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Abstract: Two Cd(II) based coordination polymers, {Cd3(btc)2(BTD-bpy)2]·1.5MeOH·4H2O}n (1) and
[Cd2(1,4-ndc)2(BTD-bpy)2]n (2), where BTD-bpy = bis(pyridin-4-yl)benzothiadiazole, btc = benzene-
1,3,5-tricarboxylate, and 1,4-ndc = naphthalene-1,4-dicarboxylate, were hydro(solvo)thermally synthe-
sized. Compound 1 has a three-dimensional non-interpenetrating pillared-bilayer open framework
with sufficient free voids of 25.1%, which is simplified to show a topological (4,6,8)-connected net with
the point symbol of (324256)(344454628)(3442619728). Compound 2 has a three-dimensional two-fold
interpenetrating bipillared-layer condense framework regarded as a 6-connected primitive cubic
(pcu) net topology. Compounds 1 and 2 both exhibited good water stability and high thermal stability
approaching 350 ◦C. Upon excitation, compounds 1 and 2 both emitted blue light fluorescence at 471
and 479 nm, respectively, in solid state and at 457 and 446 nm, respectively, in the suspension phase
of H2O. Moreover, compounds 1 and 2 in the suspension phase of H2O both exhibited a fluorescence
quenching effect in sensing Ag+, attributed to framework collapse, and a fluorescence enhancement
response in sensing Al3+ and Cr3+, ascribed to weak ion–framework interactions, with high selectivity
and sensitivity and low detection limit.

Keywords: aluminum; chromium; fluorescence sensor; pillared-layer framework; silver

1. Introduction

Metal and metal-containing materials are important resources widely used in many
industries. Further, a large quantity of metal-containing products is also used in daily life to
satisfy the requirements of human activities. However, improper discharge from industrial
processes and unexpected leaching from improper treatment toward metal-wares would
cause heavy metal ion pollution of the environment. Moreover, many heavy metal ions
such as chromium, aluminum, silver, mercury, cadmium, lead, and iron are known to be
very toxic or carcinogenic [1–4]. Short-term excessive heavy metal ion intake and long-term
accumulation of heavy metal ions in the human body can result in toxic effects to human
organisms, leading to numerous diseases [1,4–7]. For instance, Ag+ may cause cardiac
enlargement, growth retardation, and degenerative changes in the liver [5,6]; Al3+ may
be closely related to damage of the central nervous system [7,8]; Cr3+ may have impacts
on the metabolism of carbohydrates, fats, proteins, and nucleic acids [1,8]. Therefore,
it is unambiguous that heavy metal ion contamination is a serious global problem. As
heavy metal ions represent severe risks for the aquatic and terrestrial ecosystems and even
human survival and health [1–9], it is very important to sensitively and selectively detect
trace amounts of heavy metal ions in aqueous solution for human health monitoring and
environmental protection.

The traditional instrumental analytical techniques such as atomic absorption spectrom-
etry (AAS) [10,11], inductively coupled plasma mass spectrometry/optical atomic emission
spectrometry (ICP-MS/OES) [12–14], atomic fluorescence spectrometry (AFS) [15], X-ray
fluorescence spectrometry (XRF) [16], and electrochemical methods [17,18], are widely
used for the determination of environmental pollutants, especially heavy metal ions, with
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high accuracy, good sensitivity, and low detection limits. However, these analytical tech-
niques are usually limited by expensive instruments, time-consuming sample pretreatment,
well-controlled experimental conditions, and high cost, and they require well-trained op-
erators [19–22]. Therefore, there is an urgent need to develop inexpensive and accurate
detection methods, such as fluorometric approaches, to have the advantages of facilitated
detection, easy manipulation, rapid response, and low cost for the rapid and effective
determination of trace amounts of chemical pollutants such as metal ions in various me-
dia [21–23].

Luminescent coordination polymers (CPs) and luminescent metal–organic frameworks
(MOFs) recently have emerged as a kind of luminescence sensing materials to be reckoned
with, owing to their rich and fascinating luminescence properties [24–26]. A large number
of studies have been concerned with the construction of novel luminescent CPs/MOFs for
applications in the effective detection of hazardous pollutants, such as heavy metal ions,
by enhancing or quenching fluorescence in intensity and/or shifting fluorescence in wave-
length upon stimulation [19–23,27–45]. Subsequent to our efforts on luminescence detec-
tion using luminescent CPs/MOFs as potential multifunctional sensing platforms [46–48],
herein, two cadmium(II) based luminescent CPs, {Cd3(btc)2(BTD-bpy)2]·1.5MeOH·4H2O}n
(1, H3btc = benzene-1,3,5-tricarboxylic acid, BTD-bpy = bis(pyridin-4-yl)benzothiadiazole,
Scheme 1) and [Cd2(1,4-ndc)2(BTD-bpy)2]n (2, 1,4-H2ndc = naphthalene-1,4-dicarboxylic
acid), were hydro(solvo)thermally synthesized. Compounds 1 and 2 both adopt three-
dimensional pillared-layer frameworks featuring the non-interpenetrating (4,6,8)-connected
net and two-fold interpenetrating 6-connected net, respectively. Compounds 1 and 2 both
emitted blue light emissions and thus were exploited as fluorescence-responsive sensor
platforms for Ag+ detection through the fluorescence quenching effect and Al3+ and Cr3+

