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Abstract: Lipid metabolism is the major intracellular mechanism driving a variety of cellular functions
such as energy storage, hormone regulation and cell division. Lipids, being a primary component of
the cell membrane, play a pivotal role in the survival of macrophages. Lipids are crucial for a variety
of macrophage functions including phagocytosis, energy balance and ageing. However, functions
of lipids in macrophages vary based on the site the macrophages are residing at. Lipid-loaded
macrophages have recently been emerging as a hallmark for several diseases. This review discusses
the significance of lipids in adipose tissue macrophages, tumor-associated macrophages, microglia
and peritoneal macrophages. Accumulation of macrophages with impaired lipid metabolism is often
characteristically observed in several metabolic disorders. Stress signals differentially regulate lipid
metabolism. While conditions such as hypoxia result in accumulation of lipids in macrophages,
stress signals such as nutrient deprivation initiate lipolysis and clearance of lipids. Understanding
the biology of lipid accumulation in macrophages requires the development of potentially active
modulators of lipid metabolism.

Keywords: lipid droplets; macrophages; microglia; autophagy; hypoxia; HIF-1α; phosphocholines;
AMPK

1. Introduction

ER remains the key regulator of lipid metabolism in a cell. Around one-third of the
proteome is synthesized, matured and modified at the rough ER, bound with ribosomes
at the membrane. Biosynthesis of lipids, hormone, steroids and xenobiotic detoxification
remains the function of smooth ER [1]. The following highlights are the same. The ER
houses the enzymes involved in synthesis of cholesterol and triacylglycerides (TAG) [2].
While TAGs are transferred to lipid droplets (LDs) budding from the ER membrane, lipids
synthesized at ER are distributed to other organelles via the secretory pathway. At the ER,
the cellular cholesterol is controlled via pathways that sense cholesterol levels within the
ER membrane and impart signals to control both synthesis and clearance of cholesterol [3].
Under conditions of low ER cholesterol, the primary regulation of cholesterol at the ER
involves synthesis of cholesterol via SCAP/SREBP2 (sterol regulatory-element binding
proteins 2) pathway [4] followed by conversion of cholesterol into oxysterols and finally
into bile acids [5] and production of cholesterol esters which eventually move into lipid
droplets [6]. Similarly, ER regulates the intracellular fatty acid composition to regulate
the cellular demands required for synthesizing complex lipids. Moreover, ER remains
the key regulator of fatty acid synthesis and lipid metabolism. Structural modification
of fatty acids such as elongases, desaturases and beta-oxidation cycles occur at ER [7].
SREBPs, a family of membrane bound transcription factors are actively involved in lipid
homeostasis. SREBPs, synthesized as precursors reside at the ER membrane [8]. While
SREBP1a functions mainly in lipid synthesis in proliferating cells, the major role of SREBP1c
remains in regulating the synthesis of triglycerides (TG) and fatty acids in lipogenic organs.
SREBP2 widely regulates synthesis of sterols in tissues [9,10]. De novo synthesis of fatty
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acids is also partially regulated at the ER through feedback inhibition mechanisms of SREBP-
1 release [11]. Further, under stimulated TAG synthesis condition, enzymes involved in
the biosynthesis of TAG (lipin, DGAT, GPAT and AGPAT) relocalize from ER to lipid
droplets [12].

Additionally, synthesis of lipids occurs also at the ER-organelle contact sites. Lipids
are trafficked out of ER by specialized ER domains via lipid transfer proteins [2]. It is
scientifically plausible that lipid droplets are formed in ER at the regions where synthesis
of triacylglycerols (TAGs) or sterol esters takes place [13]. Phospholipids and proteins
are also biochemically modified at the ER–Golgi intermediate compartment (ERGIC) and
are distributed within the cell via secretory pathways or direct organelle contacts [14,15].
Phospholipids and neutral lipids (TG and CE) are the two primary forms of lipids the ER
is comprised of. The key function of phospholipids includes the assembly of membranes
and vesicles involved in protein trafficking; TG and CE function as reserves for excess
cholesterol and fatty acids and owing to their hydrophobicity, they instigate formation
of LDs within the ER membrane [16]. Interestingly, ER -resident DGAT2 (diglyceride
acyltransferase) enzyme, pivotal for the synthesis of TG, mediates synthesis and storage
of TG in lipid droplets independent of its localization in ER [17]. Further, structurally
uniform ER–LD contacts along with the delivery of TGs from ER to LDs were reported to
be facilitated by an ER integral protein called seipin [18].

