficiency 0.6%)—showed
the 1% Pt/g-C3N4 catalyst synthesized by melamine calcining at 600 ◦C for 2 h [76].

3.2. Synthesis of Graphitic Carbon Nitride from Melamine Hydrothermally Pretreated in Glucose

Based on the above results, melamine was chosen used as the precursor for catalyst
synthesis using pretreatment in glucose. Melamine was suspended in an aqueous glu-
cose solution and then heated in an autoclave at 180 ◦C for 12 h. The resulting material
was heated in a furnace to 550 ◦C at a rate of 1◦C/min, kept at this temperature for 1 h
and then cooled to room temperature [102]. The synthesized material was used to de-
posit platinum (0.5 wt %) by various methods [102], one of which—sorption of Pt from
nitratocomplex— has already proven itself in the case of deposition on TiO2 surface [30].
Besides platinum reduction with an excess of sodium borohydride, as described earlier, the
following methods were used.

Photoreduction. Deaerated suspension consisting of carbon nitride, H2PtCl6, excess
ethanol (20 vol.%) and water was illuminated by LED radiation with a wavelength of
380 nm (30 W).

Reduction of platinum nitratocomplexes. Carbon nitride was suspended in acetone
and combined with an appropriate aliquot of the (Me4N)2[Pt2(µ-OH)2(NO3)8] acetone
solution. The resulting suspension was stirred at room temperature for 12 h, then dried in
an air stream. The obtained material was reduced in a hydrogen atmosphere (100–500 ◦C,
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heating rate 10 ◦C/min) for 1 h. The results of the samples characterization by XRD method
proved that they had the structure of graphitic carbon nitride. The samples had the specific
surface area (SBET) of ~25 m2·g−1, which is quite similar to respective value for the catalysts
synthesized through standard procedure with precursor calcination, but the pore system
was higher due to the use of glucose.

Obviously, the catalysts reduced by NaBH4 contain platinum in states 4+, 2+ and 0,
while in photoreduced catalysts, platinum states are 2+ and 0. XPS analysis confirmed
that for the samples synthesized with the use of a platinum nitratocomplex and reduced
in hydrogen flow at temperatures ranging 100–500 ◦C, the intensity of peak at 70.7 eV
increases with increasing temperature that corresponds to the gradual formation of metallic
platinum from adsorbed Pt2+ species. At 400 ◦C, platinum is completely reduced to Pt0.
Note also that at 500 ◦C, graphitic carbon nitride is completely destroyed, as proved by
further experiments on the samples’ photocatalytic activity to produce hydrogen [102].

It has been shown that the sample calcined at 400 ◦C in H2 flow showed the highest
catalytic activity (Figure 5a) [102]. The activity of the 0.5% Pt/g-C3N4 photocatalysts
prepared using platinumnitratocomplexes increases as the temperature of the catalyst
reduction in H2 elevates to 400 ◦C and sharply decreases as the temperature reaches 500 ◦C,
because the g-C3N4 structure is destroyed at this temperature. The kinetic dependences for
photocatalytic hydrogen evolution from an aqueous solution of TEOA were also obtained
to compare various methods of platinum reduction (Figure 5b).
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It should be noted that the catalyst calcined at 400 ◦C in hydrogen flow showed the
highest activity among all other samples prepared with the proposed methods for platinum
deposition and reduction [102].

Furthermore, the photocatalyst demonstrated high stability (Figure 6). After 7.5 h,
the rate of photocatalytic hydrogen evolution with this catalyst decreased by only 8%.
Note also that hydrogen production rate on this photocatalyst was 5.3 mmol gcat

−1·h−1

(apparent quantum efficiency AQE = 3.0% (425 nm)). Thus, as compared to traditional
melamine calcination method [76], a 12-fold increase in the catalyst activity and a double
reduction in Pt content was achieved.