detection through fluorescence enhancement response with high selectivity and sensitivity
in H2O. Possible sensing mechanisms were also investigated.
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2. Results and Discussion
2.1. Crystal Structure Description of {[Cd3(btc)2(BTD-bpy)2]·1.5MeOH·4H2O}n (1)

Compound 1 crystallized in the monoclinic space group P2/c, and the asymmetric unit
contains a one and half Cd(II) center, one btc3− ligand, and one BTD-bpy ligand. The Cd(II)
at general position, labeled as Cd(1), is coordinated by five O atoms from three different
btc3− ligands (Cd−O = 2.289(5)−2.585(6) Å) and two N atoms from two BTD-bpy ligands
(Cd−N = 2.278 (5) − 2.305 (6) Å), furnishing a distorted {CdO5N2} pentagonal bipyrimidal
geometry, where the five O atoms are located at the equatorial plane and the two N atoms
are placed at the axial positions (Figure 1a). The Cd(II) at special position passing through
2-fold rotation axis, labeled as Cd(2), is coordinated by six O atoms from four different btc3−

ligands (Cd−O = 2.313 (7) − 2.382 (7) Å), furnishing a distorted {CdO6} trigonal antiprism
geometry (Figure 1b). Each btc3– ligand links five Cd(II) centers, where one carboxylate
group is in a chelating (κ2O,O′) coordination mode and the other two carboxylate groups
both are in a bidentate chelating-bridging (µ2-κ2O,O′:κ1O′) coordination mode (Figure 1c).
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mononuclear Cd(2) building unit, showing the coordination sphere of the Cd(II) center, (c) the co-
ordination mode of btc3− ligand, (d) the topological 8-connected node of the {Cd(1)}2 SBU, (e) the 
topological 6-connected node of the mononuclear Cd(2) unit, (f) the topological 4-connected node 
of the btc3− ligand, (g) polyhedral and (h) space-filling model representations of the 
three-dimensional open framework, and (i) schematic representations of the (4,6,8)-connected net 
topology. 
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Figure 1. Crystal structure of 1: (a) the dinuclear {Cd(1)2} secondary building unit and (b) the
mononuclear Cd(2) building unit, showing the coordination sphere of the Cd(II) center, (c) the
coordination mode of btc3− ligand, (d) the topological 8-connected node of the {Cd(1)}2 SBU, (e) the
topological 6-connected node of the mononuclear Cd(2) unit, (f) the topological 4-connected node of
the btc3− ligand, (g) polyhedral and (h) space-filling model representations of the three-dimensional
open framework, and (i) schematic representations of the (4,6,8)-connected net topology.

Structural analysis indicated that the Cd(II) centers are connected by btc3− ligands
to form a two-dimensional bilayer structure of [Cd3(btc)2]n extending in the ac plane
(Figure S1a). Two Cd(1) centers are µ2-κ2O,O′:κ1O′-bridged by two carboxylate groups of
two different btc3− ligands and each of them is further κ2O,O′-chelated by one carboxylate
group from a further btc3− ligand, forming an edge-sharing dinuclear secondary build-
ing unit (SBU) of {Cd(1)2(µ2-CO2)2(CO2)2} with the Cd(1)···Cd(1) separation of 3.8897 Å
(Figure 1a). The dinuclear {Cd(1)2(µ2-CO2)2(CO2)2} SBUs are shared corners with the
mononuclear {Cd(2)(CO2)4} units to result in one-dimensional {Cd3(CO2)6}n chains running
along the [100] direction with a Cd(1)···Cd(2) separation of 4.5240 Å (Figure S2). Topo-
logically, the dinuclear {Cd(1)2(µ2-CO2)2(CO2)2} SBU and the mononuclear {Cd(2)(CO2)4}
unit both can be regarded as 6-connected nodes and the btc3− ligand can be regarded
as a 4-connected node (Figure 1d–f). Therefore, the bilayer structure is simplified as a
(4,6,6)-connected net with the point symbol of (324256)(344454628)(34426772) (Figure S1b).
Noteworthy, the BTD-bpy ligands act as bis(monodentate) pillars to connect only the
dinuclear {Cd(1)2(µ2-CO2)2(CO2)2} units in neighboring [Cd3(btc)2]n bilayers, generating
a three-dimensional open framework having sufficient free voids of 25.1% per unit cell
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volume calculated by PLATON (Figure 1g,h) [49]. From the topological point of view, such
a pillared-bilayer framework is regarded as a (4,6,8)-connected net with the point symbol
of (324256)(344454628)(3442619728) (Figure 1i), where the dinuclear {Cd(1)2(µ2-CO2)2(CO2)2}
unit is expanding to be an 8-connected node (Figure 1d).

