In Vitro Study of the Blood–Brain Barrier Transport of Natural Compounds Recovered from Agrifood By-Products and Microalgae
Abstract
:1. Introduction
2. Results and Discussion
2.1. Evaluation of the Toxicity of Agrifood By-Products and Microalgae Extracts on HBMEC
2.2. Effect of Agrifood By-Products and Microalgae Extracts on BBB Integrity
2.3. Evaluation of Natural Compound Transport across the BBB Endothelium
In Vitro Neuroprotection | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Extract | AChE | BChE | LOX | ABTS | ROS | RNS | ||||||||||||
IC50 µg/mL | ||||||||||||||||||
PLE100 | 137.1 | ± | 8.1 | 147.0 | ± | 7.5 | 76.11 | ± | 10.4 | 13.54 | ± | 0.8 | 4.38 | ± | 0.4 | 1199.0 | ± | 98.1 |
OL-SS | 144.4 | ± | 29.1 | 183.8 | ± | 22.5 | 104.8 | ± | 11.4 | 82.59 | ± | 1.1 | 18.27 | ± | 0.5 | 1036.0 | ± | 114.2 |
DS | 18.85 | ± | 0.1 | 113.5 | ± | 11.5 | 63.38 | ± | 6.5 | 16.33 | ± | 2.1 | 3.41 | ± | 0.2 | 698.2 | ± | 34.6 |
ASFE | 4.23 | ± | 0.1 | 1.20 | ± | 0.1 | 4.37 | ± | 0.3 | 0.11 | ± | 0.0 | 1.56 | ± | 0.1 | 3218.0 | ± | 358.6 |
T33 | 97.46 | ± | 6.8 | 85.46 | ± | 2.7 | 48.30 | ± | 1.7 | 6.33 | ± | 0.0 | 2.54 | ± | 0.1 | 599.0 | ± | 5.9 |
PPC1 | 67.03 | ± | 5.3 | 150.7 | ± | 1.1 | 52.20 | ± | 5.4 | 6.86 | ± | 0.0 | 6.95 | ± | 0.5 | 838.0 | ± | 99.5 |
Quercetin * | 125.7 | ± | 10.8 | |||||||||||||||
Galantamine * | 0.40 | ± | 0.0 | 2.36 | ± | 0.0 | 4.56 | ± | 0.4 | 0.98 | ± | 0.1 | ||||||
Ascorbic acid * | 1100.9 | ± | 13.9 |
Compound (Family) | Matrix | Molecular Formula | Molecular Weight (m/z) | Log p * | TPSA * (Å2) | HBA * | HBD * | BBB Predicted a | P-gp * Substrate b | Te % (SEM) | |
---|---|---|---|---|---|---|---|---|---|---|---|
Terpenoids | 2 h | 4 h | |||||||||
Monoterpenoids | |||||||||||
3-Carene | PLE100 | C10H16 | 136.1252 | 2.8 | 0 | 0 | 0 | Yes | No | n.d | 20.3 (0.9) |
Limonene | PLE100 | C10H16 | 136.1252 | 3.4 | 0 | 0 | 0 | Yes | No | 33.6 (2.3) | 59.3 (2.9) |
L-α-Terpineol | PLE100 | C10H18O | 154.1357 | 1.8 | 20.2 | 1 | 1 | Yes | No | 17.6 (1.3) | 59.3 (0.4) |
Nerol | PLE100 | C10H18O | 154.1357 | 2.9 | 20.2 | 1 | 1 | Yes | No | 26.8 (0.2) | 41.5 (3.1) |
Limonene Epoxide | PLE100 | C10H16O | 152.1201 | 2.5 | 12.5 | 1 | 0 | Yes | No | 19.5 (1.2) | 42.4 (3.2) |
Borneol | OL-SS | C10H18O | 154.1357 | 2.7 | 20.2 | 1 | 1 | Yes | No | 8.5 (0.3) | 35.2 (0.1) |
Cymenol | OL-SS | C10H14O | 150.1044 | 2.3 | 20.2 | 1 | 1 | Yes | No | 51.5 (1.8) | 75.9 (2.9) |
Thymol | OL-SS | C10H14O | 150.1044 | 3.3 | 20.2 | 1 | 1 | Yes | No | 34.1 (0.1) | 47.0 (1.7) |
Meroterpenoids | |||||||||||
Chromene derivative | OL-SS | C12H20 | 164.1565 | 2.2 | 63.6 | 2.7 (0.0) | 12.4 (0.8) | ||||
Sesquiterpenoids | |||||||||||
β-Panasinsene | PLE100 | C15H24 | 204.1878 | 5.1 | 0 | 0 | 0 | No | No | 33.4 (1.5) | 34.8 (1.0) |
(-)-Aristolene | PLE100 | C15H24 | 204.1878 | 4.7 | 0 | 0 | 0 | No | No | 39.7 (0.4) | 71.3 (1.6) |
Valencene | PLE100 | C15H24 | 204.1878 | 5.2 | 0 | 0 | 0 | No | No | 51.9 (4.2) | 86.1 (0.9) |
(−)-α-Panasinsen | PLE100 | C15H24 | 204.1878 | 4.9 | 0 | 0 | 0 | No | No | 19.8 (0.2) | 83.5 (5.1) |
γ-silenene | PLE100 | C15H24 | 204.1878 | 5.4 | 0 | 0 | 0 | No | No | 52.8 (3.8) | 53.8 (2.8) |
Elemol | PLE100 | C15H26O | 222.1983 | 4.4 | 20.2 | 1 | 1 | Yes | No | 24.6 (0.5) | 25.4 (1.6) |
Compound (Family) | Matrix | Molecular formula | Molecular weight (m/z) | Log p * | TPSA * (Å2) | HBA * | HBD * | BBB Predicted a | P-gp * substrate b | Te % (SEM) | |
δ-Cadinene | PLE100 | C15H24 | 204.1878 | 5.5 | 0 | 0 | 0 | No | No | 21.5 (0.8) | 28.9 (2.4) |