3.3. Synthesis of Graphitic Carbon Nitride from Supramolecular Melamine-Cyanuric Acid Adduct

The next method for the synthesis of graphitic carbon nitride consists in the thermolysis
of supramolecular adduct formed by melamine and cyanuric acid [103]. Melamine and
cyanuric acid were suspended in distilled water (300 mL); the suspension was heated at
90 ◦C for 12 h under constant stirring. The resulting material was heated in a furnace
to 550 ◦C at a rate of 1◦C/min and kept at this temperature for 1 h. The obtained g-
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C3N4 samples were loaded with platinum as described above (reduction of platinum
nitratocomplex in hydrogen flow at temperatures 100–400 ◦C [102]).
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production. Adapted with permission from Ref. [102]. 2022, Elsevier.

Graphitic carbon nitride synthesized by this method demonstrated an interesting prop-
erty – the structural erosion and formation of new pores upon calcination of the samples
with adsorbed platinum complexes at a temperature of 400 ◦C [103]. Thermogravimetric
studies in hydrogen atmosphere showed that the decomposition temperature of graphitic
carbon nitride synthesized by this method decreases when (Me4N)2[Pt2(OH)2(NO3)6] com-
plexes are adsorbed on its surface; for 0.5 wt.% Pt/g-C3N4 this decrease is more significant
than for 0.1 wt.% Pt/g-C3N4. The decomposition of g-C3N4 releases ammonia and methane.
Note also that the specific surface area of photocatalysts increases with increasing Pt content
as well. Indeed, 0.1 wt.% Pt/g-C3N4 (T = 400 ◦C) has the specific surface area of 90 m2·g−1;
0.5 wt.% Pt/g-C3N4 (Т = 400 ◦C)—289 m2·g−1, while unmodified carrier—60 m2·g−1.
Figure 7 illustrates the formation of a developed porous structure upon calcination of the
(Me4N)2[Pt2(OH)2(NO3)6]/g-C3N4(IV) samples in hydrogen flow.
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It was shown that the proposed g-C3N4 modifying method, which includes the synthe-
sis of graphitic carbon nitride from the supramolecular melamine-cyanuric acid adduct, the
deposition of platinum from the nitratocomplex by sorption method, followed by reduction
in H2 flow at 400◦C, provided photocatalytic hydrogen production under the action of
visible light at a rate of 11 mmol gcat

−1·h−1 (apparent quantum efficiency of 6.7%) [103],
which exceeds respective values reported in the literature.

Additionally, an interesting dependence was observed for these samples. Catalytic
activity per 1 g of Pt noticeably increased with increasing platinum content (0.01, 0.05, and
0.1 wt.% Pt). However, as the mass fraction of Pt increased further from 0.1% to 0.5%,
the respective activity value decreased from 8.8 to 2.3 mmol gPt

−1·h−1. At the same time,
the rate of hydrogen production per 1 g of catalyst for the sample 0.5% Pt/g-C3N4 was
about 20% higher than that value for catalyst 0.1% Pt/g-C3N4 (Figure 8a–c). Thus, 0.1 wt.%
Pt loading is the optimum for efficient production of hydrogen. The apparent quantum
efficiencies of hydrogen production were calculated for different wavelengths (action spec-
trum) (Figure 8d). The maximum quantum efficiency was 6.6% at a wavelength of 425 nm.
The action spectrum of the photocatalyst agrees well with the Kubelka–Munk curve F(R)
calculated from the diffuse reflectance spectrum of the 0.5% Pt/g-C3N4 (IV) photocatalyst.
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According to the data of the catalyst characterization by physicochemical methods,
the treatment with hydrogen of (Me4N)2[Pt2(OH)2(NO)6]/g-C3N4 composites results in
platinum transition into a metallic state followed by catalytical hydrogenation of the g-
C3N4 to form methane and ammonia, resulting in an increase in the g-C3N4 specific surface
area and branching its porous structure. The observed high values of hydrogen production
rate are associated with the proposed approach for the synthesis of photocatalysts based
on graphitic carbon nitride. Compared to traditional thermal calcination of the precursor,
thermolysis of the supramolecular adduct formed by melamine and cyanuric acid facilitates
uniform removal of ammonia groups. Subsequent platinum depositing on the material
followed by calcination in a hydrogen flow at 400 ◦C provides both the complete platinum
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reduction to a metallic state, and a significant increase in the specific surface area (up
to 289 m2·g−1 in the case of 0.5%Pt/g-C3N4), because platinum burns off the surface of
graphic carbon nitride, which induces the formation of new pores and porous structure
branching. It should be emphasized also, that the proposed method promotes uniform and
tight depositing of platinum nanosized (~1 nm) particles on the g-C3N4 surface) [103].