2.2. Crystal Structure Description of [Cd2(1,4-ndc)2(BTD-bpy)2]n (2)

Compound 2 crystallizes in the monoclinic space group P21/c, and the asymmetric
unit contains two Cd(II) center, two 1,4-ndc2− ligands, and two BTD-bpy ligands. Each
Cd(II) is coordinated by four O atoms from three different 1,4-ndc2– ligands (Cd−O =
2.2336 (19) − 2.406 (2) Å) and two N atoms from two BTD-bpy ligands (Cd−N = 2.348 (2)
− 2.400 (2) Å), furnishing a distorted {CdO4N2} octahedral geometry (Figure 2a), where
the four O atoms are located at the equatorial plane and the two N atoms are placed at the
axial positions. Each 1,4-ndc2− ligand links three Cd(II) centers, where one carboxylate
group is in a chelating (κ2O,O′) coordination mode and the other carboxylate group is
in a bidentate bridging (µ2-κ1O:κ1O′) coordination mode (Figure 2b). Two Cd(II) centers
are µ2-κ1O:κ1O′-bridged by two carboxylate groups of two different 1,4-ndc2− ligands
and each of them is further κ2O,O′-chelated by one carboxylate group from a further
1,4-ndc2− ligand, forming a dinuclear SBU of {Cd2(µ2-CO2)2(CO2)2} with the Cd···Cd
separation of 4.4508 Å, where the four remaining axial positions are occupied by BTD-bpy
ligands (Figure 2c). Topologically, the dinuclear unit can be considered as a 6-connected
node (Figure 2d). Structural analysis indicated that each {Cd2(µ2-CO2)2(CO2)2} unit is
connected by four identities to form a two-dimensional layer structure of [Cd2(1,4-ndc)2]n
showing the square lattice (sql) topology (Figure 2e). The grid has rhombic windows with
node-to-node distances of 12.607 Å × 16.175 Å in edge. The [Cd2(1,4-ndc)2]n layers are
pillared by bis(monodentate) BTD-bpy ligands to govern a three-dimensional bipillared-
layer open framework, which is simplified to be a topological primitive cubic (pcu) net
(Figure 2f). Noteworthy, the bipillared-layer frameworks are mutually interpenetrated in
2-fold degrees (Figure 2g), greatly reducing the sufficient free voids to only about 0.8% per
unit cell volume [49].

2.3. X-ray Powder Diffraction (XRPD) and Thermogravimetric (TG) Analysis

The phase purity of the bulky samples of 1 and 2 were validated by XRPD mea-
surements undoubtedly, which showed well-matched X-ray diffractograms between the
experimental and simulated XRPD patterns (Figure 3). Further, the XRPD patterns of the
recovered samples after immersing in water for 1 day were in agreement with the pristine
samples (Figure 3), confirming the water stability of 1 and 2.

Thermogravimetric (TG) analysis of 1 conducted under a nitrogen atmosphere re-
vealed a gradual weight loss upon heating from room temperature to approximately 140 ◦C
(Figure S3), corresponding to the escape of lattice MeOH and H2O molecules (found 7.3%;
calcd. 8.3% based on Cd3(btc)2(BTD-bpy)2]·1.5MeOH·4H2O). The coordination framework
of 1 was thermally stable upon heating to approximately 350 ◦C, which was then decom-
posed to leave CdO as final residues (found 25.5%; calcd. 26.5%). The TG curve of 2 showed
a large plateau from room temperature to approximately 350 ◦C, implying its high thermal
stability. The framework was then decomposed to leave CdO as final residues (found 19.4%;
calcd. 20.8%).