β-Sinensal | PLE100 | C15H22O | 218.167 | 4.8 | 17.2 | 1 | 0 | No | No | 31.6 (1.2) | 38.2 (2.4) |
Nootkatone | PLE100 | C15H22O | 218.167 | 3.9 | 17.1 | 1 | 0 | Yes | No | 29.9 (0.9) | 43.0 (3.4) |
Ylangenal | PLE100 | C15H22O | 218.167 | 3.7 | 17.1 | 1 | 0 | Yes | No | 32.0 (2.7) | 36.9 (0.4) |
Nerolidol | OL-SS | C15H26O | 222.1983 | 4.6 | 20.2 | 1 | 1 | Yes | No | 30.1 (2.5) | 59.8 (2.4) |
Farnesene | OL-SS | C15H24 | 204.1878 | 6.1 | 0 | 0 | 0 | No | No | 46.0 (2.1) | 50.9 (3.1) |
Caryophyllene oxide | OL-SS | C15H24O | 220.1827 | 4.5 | 0 | 1 | 0 | Yes | No | 67.7 (0.9) | 77.1 (3.9) |
γ-Elemene | OL-SS | C15H24 | 204.1878 | 5.4 | 0 | 0 | 0 | No | No | 30.1 (0.1) | 41.8 (1.7) |
(-)-Globulol | OL-SS | C15H26O | 222.1983 | 20.2 | 37.3 | 1 | 1 | Yes | No | 44.1 (3.6) | 94.7 (3.5) |
Hexahydrofarnesyl | OL-SS | C18H36O | 268.2766 | 6.9 | 17.1 | 1 | 0 | No | Yes | 23.4 (1.1) | 48.1 (3.0) |
Germacrene D | OL-SS | C15H24 | 204.1878 | 4.7 | 0 | 0 | 0 | No | No | 3.2 (0.2) | 6.6 (0.4) |
Phytuberin | T33 | C17H26O4 | 294.1831 | 2.3 | 45 | 4 | 0 | Yes | No | 33.4 (1.5) | 79.6 (2.2) |
Diterpenoids | |||||||||||
Geranylgeraniol | OL-SS | C20H34O | 290.2609 | 6.6 | 20.2 | 1 | 1 | Yes | No | 30.2 (1.1) | 56.6 (3.1) |
Isophytol | OL-SS | C20H40O | 296.3079 | 7.8 | 20.2 | 1 | 1 | No | Yes | 15.6 (1.0) | 58.0 (1.7) |
Phytol | OL-SS | C20H40O | 296.3079 | 9.2 | 20.2 | 1 | 1 | No | Yes | 15.6 (0.3) | 43.5 (3.7) |
Triterpenoids | |||||||||||
Squalene | OL-SS/PLE100 | C30H50 | 410.391 | 11.6 | 0 | 0 | 0 | No | Yes | 24.1 (1.4)/19.1 (1.4) | 33.2 (0.9)/47.6 (1.5) |
β-Amyrin | OL-SS/PLE100 | C30H50O | 426.3861 | 9.2 | 20.2 | 1 | 1 | No | No | n.d | n.d |
α-Amyrin | OL-SS | C30H50O | 426.3861 | 9 | 21.2 | 1 | 1 | No | No | n.d | n.d |
Lupeol acetate | OL-SS | C30H48O2 | 440.3654 | 10.4 | 26.3 | 2 | 0 | No | No | n.d | n.d |
Uvaol Isomer I | OL-SS | C30H50O2 | 442.381 | 7.4 | 40.5 | 2 | 2 | No | No | 3.3 (0.1) | 38.8 (3.2) |
Compound (Family) | Matrix | Molecular formula | Molecular weight (m/z) | Log p * | TPSA * (Å2) | HBA * | HBD * | BBB Predicted a | P-gp * substrate b | Te % (SEM) | |
Uvaol Isomer II | OL-SS | C30H50O2 | 442.381 | 7.4 | 40.5 | 2 | 2 | No | No | 17.7 (1.0) | 38.3 (0.7) |
Ganolucidic acid C | ASFE | C30H46O7 | 518.3243 | 3.1 | 132 | 7 | 4 | No | Yes | 11.7 (0.7) | 15.6 (0.3) |
Corosolic acid | ASFE | C30H48O4 | 472.3552 | 6.4 | 78 | 4 | 3 | No | Yes | 33.4 (1.9) | 39.6 (1.9) |
Triterpene # | ASFE | C29H44O5 | 472.3188 | 3.6 | 84 | 5 | 2 | No | Yes | 30.4 (1.7) | 82.9 (5.3) |
Lucyin A | ASFE | C30H46O5 | 486.3345 | 5.3 | 95 | 5 | 3 | No | Yes | 7.6 (0.5) | 25.3 (0.7) |
Ganolucidic acid B | ASFE | C30H46O6 | 502.3294 | 3.8 | 112 | 6 | 3 | No | Yes | 28.4 (1.1) | 28.6 (1.5) |
Tocopherols | |||||||||||
β-Tocopherol | OL-SS | C28H48O2 | 416.3654 | 10.3 | 29.5 | 2 | 1 | No | Yes | n.d | 15.2 (0.8) |
α-Tocopherol | OL-SS/PLE10 | C29H50O2 | 430.381 | 10.7 | 29.5 | 2 | 1 | No | Yes | 19.8 (0.2)/18.3 (0.8) | 39.7 (3.0)/29.1 (1.5) |
γ-Tocopherol | OL-SS/PLE10 | C28H48O2 | 416.1654 | 10.3 | 29.5 | 2 | 1 | No | Yes | 31.5 (0.8)/27.3 (2.1) | 42.0 (0.8)/30.0 (1.6) |
Sesterterpenoids | |||||||||||
Tocospiro A | OL-SS | C29H50O4 | 462.3709 | 7.4 | 63.6 | 4 | 1 | No | Yes | 2.7 (0.2) | 25.6 (1.5) |
Tocospiro B | OL-SS | C29H50O4 | 462.3709 | 7.4 | 63.6 | 4 | 1 | No | Yes | 1.9 (0.1) | 26.2 (1.0) |
Apocarotenoid | |||||||||||
Dihydroactinidiolide | OL-SS | C11H16O2 | 180.115 | 2.2 | 26.3 | 2 | 0 | Yes | No | 42.2 (3.5) | 51.8 (3.0) |
3-hydroxy-β-damascone | OL-SS | C13H20O2 | 208.1463 | 2 | 37.3 | 2 | 1 | Yes | No | 84.5 (3.2) | 95.5 (3.2) |