3.4. Composites Cd-Zn Sulfide Solid Solution/g-C3N4

To provide efficient charge separation and, as a consequence, an increase in the catalyst
activity, two schemes were proposed to synthesize composites based on g-C3N4, Pt, and
solid solutions of Cd and Zn sulfides. In Scheme 1, Cd and Zn sulfides were deposited
on the surface of g-C3N4 obtained by the traditional calcination of melamine at 600 ◦C for
2 h followed by platinum depositing through chemical reduction method. In Scheme 2,
platinum was deposited first, and then cadmium and zinc sulfides were loaded [104].

It was shown that in the sample 1%Pt/20%Cd0.8Zn0.2S/g-C3N4 synthesized according
to Scheme 1, small particles of Pt are deposited on the surface of Cd-Zn sulfide solid
solutions. In the sample 20%Cd0.8Zn0.2S/1%Pt/g-C3N4 synthesized by Scheme 2, large
platinum clusters are located at the g-C3N4/Cd1−xZnxS interface [104].

All samples synthesized by Scheme 2 were more active than those synthesized by
Scheme 1 (Figure 9). It is assumed that within the framework of these Schemes, var-
ious mechanisms of charge transfer are realized. In samples 1%Pt/y%Cd1−xZnxS/g-
C3N4 (Scheme 1), the migration of holes and electrons proceeds by type II heterojunction
mechanism. Upon illumination, electrons migrate from the CB of g-C3N4 to the CB of
Cd1−xZnxS, and then to Pt, where the photocatalytic reduction reaction occurs. In samples
y%Cd1−xZnxS/1%Pt/g-C3N4 (Scheme 2), the S-scheme heterojunction is probably realized.
At the same time, electrons from the g-C3N4 CB, possessing high reducing ability, and holes
from the Cd0.8Zn0.2S VB, possessing high oxidizing ability, participate in redox reactions
on the photocatalyst surface. Catalyst 20%Cd0.8Zn0.2S/1%Pt/g-C3N4 demonstrated the
highest value of catalytic activity amounting to 2.52 mmol gcat

−1·h−1. Besides, Scheme 2
photocatalysts are more stable than Scheme I photocatalysts [104].
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For comparison, the samples containing g-C3N4 synthesized as described in the above
Sections 3.2 and 3.3, and 0.5 wt.% Pt deposited from nitratocomplex, were loaded with
20 wt.% Cd-Zn sulfide solid solution according to Scheme 2. These catalysts appeared
more active as compared to those based on g-C3N4 obtained by the thermal polyconden-
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sation of the melamine precursor, and demonstrated hydrogen productivity of 6.3 and
10.2 mmol gcat

−1·h−1, respectively.

3.5. Summary Data on the Photocatalysts Based on g-C3N4

Table 1 summaries the data on the activity of g-C3N4 based photocatalysts for hydro-
gen production obtained by the authors of this review. It is seen that the photocatalyst
modification with Pt noticeably improved the catalyst activity. The catalyst based on
g-C3N4 synthesized from glucose-pretreated melamine showed a 12-times higher pho-
tocatalytic activity in hydrogen production than the sample prepared by the traditional
method. The catalyst based on g-C3N4 synthesized by thermal polycondensation of a
supramolecular complex melamine-cyanuric acid, followed by platinum reduction from
the nitratocomplex in hydrogen flow at 400 ◦C, provided a 24-fold increase in the hydrogen
production rate as compared to that of the catalyst synthesized through thermal polycon-
densation of melamine and depositing platinum by the reduction of H2PtCl6 with NaBH4.
It should be emphasized that, besides considerable increase in the catalytic activity, the
twice-reduced platinum loading in the catalysts was achieved (0.5 instead of 1 wt.%).