2.4. Gas Adsorption Properties

As compound 1 has 25.1% potential free void per unit cell volume, its gas adsorp-
tion properties after thermal activation were examined. For thermally activated 1 at
P/P0 = 1, the gas adsorption isotherms showed only 5.19 cm3 g−1 for N2 uptake at 77 K and
6.92 cm3 g−1 for CO2 uptake at 195 K (Figure S4). The low N2 uptakes gave the estimation
of Brunauer−Emmett−Teller (BET) surface areas of 2.5 m2 g−1 (the estimated Langmuir
surface area: 6.6 m2 g−1).
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After N2 and CO2 adsorption−desorption, the XRPD patterns of 1 were measured.
As observation, though there was some apparent peak broadening and peak shifting, the
checked XRPD patterns were very similar to that of the as-synthesized/simulated profiles
of 1 (Figure S5). This implies quasi-closed windows for N2 and CO2, resulting in the
occurrence of only surface adsorption.
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coordination sphere of the Cd(II) center, (b) the coordination mode of 1,4-ndc2− ligand, (c) polyhedral
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(e) polyhedral and schematic representations of the two-dimensional [Cd2(1,4-ndc)2]n layer, showing
the sql topology, (f) polyhedral and schematic representations of the three-dimensional bipillared-
layer framework showing the pcu topology, (g) polyhedral and schematic representations of the
2-fold interpenetrating pcu nets.

2.5. Photoluminescent Properties

The photoluminescent properties of BTD-bpy, H3btc, and 1,4-H2ndc ligands and com-
pounds 1 and 2 were studied at room temperature in solid state and in H2O (Figures S6 and S7).
Upon excitation, BTD-bpy, H3btc, and 1,4-H2ndc all showed emission band(s), centered
at 477 (λex = 335 nm), 384 (λex = 320 nm), and 476 nm (λex = 365 nm), respectively, in
solid state, and at 448 (λex = 315 nm), 342/397 (λex = 270 nm), and 440 nm (λex = 325 nm),
respectively, in H2O. For 1 and 2, both of them exhibited a fluorescence emission band at
around 471 and 479 nm, respectively, in solid state and at 457 and 446 nm, respectively,
in H2O suspensions upon excitation. These bands resembled the emission band of the
BTD-bpy ligand and that of the free 1,4-H2ndc ligand very closely but differed from that of
free H3btc. Therefore, the emission band of 1 mainly originated from the intraligand (IL)
transitions of the BTD-bpy ligand and that of 2 can be ascribed to the combination of the IL
transitions of BTD-bpy and 1,4-ndc2− ligands upon coordination.
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2.6. Fluorescence Sensing of Metal Ions

Sensing experiments were performed for 1 mg of each complex in 3 mL of H2O. The
well-prepared suspensions of 1 and 2 in H2O exhibited particle sizes of 372.3 ± 102.9 nm
and 362.2 ± 100.2 nm, respectively (Figure S8), suggesting uniformity. In addition, the
measured zeta potentials of 1 and 2 are −8.41 and 1.46 mV, respectively, in the natural pH
conditions, implying negatively and positively charged crystal surfaces, respectively.

Compounds 1 and 2 in the suspension phase of H2O both emitted blue light emissions,
making them potential candidates to be exploited as fluorescence-responsive sensing
platforms. Therefore, the fluorescence sensing performances of 1 and 2 toward metal ions
were investigated at room temperature. Metal ions including Ag+, Al3+, Ca2+, Cd2+, Co2+,
Cr3+, Cu2+, K+, Na+, Mg2+, Mn2+, Ni2+, and Pb2+ ions were chosen as analytes. After
being uniformly dispersed in H2O, the emission spectra of 1 and 2 were measured before
and after the addition of each of the metal ion analytes with a concentration of 1 mM. As
shown in Figure 4, most metal ions involving Ca2+, Cd2+, Co2+, K+, Na+, Mg2+, Mn2+,
Ni2+, and Pb2+ ions displayed negligible effects in changing the emission intensity. The
coinage metal ions such as Ag+ and Cu2+ ions caused significant fluorescence quenching
effects, especially Ag+. The fluorescence quenching percentages are ca. 80 and 90% for 1
and 2, respectively, by the Ag+ ion and ca. 50 and 22% for 1 and 2, respectively, by the
Cu2+ ion. On the contrary, the Al3+ and Cr3+ ions demonstrated remarkable fluorescence
enhancement responses. The fluorescence enhancement ratios are ca. 2.0 and 3.1 times for 1
and 2, respectively, by the Al3+ ion and ca. 2.3 and 2.9 times for 1 and 2, respectively, by
the Cr3+ ion. As a result, both 1 and 2 could be promising fluorescence-responsive sensor
platforms for detecting Ag+, Al3+, and Cr3+ ions in H2O. Comparably, the emission of
BTD-bpy in H2O was quenched after the addition of Ag+, while it was enhanced after the
addition of Al3+ and Cr3+ ions (Figure S9a); the changes were very close to those of 1 and 2
with the addition of Ag+, Al3+, and Cr3+ in H2O. On the other hand, the emission spectra of
H3btc and 1,4-H2ndc showed some changes in intensity with the addition of Ag+, Al3+, and
Cr3+ in H2O (Figure S9b,c). These findings indicate that Ag+, Al3+, and Cr3+ ions favorably
formed analyte−sensor interactions with BTD-bpy struts rather than btc3− and 1,4-ndc2−