Isololiolide | OL-SS | C11H16O3 | 196.1099 | 1 | 46.5 | 3 | 1 | Yes | No | 33.0 (2.6) | 61.4 (4.3) |
Phytosterols | |||||||||||
Campesterol | PLE100 | C28H48O | 400.3705 | 8.8 | 20.2 | 1 | 1 | No | No | 68.7 (2.2) | 76.7 (0.5) |
Stigmasterol | PLE100 | C28H48O | 412.3705 | 8.6 | 20.2 | 1 | 1 | No | No | 40.4 (2.2) | 64.5 (0.4) |
γ-Sitosterol | OL-SS/PLE100 | C29H50O | 414.3861 | 9.3 | 20.2 | 1 | 1 | No | No | 12.9 (0.6)/11.3 (0.5) | 19.2 (1.3)/12.1 (0.6) |
Compound (Family) | Matrix | Molecular formula | Molecular weight (m/z) | Log p * | TPSA * (Å2) | HBA * | HBD * | BBB Predicted a | P-gp * substrate b | Te % (SEM) | |
Oxosteroids | |||||||||||
Cucurbitacin | ASFE | C30H42O6 | 498.2981 | 3.2 | 101 | 8 | 3 | No | Yes | 41.1 (3.0) | 75.4 (2.0) |
Phenolic compounds | |||||||||||
Hydroxycinnamic acids | |||||||||||
p-Coumaric acid | T33 | C9H8O3 | 164.0473 | 1.5 | 58 | 3 | 2 | Yes | No | 9.1 (0.6) | 37.8 (2.5) |
Caffeic acid | T33/ASFE | C9H8O4 | 180.0422 | 1.2 | 78 | 4 | 3 | No | No | 34.8 (1.2)/55.4 (3.7) | 50.1 (3.4)/68.3(0.3) |
Caffeoylshikimic acid | T33 | C16H16O8 | 336.0845 | 0.9 | 147 | 8 | 4 | No | No | 14.3 (0.8) | 29.0 (0.1) |
Ethyl caffeate | T33 | C11H12O4 | 208.0735 | 2.6 | 67 | 4 | 2 | Yes | No | 33.4 (2.4) | 35.7 (0.3) |
Caftaric acid | ASFE | C13H12O9 | 312.0481 | 0.1 | 162 | 9 | 5 | No | No | 46.3 (3.6) | 87.6 (3.5) |
Ferulic acid | ASFE | C10H10O4 | 194.0579 | 1.5 | 67 | 4 | 2 | Yes | No | n.d | 9.1 (0.3) |
Coutaric acid | ASFE | C13H12O8 | 296.0532 | 0.4 | 141 | 8 | 4 | No | No | n.d | n.d |
Caffeoyl hexoside | T33 | C15H18O9 | 342.0950 | −0.6 | 157 | 9 | 6 | No | No | 67.4 (4.3) | 72.8 (0.6) |
Hydroxybenzoic acids | |||||||||||
p-Salycilic acid | T33 | C7H6O3 | 138.0316 | 3.7 | 58 | 3 | 2 | Yes | No | 25.5 (1.8) | 43.4 (1.3) |
Sinapic acid | T33/ASFE | C12H12O5 | 236.0684 | 1.5 | 76 | 5 | 2 | No | No | 35.6 (2.0)/n.d | 44.4 (3.2)/18.6 (0.5) |
Protocatechuic aldehyde | ASFE | C7H6O3 | 138.0316 | 1.1 | 58 | 3 | 2 | Yes | No | 20.3 (1.5) | 78.2 (5.7) |
Protocatechuic acid | ASFE | C7H6O4 | 154.0266 | 1.1 | 78 | 4 | 3 | No | No | 45.1 (3.8) | 71.7 (3.2) |
Methoxybenzoic acids | |||||||||||
Gallic acid | T33/ASFE | C7H6O5 | 170.0215 | 0.7 | 98 | 5 | 4 | No | No | 33.0 (1.9)/39.9 (1.4) | 62.9 (0.3)/67.9(1.3) |
Vanillic acid | ASFE | C8H8O4 | 168.0422 | 1.4 | 67 | 4 | 2 | No | No | 38.9 (1.2) | 42.2 (0.7) |
Compound (Family) | Matrix | Molecular formula | Molecular weight (m/z) | Log p * | TPSA * (Å2) | HBA * | HBD * | BBB Predicted a | P-gp * substrate b | Te % (SEM) | |
Coumaric acids | |||||||||||
Rosmarinic acid | T33 | C18H16O8 | 360.0845 | 2.4 | 145 | 8 | 5 | No | No | 41.0 (2.3) | 90.3 (4.2) |
Cyclic alcohols | |||||||||||
Quinic acid | T33 | C7H12O6 | 192.0633 | −2.4 | 118 | 6 | 5 | No | No | 20.1 (1.6) | 52.5 (1.4) |
Caffeoylquinic acid | T33 | C16H18O9 | 354.0950 | −0.4 | 165 | 9 | 6 | No | No | 15.7 (0.4) | 74.8 (2.9) |
O-acetyl-quinic acid | T33 | C9H14O7 | 234.0739 | −2.4 | 124 | 7 | 4 | No | Yes | 15.6 (1.2) | 23.7 (0.7) |
Methyl caffeoyl quinate | T33 | C17H20O9 | 368.1107 | 1.9 | 200 | 9 | 5 | No | No | 5.2 (0.2) | 12.5 (0.2) |
Methyl feruloyl quinate | T33 | C18H22O9 | 382.1263 | 0.2 | 143 | 9 | 4 | No | Yes | 26.5 (1.7) | 76.5 (5.0) |
Methoxyphenols | |||||||||||
Syringaldehyde | T33/ASFE | C9H10O4 | 182.0579 | 0.1 | 56 | 4 | 1 | Yes | No | 22.7 (1.5)/33.4 (2.2) | 45.7 (3.2)/42.0 (1.4) |
Flavonoid O-glycosides | |||||||||||
Rutin | T33 | C27H30O16 | 610.1533 | −1.3 | 266 | 16 | 10 | No | Yes | n.d | n.d |