Table 1. Comparison of catalytic activities of various photocatalysts described in Chapter 3.

g-C3N4 Synthesis

Pt Deposition

Composites
y%Cd0.8Zn0.2S/x%Pt/g-C3N4

H2PtCl6
(Me4N)2[Pt2(OH)2

(NO3)6]

Reduction by NaBH4 Photoreduction H2 Reduction at 400 ◦C

Thermal polycondensation
of melamine 0.45 0.87 1.80 2.52

Thermal polycondensation of
melamine pretreated in glucose

by the hydrothermal method
1.80 4.20 5.30 6.30

Thermal polycondensation of
the supramolecular complex

melamine-cyanuric acid
3.00 4.90 11.0 10.2

* All data in the table has a dimension mmol gcat
−1·h−1.

Composite systems based on g-C3N4, Cd1−xZnxS, and Pt were also considered. A
significant increase in activity (5.6-fold) showed only the catalyst on the base of g-C3N4
obtained by thermal polycondensation of melamine. In the case of the other two methods
(see Table 1), the increase in activity was either insignificant or not observed at all. This
very interesting observation deserves more research and will be explained later.

Table 2 presents the data on catalytic activities in hydrogen production of various pho-
tocatalysts based on g-C3N4 reported in the literature and compares them with the results
from Table 1. Clearly, the photocatalyst based on g-C3N4, synthesized from the melamine-
cyanuric acid supramolecular adduct, with Pt cocatalyst, deposited from Pt-nitratocomplex
and reduced in H2 at 400 ◦C, outperforms other catalysts in the photocatalytic production
of H2. A comprehensive approach to the synthesis, that provided a high specific surface
area of g-C3N4 and uniform distribution of Pt in the metallic state, allowed the superior
catalyst performance in photocatalytic hydrogen production [103]. Also, as another inter-
esting approach, the precipitation of Pt from the acidic solution of platinum hydroxide
([Pt(OH)4(H2O)2]) has been proposed. This approach is characterized by a simpler method
of Pt deposition and is more green, since it does not require the isolation of complex salts
and the use of organic solvents in the deposition process [105]. However, the rates of
photocatalytic hydrogen production on photocatalysts synthesized by this method were
slightly lower than in the case of using the nitratocomplex as a platinum precursor [103].



Int. J. Mol. Sci. 2023, 24, 346 13 of 19

Table 2. Comparison of characteristics of the Pt/g-C3N4 based photocatalysts for hydrogen produc-
tion reported in the literature and the most active photocatalysts described in Table 1.

№ Catalyst Pt,
wt.%

Catalyst
Mass, mg

Sacrificial
Agent

Synthetic
Procedure of Pt

Light
Source

H2 Evolution
Rate,

µmol min−1

Catalytic
Activity, µmol

gcat−1·h−1

AQY,
% Ref.

1

0.15-NVCN
x—mass KOH
heating in N2
atmosphere

0.5 30 20 vol.%
methanol

H2PtCl6
photodeposition

in situ

300W Xe
lamp λ >
420 nm

1.66 3310 8.60 [74]

2 g-C3N4 0.5 10 20 vol.%
TEOA

H2PtCl6
Ar plasma Xe-lamp 0.19 1151 - [75]

3 g-C3N4
nanosheets 1.25 100

5 vol. %
TEOA
pH = 9

H2PtCl6
ethylene glycol

reduction

300W Xe
lamp λ >
420 nm

0.75 451 - [106]

4

CNC0.1
0.1%—weight
ratio between

urea and
glucose

1.0 50 15 vol. %
TEOA

H2PtCl6
photodeposition

in situ

350 W Xe
lamp λ ≥
420 nm

0.18 213 0.90 [107]

5
S-doped
g-C3N4
S-CN

0.3 100 15 vol. %
methanol

H2PtCl6
photodeposition

in situ

300W Xe
lamp 1.24 742 - [108]

6

VCN
heating in

NH3
atmosphere

3.0 100 15 vol. %
TEOA

H2PtCl6
photodeposition

in situ

300W Xe
lamp λ >
420 nm

5.51 3300 - [109]

7
HCN-3h

heating in H2
atmosphere

3.0 50 15 vol. %
TEOA

H2PtCl6
photodeposition

in situ

300W Xe
lamp 3.58 4300 - [110]