in 1 and 2 during sensing.
The competitive detection experiments were carried out to examine the potential

of 1 and 2 as an excellent fluorescence sensor showing high selectivity. Experimental
results indicated that 1 and 2 both displayed excellent anti-interference ability for the
highly selective detection of Ag+ due to the negligible changes in fluorescence intensity
perturbed by competitive ions (Figure 5). Comparably, in cases of Al3+ and Cr3+ detection,
interference from Ag+ ions was apparently observed for both 1 and 2, whereas Al3+ and
Cr3+ competed for recognition of 1 and 2. Other metal ion analytes had no significant
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influence in changing the fluorescence intensities of 1 and 2. These results clearly implied
that 1 and 2 both had extremely high recognition ability to distinguish Ag+ ions from other
metal ions, and acceptable anti-interference ability to selectively detect Al3+ and Cr3+ ions
under specific controlled conditions, for example, in the absence of Ag+ ions.
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To examine the fluorescence sensing sensitivity, the quantitative titration experiments
of 1 and 2 in the suspension phase of H2O were conducted with the incremental addition
of analyte concentration involving Ag+, Al3+, and Cr3+ ions, and the related fluorescence
emission spectra were measured. In the case of Ag+ detection, the fluorescence intensities
of 1 and 2 both were gradually decreased as the Ag+ concentration was regularly increased
from 0 to 0.10 mM for 1 and from 0 to 1.0 mM for 2 (Figure 6). Noteworthy, 1 and 2
both displayed significant fluorescence change in intensity but not in wavelength, as the
fluorescence bands of 1 and 2 both are almost un-shifted in wavelength during the whole
titration concentrations. The Stern−Volmer equation, I0/I = KSV × [Quencher] + 1, was
utilized to analyze the detection sensitivity, whereas the equation, DL = 3σ/k, where σ
denotes the standard deviation of blank measurements and k denotes the absolute value
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of the slope, was applied to determine the detection limit. For the quantitative detection
of Ag+ ions, the Stern−Volmer plot of [(I0/I) − 1] against Ag+ concentration gave a good
linear relationship in the range of 0−0.10 mM with the correlation coefficient R2 = 0.9973
for 1 and 0–1.0 mM with the correlation coefficient R2 = 0.99649 for 2, and accordingly,
the KSV was determined to be 2.053 × 104 M−1 for 1 and 1.598 × 104 M−1 for 2 (insets
in Figure 6). Further, the DL value was calculated to be 0.56 µM for 1 and 1.47 µM for 2
toward Ag+ detection. A series of CP/MOF-based fluorescence sensors applied in Ag+

detection are surveyed in Table S1. As observation, the DL values of 1 and 2 for Ag+

sensing are on the same order of magnitude as other reported luminescent CP/MOF-based
probes [20,23,27,28,50–53]. Therefore, 1 and 2, especially the former, possess remarkable
sensing competitiveness for Ag+ detection via the fluorescence ON−OFF mechanism.
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In cases of Al3+ and Cr3+ detection, on the other hand, when the Al3+ or Cr3+ concen-
trations were incrementally added, the fluorescence intensities of 1 and 2 both were con-
tinuously enhanced (Figure 7), suggesting diffusion-controlled fluorescence enhancement.
Further, the fluorescence bands of 1 and 2 both are gradually blue-shifted in wavelength
by 21 ± 1 nm for Al3+ detection and 22 ± 2 nm for Cr3+ detection during the whole titra-
tion concentrations. Of particular note, the fluorescence intensity and the analyte (Al3+

or Cr3+) concentration fit the first-order exponential decay relationship very well, with
the formulae of I = −297.28 × exp(−[Al3+]/0.062) + 829.26 (R2 = 0.99508) for Al3+ detec-
tion and I =−814.37× exp([Cr3+]/0.31) + 1441.26 (R2 = 0.99861) for Cr3+ detection by 1, and
I = −1224.32 × exp(−[Al3+]/0.30) + 1722.25 (R2 = 0.99848) for Al3+ detection and
I = −1441.27 × exp(−[Cr3+]/0.18) + 1853.56 (R2 = 0.99792) for Cr3+ detection by 2. In
addition, the DL value was calculated to be 4.97 µM for 1 and 0.25 µM for 2 toward Al3+

detection and 3.03 µM for 1 and 0.79 µM for 2 toward Cr3+ detection. Tables S2 and S3
display a comparison of literature reports for Al3+ and Cr3+ detection, respectively, using
CP/MOF-based fluorescence sensors in water [22,29–43]. As a representative, 1 and 2
display comparable sensing performances toward Al3+ and Cr3+. Of particular note, 2
can be an effective fluorescence OFF−ON sensor for Al3+ and Cr3+, owing to the lower
detection limit.