Isoquercitrin | T33 | C21H20O12 | 464.0954 | 0.4 | 207 | 12 | 8 | No | No | 6.0 (0.2) | 16.3 (1.3) |
Kaempferol rhamnoside | ASFE | C31H34O17 | 678.1796 | 0.1 | 245 | 17 | 7 | No | Yes | n.d | n.d |
Hesperidin | ASFE | C28H34O15 | 610.1897 | −1.1 | 234 | 15 | 8 | No | Yes | n.d | n.d |
O-methylated flavonoids | |||||||||||
Hesperetin | ASFE | C16H14O6 | 302.0790 | 2.4 | 96 | 6 | 3 | No | Yes | 65.5 (4.8) | 67.2 (3.6) |
Flavonols | |||||||||||
Kaempferol | ASFE | C15H10O6 | 286.0477 | 1.9 | 107 | 6 | 4 | No | No | 31.5 (1.1) | 36.5 (2.2) |
Flavanonols | |||||||||||
Compound (Family) | Matrix | Molecular formula | Molecular weight (m/z) | Log p * | TPSA * (Å2) | HBA * | HBD * | BBB Predicted a | P-gp * substrate b | Te % (SEM) | |
Aromadendrin | ASFE | C15H12O6 | 288.0633 | 1.8 | 107 | 6 | 4 | No | No | 76.2 (0.8) | 78.7 (0.7) |
Biflavonoids | |||||||||||
Procyanidin B2 | ASFE | C30H26O12 | 578.1424 | 2.4 | 221 | 12 | 10 | No | No | 56.8 (0.0) | 61.9 (2.6) |
Hydrolyzable tannins | |||||||||||
Syringic acid hexoside | T33 | C15H20O10 | 360.1056 | −1 | 155 | 10 | 5 | No | No | 92.0 (0.7) | 94.9 (3.1) |
Ellagic acid | ASFE | C14H6O8 | 302.0062 | 1.1 | 134 | 8 | 4 | No | No | 42.4 (1.6) | 85.5 (2.5) |
Benzenetriols | |||||||||||
Pyrogallol | ASFE | C6H6O3 | 126.0316 | 0.5 | 61 | 3 | 3 | Yes | No | 37.6 (2.6) | 80.5 (1.1) |
Chalcones | |||||||||||
Butein | ASFE | C15H12O5 | 272.0684 | 2.8 | 98 | 5 | 4 | No | No | 27.5 (2.0) | 36.3 (2.6) |
Stilbenes | |||||||||||
e-viniferin | ASFE | C28H22O6 | 454.1416 | 5.4 | 110 | 6 | 5 | No | No | 39.2 (2.2) | 45.9 (3.0) |
3. Materials and Methods
3.1. Natural Biomass and Extraction Conditions
3.2. Chemicals and Reagents
3.3. Cell Culture Conditions
3.4. Viability Assay
3.5. Blood–Brain Barrier Transport Studies
3.6. Blood–Brain Barrier Integrity
3.6.1. Transendothelial Electrical Resistance
3.6.2. Sodium Fluorescein Paracellular Permeability
3.7. Quantification of Bioactive Compounds in BBB Transport Assays
3.7.1. Bioactive Compound Extraction
3.7.2. Gas Chromatography–Mass Spectrometry (GC–MS)
3.7.3. Liquid Chromatography Tandem Mass Spectrometry (UHPLC-q-TOF-MS)
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alzheimer’s Disease International; McGill University. World Alzheimer Report 2021: Journey through the Diagnosis of Dementia; Alzheimer’s Disease International: London, UK, 2021. [Google Scholar]
- Jönsson, L. The Personal Economic Burden of Dementia in Europe. Lancet Reg. Health-Eur. 2022, 20, 100472. [Google Scholar] [CrossRef] [PubMed]
- AlFadly, E.D.; Elzahhar, P.A.; Tramarin, A.; Elkazaz, S.; Shaltout, H.; Abu-Serie, M.M.; Janockova, J.; Soukup, O.; Ghareeb, D.A.; El-Yazbi, A.F.; et al. Tackling Neuroinflammation and Cholinergic Deficit in Alzheimer’s Disease: Multi-Target Inhibitors of Cholinesterases, Cyclooxygenase-2 and 15-Lipoxygenase. Eur. J. Med. Chem. 2019, 167, 161–186. [Google Scholar] [CrossRef] [PubMed]
- Auti, S.T.; Kulkarni, Y.A. A Systematic Review on the Role of Natural Products in Modulating the Pathways in Alzheimer’s Disease. Int. J. Vitam. Nutr. Res. 2017, 87, 99–116. [Google Scholar] [CrossRef] [PubMed]
- Joshi, Y.B.; Giannopoulos, P.F.; Praticò, D. The 12/15-Lipoxygenase as an Emerging Therapeutic Target for Alzheimer’s Disease. Trends Pharmacol. Sci. 2015, 36, 181–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wightman, E.L. Potential Benefits of Phytochemicals against Alzheimer’s Disease. Proc. Nutr. Soc. 2017, 76, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, T.C.; Gomes, T.M.; Pinto, B.A.S.; Camara, A.L.; De Andrade Paes, A.M. Naturally Occurring Acetylcholinesterase Inhibitors and Their Potential Use for Alzheimer’s Disease Therapy. Front. Pharmacol. 2018, 9, 1192. [Google Scholar] [CrossRef] [Green Version]