Substantial evidences indicate the role of UPR activation in modulating lipid metabolism
by transcriptionally regulating lipogenesis. Moreover, it was reported that ER stress is
associated with the imbalance between uptake and efflux of lipids in macrophages [19]. Ab-
normal lipid metabolism is the key contributor for ER stress [20]. In human hepatic cells, ER
stress impaired ATP binding cassette subfamily A member 1 (ABCA1)-mediated cholesterol
efflux and negatively affected cholesterol synthesis via down regulation of 3-hydroxy-3-
methylglutaryl coenzyme A (HMG-CoA reductase) activity [21]. Further, the similarity in
the processes involved in the activation of ATF6 and SREBPs imply the role of ER stress
in lipid metabolism [22,23]. In addition, prolonged ER stress dysregulates hepatic lipid
metabolism. In contrast, excess cholesterol and saturated fatty acids induce ER stress [24,25].
Such lipid imbalance caused by ER stress directs to lipotoxicity-related pathologies. Fur-
thermore, ER stress is known to increase the expression of SREBP-dependent markers of
lipogenesis via UPR [26].

It is also notable that the PERK-eIF2α pathway regulates lipogenesis. For example,
antipsychotic drugs induced phosphorylation of PERK and eIF2α, resulting in SREBP-1c
and SREBP2 mediated accumulation of lipids in hepatic cells [27] (Figure 1).

Similarly, inhibiting eIF2α phosphorylation via overexpression of growth arrest and
DNA damage-inducible gene 34 (GADD34) in liver decreased the hepatosteatosis in mice
fed with a high fat diet (HFD) [28]. Genetic deletion of eIF2α aggravated tunicamycin-
induced accumulation of lipids in liver [29]. ER stress inducers, brefeldin A and tuni-
camycin, were reported to induce LD accumulation in Saccharomyces cerevisiae [30].
Further, ATF4, present downstream of the PERK-eIF2α pathway, plays a pivotal role in
regulation of lipid metabolism. High carbohydrate diet fed Atf−/− mice displayed less
accumulation of TG in liver compared to wild type [31]. Correspondingly, mice lacking
ATF4 showed diminished lipid accumulation under conditions of high fructose diet due to
decreased levels of FAS, acetyl CoA carboxylase (ACC) and SREBP-1c [32]. White adipose
tissue of Atf deficient mice displayed increased lipolysis and decreased lipogenic genes,
indicating a direct link between ATF4 and lipid metabolism [33]. Similarly, overexpressing
ATF4 instigated early onset of dyslipidemia in zebrafish [34]. The involvement of (C/EBP)
homologous protein (CHOP), a protein downstream of the UPR, in the regulation of lipid
metabolism emanates from its role in suppressing the gene expression of SREBPF1, CEBPA,
and PPARα-like master regulators of lipid metabolism [35]. Following ER stress, CHOP
was reported to be critical for the regulation of cholesterol catabolism in macrophages
and is involved in the lipid metabolism disorder mediated by ER stress [19]. In mammary
epithelium and mouse embryonic fibroblasts that differentiate into adipocytes, absence of



Int. J. Mol. Sci. 2023, 24, 589 3 of 23

PERK resulted in the attenuation of lipogenesis and expression of genes including SREBP1.
This led to a decrease in the level of TG and FA content in mammary glands and growth
retardation in pups. The study also demonstrated the role of PERK and eIF2α in insig1
translation responsible for SREBP1 activation [36].
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Another transmembrane signal transducer of the UPR, the inositol requiring enzyme 1
(IRE1α), is an ER stress sensor, conserved from yeast to mammals [37,38]. During ER stress,
IRE1α is activated and splices X-box-binding protein 1 (XBP1) mRNA to its active spliced
form to regulate expression of genes involved in restoration of ER homeostasis and biogen-
esis [39]. In addition to promoting cell survival through attenuation of ER stress, IRE1α
also functions as a nutritional stress sensor [40]. Further, IRE1α was found to regulate lipid
secretion and lipogenesis in both XBP1-dependent and an independent manner [41,42]
(Figure 1). In c-Myc-overexpressing and IRE1α inhibited BL cells, defects in growth and
viability were triggered due to altered lipid homeostasis [43]. The IRE1a/XBP1 signaling
pathway transcriptionally regulates genes that are players of lipid metabolism in order
to activate hepatic lipid metabolism. IRE1α siRNA increased TG and cholesterol levels
in XBP1-deficient mice. This suggests that IRE1α hyperactivation reduced plasma lipids
under XBP1-deficient conditions. Ablation of XBP1 decreased hepatoxicity [44]. However,
how IRE1α functions to maintain lipid homeostasis in peripheral adipose tissues across
species remains an enigma. As reviewed by Basseri et al., accumulating evidences suggest
that IRE1α is the key component involved in the suppression of hepatic lipid accumulation
under conditions of severe ER stress [45]. Under ER stress, IRE1α plays a pivotal role in
hepatocytic secretion of LDL and VLDL [42]. XBP1s reduces lipid accumulation by promot-
ing protein degradation of Forkhead box protein O1 (FOXO1) in cardiomyocytes. Similarly,
overexpressing XBP1s specifically in cardiomyocytes, mitigated cardiac steatosis [46].