2.7. Sensing Mechanism

The plausible sensing mechanisms were explicated. After being immersed in Ag+

aqueous solutions for 1 day, the recovery solids of 1 and 2 both revealed amorphous XRPD
profiles (Figure 3), which is an indication of the loss of crystallinity. This vividly implies
the correlation between fluorescence turn-off and architecture collapse. In other words,
framework collapse is the most likely interpretation for the fluorescence turn-off sensing
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toward Ag+ by 1 and 2 in the suspension phase of H2O. This is compared with other reports
on Ag+ detection based on quenching effects, which is dominated by a charge transfer
process between Ag+ and a fluorescence-quenched chemosensor [53–55].
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In cases of luminescence enhancement sensing of Al3+ and Cr3+ by 1 and 2 in the
suspension phase of H2O, the recovery solids of 1 and 2 immersed in Al3+ or Cr3+ aqueous
solutions for 1 day all displayed similar XRPD patterns to that of pristine 1 and 2, with
no significant changes in the diffraction positions and intensity (Figure 3). This indicates
that the structure and crystallinity of 1 and 2 retained integrity after ion sensing in water,
proving the high structure stability during sensing again. In addition, the possibility that
structure disruption caused fluorescence turn-on detection can be eliminated.

The literature has shown that most reports on metal ion detection based on enhance-
ment effects are due to the weak interaction between the ionic analytes and
framework [29–34,42,43]. Therefore, the IR and XPS spectra of 1 and 2 were explored
to verify this assumption. After immersing 1 in Al3+ and Cr3+ aqueous solutions for 1 day,
the IR spectra of recovery samples showed no significant changes compared with that
of as-synthesized 1 (Figure S10a), suggesting no or an extremely weak framework–M3+

(M3+ = Al3+, Cr3+) interactions that cannot cause significant changes in IR vibrations.
However, the IR spectra of 2 before and after being treated with Al3+ and Cr3+ in

H2O for 1 day displayed remarkable differences (Figure S10b). The antisymmetric and
symmetric stretching vibrations of carboxylate group (RCOO−) at 1550 and 1360 cm−1,
respectively, in 2 were largely reduced in intensity after treatment with Al3+ and Cr3+. The
weak stretching vibration of the benzothiadiazole C=N bond at 1704 cm−1 was red-shifted
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to 1690 cm−1 as a strong peak in both Al3+- and Cr3+-treated 2. In addition, the band at
1412 cm−1, corresponding to the stretching vibration of the benzothiadiazole C=C bond,
was slightly blue-shifted by 11 cm−1. The differences in the IR spectra of 2 after treatment
with Al3+ and Cr3+ in H2O pointed to the framework−M3+ (M3+ = Al3+, Cr3+) interactions
that were mainly occupied at the benzothiadiazole N positions and, in part, at the 1,4-ndc2−

O positions.
XPS spectra provided further support (Figure 8). The XPS spectra of 1 and 2 after being

treated with Al3+ and Cr3+ in H2O for 1 day showed significant shifts in binding energy in
the O 1s peak, which gave the binding energy of 531.6 eV for as-synthesized 1 and 532.2
and 531.9 eV for Al3+- and Cr3+-treated 1, respectively, as well as 528.8/531.8 eV for as-
synthesized 2 and 527.0/532.6 and 528.4/532.3 eV for Al3+- and Cr3+-treated 2, respectively,
implying the formation of framework−M3+ (M3+ = Al3+, Cr3+) interactions. Moreover, the
shifts in O 1s in 2 is obviously larger than that in 1, reflecting stronger framework−M3+

(M3+ = Al3+, Cr3+) interactions. In addition, the N 1s peak is divided into two peaks, where
the component at around 400 eV is typical of the pyridyl group [56,57], and the other
at around 406 eV can be attributed to the benzothiadiazole group. The former at 399.7
and 399.9 eV for as-synthesized 1 and 2, respectively, showed very small shifts (≤0.3 eV)
after being treated with Al3+ and Cr3+ in water, while the latter at 405.2 and 405.3 eV for
as-synthesized 1 and 2, respectively, displayed larger shifts (ca. 0.3–1.4 eV) after being
treated with Al3+ and Cr3+ in H2O. This implies that the benzothiadiazole group also
formed contacts with Al3+ and Cr3+ ions through the N donors. The S 2p3/2 peak appeared
at around 166 eV in the XPS spectra of 1, and 2 displayed almost unchanged shifts before
and after treatment with Al3+ and Cr3+ in H2O.
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Structural analyses showed that 1 has large pores of about 25.1% while 2 possesses
very small pores of about 0.8%. The difference in pore size makes metal ions pass through
the framework more easily in 1 compared to 2, resulting in weaker framework–M3+