- Mathur, S.; Hoskins, C. Drug Development: Lessons from Nature (Review). Biomed. Rep. 2017, 6, 612–614. [Google Scholar] [CrossRef] [Green Version]
- Andrade, S.; Ramalho, M.; Loureiro, J.; Pereira, M. Natural Compounds for Alzheimer’s Disease Therapy: A Systematic Review of Preclinical and Clinical Studies. Int. J. Mol. Sci. 2019, 20, 2313. [Google Scholar] [CrossRef] [Green Version]
- Noori, T.; Dehpour, A.R.; Sureda, A.; Sobarzo-Sanchez, E.; Shirooie, S. Role of Natural Products for the Treatment of Alzheimer’s Disease. Eur. J. Pharmacol. 2021, 898, 173974. [Google Scholar] [CrossRef]
- Carciochi, R.A.; D’Alessandro, L.G.; Vauchel, P.; Rodriguez, M.M.; Nolasco, S.M.; Dimitrov, K. Valorization of Agrifood By-Products by Extracting Valuable Bioactive Compounds Using Green Processes. In Ingredients Extraction by Physicochemical Methods in Food; Academic Press: Cambridge, MA, USA, 2017; pp. 191–228. [Google Scholar] [CrossRef]
- Sánchez-Martínez, J.D.; Valdés, A.; Gallego, R.; Suárez-Montenegro, Z.J.; Alarcón, M.; Ibañez, E.; Alvarez-Rivera, G.; Cifuentes, A. Blood–Brain Barrier Permeability Study of Potential Neuroprotective Compounds Recovered From Plants and Agri-Food by-Products. Front. Nutr. 2022, 9, 924596. [Google Scholar] [CrossRef]
- Suárez-Montenegro, Z.J.; Ballesteros-Vivas, D.; Gallego, R.; Valdés, A.; Sánchez-Martínez, J.D.; Parada-Alfonso, F.; Ibáñez, E.; Cifuentes, A. Neuroprotective Potential of Tamarillo (Cyphomandra Betacea) Epicarp Extracts Obtained by Sustainable Extraction Process. Front. Nutr. 2021, 8, 769617. [Google Scholar] [CrossRef]
- Suárez Montenegro, Z.J.; Álvarez-Rivera, G.; Sánchez-Martínez, J.D.; Gallego, R.; Valdés, A.; Bueno, M.; Cifuentes, A.; Ibáñez, E. Neuroprotective Effect of Terpenoids Recovered from Olive Oil By-Products. Foods 2021, 10, 1507. [Google Scholar] [CrossRef]
- Sánchez-Martínez, J.D.; Alvarez-Rivera, G.; Gallego, R.; Fagundes, M.B.; Valdés, A.; Mendiola, J.A.; Ibañez, E.; Cifuentes, A. Neuroprotective Potential of Terpenoid-Rich Extracts from Orange Juice by-Products Obtained by Pressurized Liquid Extraction. Food Chem. X 2022, 13, 100242. [Google Scholar] [CrossRef]
- Gallego, R.; Valdés, A.; Sánchez-Martínez, J.D.; Suárez-Montenegro, Z.J.; Ibáñez, E.; Cifuentes, A.; Herrero, M. Study of the Potential Neuroprotective Effect of Dunaliella Salina Extract in SH-SY5Y Cell Model. Anal. Bioanal. Chem. 2021, 414, 5357–5371. [Google Scholar] [CrossRef]
- Gallego, R.; Suárez-Montenegro, Z.J.; Ibáñez, E.; Herrero, M.; Valdés, A.; Cifuentes, A. In Vitro Neuroprotective Potential and Lipidomics Study of Olive Leaves Extracts Enriched in Triterpenoids. Front. Nutr. 2021, 8, 769218. [Google Scholar] [CrossRef]
- Kam, A.; Li, M.K.; Razmovski-Naumovski, V.; Nammi, S.; Chan, K.; Li, Y.; Li, G.Q. The Protective Effects of Natural Products on Blood-Brain Barrier Breakdown. Curr. Med. Chem. 2012, 19, 1830–1845. [Google Scholar] [CrossRef]
- Cardoso, F.L.; Brites, D.; Brito, M.A. Looking at the Blood–Brain Barrier: Molecular Anatomy and Possible Investigation Approaches. Brain Res. Rev. 2010, 64, 328–363. [Google Scholar] [CrossRef]
- Franco, C.; Kausar, S.; Silva, M.F.B.; Guedes, R.C.; Falcao, A.O.; Brito, M.A. Multi-Targeting Approach in Glioblastoma Using Computer-Assisted Drug Discovery Tools to Overcome the Blood–Brain Barrier and Target EGFR/PI3Kp110β Signaling. Cancers 2022, 14, 3506. [Google Scholar] [CrossRef]