8

ultrathin
O-doped
g-C3N4

nanosheets

3.0 5.0 10 vol. %
TEOA

H2PtCl6
photodeposition

in situ

300W Xe
lamp λ >
400 nm

3.16 3790 - [111]

9 mesoporous
g-C3N4

0.5 100
10 vol. %

iso-
propanol

H2PtCl6
photodeposition

in situ

medium
pressure
Hg arc
lamp

(125W)

3.35 2010 2.72 [112]

10

NiS/g-C3N4-
30

30—time
irradiation

- 5 10 vol. %
TEOA -

300W Xe
lamp λ >
400 nm

0.27 3300 1.25 [113]

11 30 wt.%
CdS/g-C3N4

- 20 10 vol.%
methanol -

300W Xe
lamp
λ >

420 nm

1.22 3670 2.03 [114]

12 25 wt.%
ZnCo2S4/C3N4

- 20 20 vol.%
TEOA -

300W Xe
lamp
λ >

420 nm

2.21 6620 [115]

13 g-C3N4 0.5 50 10 vol. %
TEOA

Reduction of
chemisorbed Pt
nitrato complex

with H2 at
400 ◦C

425-nm
LED 9.40 11300 6.70 [103]
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Table 2. Cont.

№ Catalyst Pt,
wt.%

Catalyst
Mass, mg

Sacrificial
Agent

Synthetic
Procedure of Pt

Light
Source

H2 Evolution
Rate,

µmol min−1

Catalytic
Activity, µmol

gcat−1·h−1

AQY,
% Ref.

14 g-C3N4 0.1 50 10 vol. %
TEOA

Reduction of
chemisorbed Pt
nitrato complex

with H2 at
400 ◦C

425-nm
LED 7.10 8500 5.01 [103]

15 g-C3N4 0.5 50 10 vol. %
TEOA

Reduction of
chemisorbed

([Pt(OH)4(H2O)2]
with H2 at

400 ◦C

425-nm
LED 7.10 8500 5.01 [105]

4. Conclusions

Over the past decade, graphitic carbon nitride has been recognized as a promising
photocatalytic material and studied in sufficient detail. A lot of approaches to modify
graphic carbon nitride were suggested; the most commonly used methods are described
in this review. Analysis of up-to-day research data on this material proved that high
rates of hydrogen evolution can be achieved by modifying the textural and electronic
characteristics of graphic carbon nitride. The most promising approaches to solve this
task include increasing the specific surface area, creating a branched pore system, and
depositing the platinum group metals by various methods.

The authors of the review performed extensive research and proposed various ap-
proaches to the synthesis of graphitic carbon nitride, including traditional thermal polycon-
densation by melamine/dicyandiamide calcination, thermal polycondensation of melamine
pretreated hydrothermally with glucose, and thermal polycondensation of the supramolec-
ular melamine-cyanuric acid adduct. Additionally, various methods for depositing the
platinum co-catalyst have been suggested. Platinum was deposited from H2PtCl6 and plat-
inum nitratocomplexes and subsequently reduced by various methods, namely, by adding
NaBH4, photoreduction, or in H2 flow. It was shown that the best method is to obtain
graphitic carbon nitride from the supramolecular melamine-cyanuric acid complex in com-
bination with the platinum depositing from Pt nitratocomplex by sorption method followed
by reduction in H2 flow. This approach allowed the reaching a 11 mmol gcat

−1·h−1 cat-
alytic activity in hydrogen evolution, that significantly exceeds that value of photocatalysts
obtained with the use of other combinations of g-C3N4 syntheses and platinum deposition
methods. Currently, the proposed materials possess one of the highest performances in
photocatalytic production of H2 as compared to recently published data.

In general, high values of photocatalytic activity of g-C3N4 based systems proposed
by the authors of this review, and in other studies considered in the review, show obvi-
ous promises for up-scaling the process of photocatalytic hydrogen production towards
practically and commercially valid level. However, to move to this level, it is necessary
to solve not only the synthesis of active materials, but, for example, the simplification of
the synthesis process, the use of environmentally friendly solvents, and the reduction of
the content of noble metals in photocatalysts for hydrogen production, which was clearly
shown in this study.
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