(M3+ = Al3+, Cr3+) interactions. In addition, the benzothiadiazole and the 1,4-ndc2− in 2
are close to each other in the pores, creating a comfortable region for the binding of metal
ion analytes to form stronger framework–M3+ (M3+ = Al3+, Cr3+) interactions, and such an
environment is not observed in 1 since the benzothiadiazole and the btc3− are not close to
each other. This is consistent with the results from IR and XPS experiments.
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In whole, these experimental observations imply weak interactions between the
Al3+/Cr3+ ions and frameworks (1 and 2), which would facilitate energy transfer and
result in intraligand (IL) transitions of the BTD-bpy ligand, leading to luminescence en-
hancement.

3. Materials and Methods
3.1. Chemicals and Instruments

Chemicals were commercially obtained and used without further purification. Ligand
BTD-bpy was prepared according to the literature report [58]. Infrared (IR) spectra were car-
ried out on a Perkin-Elmer Frontier Fourier transform infrared spectrometer (Perkin-Elmer,
Taipei, Taiwan) using the attenuated total reflection (ATR) sampling technique. Thermo-
gravimetric (TG) analyses were recorded on a Thermo Cahn VersaTherm HS TG analyzer
(Thermo, Newington, NH, USA) under a flow of nitrogen atmosphere. X-ray powder
diffraction (XRPD) measurements were conducted on a Shimadzu XRD-7000 diffractometer
(Shimadzu, Kyoto, Japan) using graphite monochromatized Cu Kα radiation (λ = 1.5406 Å)
set at 40 kV and 30 mA. Fluorescence emission spectra were carried out on a Hitachi F2700
fluorescence spectrophotometer (Hitachi, Tokyo, Japan) at room temperature using a 150 W
xenon lamp as an excitation source. UV-vis absorption spectra were performed on a JASCO
V-750 UV/VIS spectrophotometer (JASCO, Tokyo, Japan). Elementary microanalyses were
performed on an Elementar Vario EL III analytical instrument (Elementar, Langenselbold,
Germany). X-ray photoelectron spectroscopy (XPS) analyses were conducted on a Thermo
Scientific ESCALAB 250 surface analysis system (Thermo Fisher Scientific Inc., Waltham,
MA, USA) using a monochromatic Al Kα source. The C1’s core level of adventitious carbon
at 284.6 eV was set as the reference for binding energy calibration. Zeta potentials and parti-
cle size distribution were analyzed from the experimental data recorded on a Micromeritics
NanoPlus-3 Zeta Potential/Nano Particle analyzer (Micromeritics Instrument Corporation,
GA, USA).

3.2. Synthesis of {Cd3(btc)2(BTD-bpy)2]·1.5MeOH·4H2O}n (1)

A methanol solution (3 mL) of BTD-bpy (7.3 mg, 0.025 mmol), an aqueous solution
(1 mL) of Cd(NO3)2·4H2O (11.8 mg, 0.050 mmol), and a methanol solution (1 mL) of
benzene-1,3,5-tricarboxylic acid (H3btc, 10.5 mg, 0.050 mmol) were sequentially sealed in a
Teflon-lined autoclave. The autoclave was heated to 120 ◦C from room temperature in a
period of 6 h, held at that temperature for 48 h, and then cooled to 30 ◦C in a period of 36 h.
The resultant yellow crystals were collected by filtration, washed with methanol, and dried
at room temperature. Yield: 80% based on BTD-bpy (13.4 mg, 0.010 mmol). IR (ATR, cm−1):
1697, 1606, 1542, 1431, 1367, 1296, 1218, 1108, 1069, 1016, 926, 887, 816, 757, 725. Found: C,
43.05; H, 2.52; N, 7.56%. Anal. Calcd Required for C50H26Cd3N8O12S2·4H2O: C, 42.73; H,
2.42; N, 7.80%.

3.3. Synthesis of [Cd2(1,4-ndc)2(BTD-bpy)2]n (2)

A methanol solution (3 mL) of BTD-bpy (7.3 mg, 0.025 mmol), an aqueous solution
(1 mL) of Cd(NO3)2·4H2O (11.8 mg, 0.050 mmol), and a methanol solution (1 mL) of
naphthalene-1,4-dicarboxylic acid (1,4-H2ndc, 10.5 mg, 0.050 mmol) were sequentially
sealed in a Teflon-lined autoclave. The autoclave was heated to 120 ◦C from room tempera-
ture in a period of 6 h, held at that temperature for 48 h, and then cooled to 30 ◦C in a period
of 36 h. The resultant yellow crystals were collected by filtration, washed with methanol,
and dried at room temperature. Yield: 80% based on BTD-bpy (12.9 mg, 0.010 mmol). IR
(ATR, cm−1): 3043, 1704, 1550, 1412, 1360, 1085, 1049, 1013, 915, 820, 600. Elem. microanal.
for C56H32Cd2N8O8S2: C, 54.51; H, 2.61; N, 9.08%. Found: C, 54.20; H, 2.65; N, 8.99%.