- Angelino, D.; Carregosa, D.; Domenech-Coca, C.; Savi, M.; Figueira, I.; Brindani, N.; Jang, S.; Lakshman, S.; Molokin, A.; Urban, J.F.; et al. 5-(Hydroxyphenyl)-γ-Valerolactone-Sulfate, a Key Microbial Metabolite of Flavan-3-Ols, Is Able to Reach the Brain: Evidence from Different in Silico, in Vitro and in Vivo Experimental Models. Nutrients 2019, 11, 2678. [Google Scholar] [CrossRef]
- Ecker, G.; Noe, C. In Silico Prediction Models for Blood-Brain Barrier Permeation. Curr. Med. Chem. 2004, 11, 1528–1617. [Google Scholar] [CrossRef]
- Bicker, J.; Alves, G.; Fortuna, A.; Falcão, A. Blood-Brain Barrier Models and Their Relevance for a Successful Development of CNS Drug Delivery Systems: A Review. Eur. J. Pharm. Biopharm. 2014, 87, 409–432. [Google Scholar] [CrossRef] [PubMed]
- Di, L.; Kerns, E.H.; Fan, K.; McConnell, O.J.; Carter, G.T. High Throughput Artificial Membrane Permeability Assay for Blood–Brain Barrier. Eur. J. Med. Chem. 2003, 38, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Eigenmann, D.E.; Jähne, E.A.; Smieško, M.; Hamburger, M.; Oufir, M. Validation of an Immortalized Human (HBMEC) in Vitro Blood-Brain Barrier Model. Anal. Bioanal. Chem. 2016, 408, 2095–2107. [Google Scholar] [CrossRef] [PubMed]
- Palmela, I.; Sasaki, H.; Cardoso, F.L.; Moutinho, M.; Kim, K.S.; Brites, D.; Brito, M.A. Time-Dependent Dual Effects of High Levels of Unconjugated Bilirubin on the Human Blood-Brain Barrier Lining. Front. Cell. Neurosci. 2012, 6, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueira, I.; Garcia, G.; Pimpão, R.C.; Terrasso, A.P.; Costa, I.; Almeida, A.F.; Tavares, L.; Pais, T.F.; Pinto, P.; Ventura, M.R.; et al. Polyphenols Journey through Blood-Brain Barrier towards Neuronal Protection. Sci. Rep. 2017, 7, 11456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pogačnik, L.; Pirc, K.; Palmela, I.; Skrt, M.; Kwang, K.S.; Brites, D.; Brito, M.A.; Ulrih, N.P.; Silva, R.F.M. Potential for Brain Accessibility and Analysis of Stability of Selected Flavonoids in Relation to Neuroprotection in Vitro. Brain Res. 2016, 1651, 17–26. [Google Scholar] [CrossRef]
- Palmela, I.; Correia, L.; Silva, R.F.M.; Sasaki, H.; Kim, K.S.; Brites, D.; Brito, M.A. Hydrophilic Bile Acids Protect Human Blood-Brain Barrier Endothelial Cells from Disruption by Unconjugated Bilirubin: An in Vitro Study. Front. Neurosci. 2015, 9, 80. [Google Scholar] [CrossRef] [Green Version]
- Veszelka, S.; Pásztói, M.; Farkas, A.E.; Krizbai, I.; Dung, N.T.K.; Niwa, M.; Ábrahám, C.S.; Deli, M.A. Pentosan Polysulfate Protects Brain Endothelial Cells against Bacterial Lipopolysaccharide-Induced Damages. Neurochem. Int. 2007, 50, 219–228. [Google Scholar] [CrossRef]
- Rabiei, Z.; Rafieian-Kopaei, M. Neuroprotective Effect of Pretreatment with Lavandula Officinalis Ethanolic Extract on Blood-Brain Barrier Permeability in a Rat Stroke Model. Asian Pac. J. Trop. Med. 2014, 7, S421–S426. [Google Scholar] [CrossRef]
- Vanmierlo, T.; Bogie, J.F.J.; Mailleux, J.; Vanmol, J.; Lütjohann, D.; Mulder, M.; Hendriks, J.J.A. Plant Sterols: Friend or Foe in CNS Disorders? Prog. Lipid Res. 2015, 58, 26–39. [Google Scholar] [CrossRef]
- Leclerc, M.; Dudonné, S.; Calon, F. Can Natural Products Exert Neuroprotection without Crossing the Blood–Brain Barrier? Int. J. Mol. Sci. 2021, 22, 3356. [Google Scholar] [CrossRef]
- Chen, X.; Ghribi, O.; Geiger, J.D. Caffeine Protects against Disruptions of the Blood-Brain Barrier in Animal Models of Alzheimer’s and Parkinson’s Disease. J. Alzheimers. Dis. 2010, 20, S127. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zuo, Y.; Deng, S.; Zhu, F.; Liu, Q.; Wang, R.; Li, T.; Cai, H.; Wan, X.; Xie, Z.; et al. Using Caffeine and Free Amino Acids to Enhance the Transepithelial Transport of Catechins in Caco-2 Cells. J. Agric. Food Chem. 2019, 67, 5477–5485. [Google Scholar] [CrossRef]
- Qosa, H.; Abuznait, A.H.; Hill, R.A.; Kaddoumi, A. Enhanced Brain Amyloid-β Clearance by Rifampicin and Caffeine as a Possible Protective Mechanism Against Alzheimer’s Disease. J. Alzheimers Dis. 2012, 31, 151. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Martínez, J.D.; Bueno, M.; Alvarez-Rivera, G.; Tudela, J.; Ibañez, E.; Cifuentes, A. In Vitro Neuroprotective Potential of Terpenes from Industrial Orange Juice By-Products. Food Funct. 2021, 12, 302–314. [Google Scholar] [CrossRef]
- Velásquez-Jiménez, D.; Corella-Salazar, D.A.; Zuñiga-Martínez, B.S.; Domínguez-Avila, J.A.; Montiel-Herrera, M.; Salazar-López, N.J.; Rodrigo-Garcia, J.; Villegas-Ochoa, M.A.; González-Aguilar, G.A. Phenolic Compounds That Cross the Blood–Brain Barrier Exert Positive Health Effects as Central Nervous System Antioxidants. Food Funct. 2021, 12, 10356–10369. [Google Scholar] [CrossRef]
- He, B.; Xu, F.; Xiao, F.; Yan, T.; Wu, B.; Bi, K.; Jia, Y. Neuroprotective Effects of Nootkatone from Alpiniae Oxyphyllae Fructus against Amyloid-β-Induced Cognitive Impairment. Metab. Brain Dis. 2018, 33, 251–259. [Google Scholar] [CrossRef]
- Zhou, W.; Yoshioka, M.; Yokogoshi, H. Sub-Chronic Effects of s-Limonene on Brain Neurotransmitter Levels and Behavior of Rats. J. Nutr. Sci. Vitaminol. 2009, 55, 367–373. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.S.; Xie, T.; Lin, J.; Fan, H.Z.; Huang-Fu, H.J.; Ni, L.F.; Yan, H.F. An Investigation of the Ability of Elemene to Pass through the Blood-Brain Barrier and Its Effect on Brain Carcinomas. J. Pharm. Pharmacol. 2009, 61, 1653–1656. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Chan, C.K.Y.; Gegechkori, V.; Morton, D.W. Models for Skin and Brain Penetration of Major Components from Essential Oils Used in Aromatherapy for Dementia Patients. J. Biomol. Struct. Dyn. 2020, 38, 2402–2411. [Google Scholar] [CrossRef]
- Caruso, G.; Godos, J.; Privitera, A.; Lanza, G.; Castellano, S.; Chillemi, A.; Bruni, O.; Ferri, R.; Caraci, F.; Grosso, G. Phenolic Acids and Prevention of Cognitive Decline: Polyphenols with a Neuroprotective Role in Cognitive Disorders and Alzheimer’s Disease. Nutrients 2022, 14, 819. [Google Scholar] [CrossRef] [PubMed]
- Carregosa, D.; Carecho, R.; Figueira, I.; Santos, C.N. Low-Molecular Weight Metabolites from Polyphenols as Effectors for Attenuating Neuroinflammation. J. Agric. Food Chem. 2020, 68, 1790–1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferruzzi, M.G.; Lobo, J.K.; Janle, E.M.; Cooper, B.; Simon, J.E.; Wu, Q.L.; Welch, C.; Ho, L.; Weaver, C.; Pasinetti, G.M. Bioavailability of Gallic Acid and Catechins from Grape Seed Polyphenol Extract Is Improved by Repeated Dosing in Rats: Implications for Treatment in Alzheimer’s Disease. J. Alzheimers. Dis. 2009, 18, 113–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greve, C.; Jorgensen, L. Therapeutic Delivery. Ther. Deliv 2016, 7, 117–138. [Google Scholar] [CrossRef]
- Zhu, J.; Yi, X.; Zhang, J.; Chen, S.; Wu, Y. Rapid Screening of Brain-Penetrable Antioxidants from Natural Products by Blood-Brain Barrier Specific Permeability Assay Combined with DPPH Recognition. J. Pharm. Biomed. Anal. 2018, 151, 42–48. [Google Scholar] [CrossRef]