3.4. Single-Crystal X-ray Structure Determination

Single-crystal X-ray diffraction analyses were performed on a Bruker D8 Venture
diffractometer using a graphite monochromatized Mo Kα radiation (λ = 0.71073 Å). The
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structures were solved using the SHELXS-97 program [59] and refined based on F2 by
full-matrix least-squares methods using the SHELXL-2014/7 [60], incorporated in WINGX-
v2014.1 crystallographic collective package [61]. Non-hydrogen atoms were refined anisotrop-
ically while hydrogen atoms were refined isotropically. For 1, the lattice solvent molecules
are highly disordered and cannot be properly modeled. The SQUEEZE instruction thereby
was conducted to remove the diffraction contributions from these lattice solvent molecules [62].
The calculations indicated the presence of 286 electrons per unit, which was associated
with the thermogravimetric (TG) analysis and elementary microanalysis to suggest ap-
proximately 1.5 MeOH and 4 H2O molecules per formula. Experimental details for X-ray
data collection and the refinements are summarized in Table 1. CCDC 2213904 (1) and
2213905 (2) contain the supplementary crystallographic data for this paper. These data
can be obtained free of charge from the Cambridge Crystallographic Data Centre via
www.ccdc.cam.ac.uk/data_request/cif.

Table 1. Crystallographic data for 1 (squeezed, lattice solvents are not involved) and 2.

1 (Squeezed) 2

empirical formula C50H26Cd3N8O12S2 C56H32Cd2N8O8S2
Mw 1332.11 1233.81
crystal system Monoclinic Monoclinic
space group P2/c P21/c
a (Å) 10.3802 (5) 16.1752 (6)
b (Å) 16.0244 (8) 14.1903 (5)
c (Å) 17.1960 (8) 21.0636 (7)
β (◦) 101.925 (2) 95.715 (2)
V (Å3) 2798.6 (2) 4810.7 (3)
Z 2 4
T (K) 150 (2) 150 (2)
λ (Å) 0.71073 0.71073
Dcalc (g cm–3) 1.581 1.704
µ (mm–1] 1.268 1.040
F000 1308 2464
GOF on F2 0.856 1.155
R1

a (I > 2σ (I)) 0.0701 0.0278
wR2

b (I > 2σ (I)) 0.2076 0.0745
R1

a (all data) 0.0745 0.0364
wR2

b (all data) 0.2114 0.0875

a R1 = ∑ ||Fo | − |Fc||/∑|Fo |. b wR2 =
{

∑ [w(Fo
2 − Fc

2)
2
]/ ∑ [w(Fo

2)
2
]
}1/2

.

3.5. Fluorescence Sensing Measurements

The fluorescence sensing measurements were performed in H2O suspensions at room
temperature. The fine-ground crystalline sample (1 mg) was immersed in H2O (3 mL) and
then ultrasonically agitated with pulsed ultrasound for 10 min to form homogeneously sta-
ble suspensions. The aqueous solutions (0.10 M) of M(NO3)n (Mn+ = Ag+, Al3+, Ca2+, Cd2+,
Co2+, Cr3+, Cu2+, K+, Na+, Mg2+, Mn2+, Ni2+, and Pb2+) were prepared for fluorescence
sensing measurements.

4. Conclusions

In summary, Cd(II) based coordination polymers 1 and 2 with high water and ther-
mal stability have been hydro(solvo)thermally synthesized. Compound 1 has a non-
interpenetrating pillared-bilayer open framework of a topological (4,6,8)-connected net,
and compound 2 features a two-fold interpenetrating bipillared-layer condense framework
of a topological 6-connected pcu net. Compounds 1 and 2 both emit blue light fluores-
cence and are capable of fluorescence-responsive detection. In terms of metal ion sensing,
compounds 1 and 2 both exhibit a remarkable fluorescence quenching effect toward Ag+

ions, with excellent selectivity and sensitivity and very low detection limits. In addition,

www.ccdc.cam.ac.uk/data_request/cif
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selective and sensitive detection of Al3+ and Cr3+ ions with low detection limits by 1 and 2
are also achieved through the fluorescence enhancement response.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms24010369/s1.
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