- Hitchcock, S.A. Blood–Brain Barrier Permeability Considerations for CNS-Targeted Compound Library Design. Curr. Opin. Chem. Biol. 2008, 12, 318–323. [Google Scholar] [CrossRef]
- Yang, Y.; Bai, L.; Li, X.; Xiong, J.; Xu, P.; Guo, C.; Xue, M. Transport of Active Flavonoids, Based on Cytotoxicity and Lipophilicity: An Evaluation Using the Blood-Brain Barrier Cell and Caco-2 Cell Models. Toxicol. In Vitro 2014, 28, 388–396. [Google Scholar] [CrossRef]
- Faria, A.; Pestana, D.; Teixeira, D.; Couraud, P.O.; Romero, I.; Weksler, B.; De Freitas, V.; Mateus, N.; Calhau, C. Insights into the Putative Catechin and Epicatechin Transport across Blood-Brain Barrier. Food Funct. 2011, 2, 39–44. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef]
- Bueno, M.; Vitali, C.; Sánchez-Martínez, J.D.; Mendiola, J.A.; Cifuentes, A.; Ibáñez, E.; Herrero, M. Compressed CO2 Technologies for the Recovery of Carotenoid-Enriched Extracts from Dunaliella Salina with Potential Neuroprotective Activity. ACS Sustain. Chem. Eng. 2020, 8, 11413–11423. [Google Scholar] [CrossRef]
- Azeredo, V.B.d.; Trugo, N.M.F. Retinol, Carotenoids, and Tocopherols in the Milk of Lactating Adolescents and Relationships with Plasma Concentrations. Nutrition 2008, 24, 133–139. [Google Scholar] [CrossRef]
- Cho, K.S.; Shin, M.; Kim, S.; Lee, S.B. Recent Advances in Studies on the Therapeutic Potential of Dietary Carotenoids in Neurodegenerative Diseases. Oxid. Med. Cell. Longev. 2018, 2018, 4120458. [Google Scholar] [CrossRef]
- Reboul, E. Mechanisms of Carotenoid Intestinal Absorption: Where Do We Stand? Nutrients 2019, 11, 838. [Google Scholar] [CrossRef] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Stins, M.F.; Badger, J.; Sik Kim, K. Bacterial Invasion and Transcytosis in Transfected Human Brain Microvascular Endothelial Cells. Microb. Pathog. 2001, 30, 19–28. [Google Scholar] [CrossRef]
- Deli, M.A.; Ábrahám, C.S.; Kataoka, Y.; Niwa, M. Permeability Studies on In Vitro Blood–Brain Barrier Models: Physiology, Pathology, and Pharmacology. Cell. Mol. Neurobiol. 2005, 25, 59–127. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Martínez, J.D.; Garcia, A.R.; Alvarez-Rivera, G.; Valdés, A.; Brito, M.A.; Cifuentes, A. In Vitro Study of the Blood–Brain Barrier Transport of Natural Compounds Recovered from Agrifood By-Products and Microalgae. Int. J. Mol. Sci. 2023, 24, 533. https://doi.org/10.3390/ijms24010533
Sánchez-Martínez JD, Garcia AR, Alvarez-Rivera G, Valdés A, Brito MA, Cifuentes A. In Vitro Study of the Blood–Brain Barrier Transport of Natural Compounds Recovered from Agrifood By-Products and Microalgae. International Journal of Molecular Sciences. 2023; 24(1):533. https://doi.org/10.3390/ijms24010533
Chicago/Turabian StyleSánchez-Martínez, José David, Ana Rita Garcia, Gerardo Alvarez-Rivera, Alberto Valdés, Maria Alexandra Brito, and Alejandro Cifuentes. 2023. "In Vitro Study of the Blood–Brain Barrier Transport of Natural Compounds Recovered from Agrifood By-Products and Microalgae" International Journal of Molecular Sciences 24, no. 1: 533. https://doi.org/10.3390/ijms24010533
APA StyleSánchez-Martínez, J. D., Garcia, A. R., Alvarez-Rivera, G., Valdés, A., Brito, M. A., & Cifuentes, A. (2023). In Vitro Study of the Blood–Brain Barrier Transport of Natural Compounds Recovered from Agrifood By-Products and Microalgae. International Journal of Molecular Sciences, 24(1), 533. https://doi.org/10.3390/ijms24010533