In contrast to IRE1α and PERK, activation of ATF6 does not involve phosphorylation.
Under conditions of ER stress, ATF6 is released from BiP, after which the Golgi-localization
sequences on the luminal domain of ATF6 are exposed [47] Once transported to Golgi,
ATF6 undergoes site-1 (S1P) and site-2 (S2P) proteases mediated cleavage, releasing a
cytosolic fragment called ATF6f containing a basic leucine zipper (bZIP) transcription
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factor [22,48]. The transcriptionally active ATF6 fragment enters the nucleus to trigger a set
of transcriptional signaling, to reestablish the ER homeostasis [49–51]. Unlike PERK and
IRE1 branches of UPR, ATF6 does not function to decrease the flux of unfolded proteins
into the ER. Instead, the active fragment induces expansion of the ER membrane in an
XBP1-independent manner [52] It also upregulates ER chaperones, ERAD components
and disulfide oxidoreductases of the ER lumen [53]. However, ATF6 and XBP1 generated
from the IRE1 branch of UPR tend to act synergistically and heterodimerize [54]. ATF6
activation downregulates PPARα, leading to accumulation of lipid droplets resulting in
cell death. In contrast, deficiency of ATF6 increased PPARα levels and decreased lipid
accumulation and cell death [55]. ATF6 was reported to modulate SREBP2 mediated
lipogenesis. Under glucose-deprived conditions, ATF6 interacts with the processed form of
SREBP2 to inhibit cholesterol synthesis promoting recruitment of HDAC1. This inhibits
the SREBP2-induced lipogenesis and downregulates LDLR expression in HepG2 cells [56].
Liver-specific over expression of ATF6f resulted in the improvement of hepatic condition in
steatosis-induced mice fed with a high-fat high-sucrose diet. However, ATF6 was reported
to not affect FA synthesis, suggesting that ATF6 activity in liver is more important for FA
oxidation than synthesis [57]. This is consistent with the finding that ATF6 expression aids
protection against perturbed beta oxidation induced by tunicamycin in liver but not in the
kidneys [58].

2. Functions of Lipids in Macrophages of Different Tissue Location
2.1. Lipids and Microglia

Microglia are specialized immune cells resident in the central nervous system (CNS)
of the brain and play a key role in the maintenance of brain homeostasis [59–61]. Orig-
inating from the yolk sac, they migrate to the CNS during embryogenesis; there they
propagate and disperse in the CNS in a non-heterogenous manner [62,63]. In a healthy
resting brain, microglia are reported to be dynamic and constantly moving [64]. They
critically survey the brain environment and get activated upon changes in the brain mi-
croenvironment [65]. Their functions include phagocytosis of apoptotic bodies and debris,
neuronal protection [64], synaptic remodeling [66,67], neuronal support [68,69] and oligo-
dendrogenesis [70,71]. Microglia dysfunction is a salient feature in neurodegenerative and
neuroinflammatory diseases. They become dysfunctional with aging; dysfunctionalities
include poor cholesterol efflux, impaired phagocytosis and increased secretion of cytokines
and accumulation of lipid droplets [59,72]. Dysregulated lipid metabolism is a characteristic
feature observed in neurodegenerative diseases, notably, in Parkinson’s disease (PD) and
Alzheimer’s disease (AD). Lipid metabolism in microglia is tightly regulated both during
development and disease. Microglia play an inevitable role in maintaining the myelin
dynamics. During early development, microglia phagocytose myelin debris and apoptotic
oligodendrocytes. The myelin-derived lipids are then cleared by microglia for remyelina-
tion post demyelination. Such active clearance and ability to effectively efflux cholesterol
is impaired in aging microglia [73,74]. This leads to accumulation and crystallization of
cholesterol-rich myelin debris, resulting in defective phagocytosis. Microglia with defective
phagocytosis tend to produce large amounts of pro-inflammatory cytokines and reactive
oxygen species (ROS) leading to the progression of neuroinflammatory and neurodegen-
erative diseases [75–77]. In a recent study, Loving et al., elucidated the role of lipoprotein
lipase (LPL) in the accumulation of LDs and transcriptional regulation of lipid metabolism
in in vitro and ex vivo systems. They reported that LPL regulates lipid metabolism in
microglia and that loss of LPL resulted in microglial cholesterol load [72]. Phagocytosis
deficit can be the consequence of lipid droplets accumulation. Active degradation of lipid
droplets and release of free fatty acids was associated with effective phagocytosis [78].

Similarly, lipid droplet accumulating macrophages (LAMs) show downregulated
expression of two key enzymes ADRB1 and ADRB2, involved in lipid degradation [59]. Ad-
ditionally, lipid droplet accumulation promotes transcriptional modulation, giving LAMs
a unique transcriptomic signature. Further, Patel and Tulsi et al. reported the association
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of pathways of lipid and carbohydrate metabolism with sex, age and ApoE expression in
human microglia [79]. ApoE is a protein that mediates metabolism and transportation of
cholesterol and is prominently expressed in disease-associated microglia (DAM). Moreover,
it was reported that extracellular ApoE can be a ligand of TREM2 (triggering receptor ex-
pressed on myeloid cells 2) and that ApoE expression is TREM2-dependent [80,81]. Analysis
of cell-specific lipidomics reveal that TREM2 deficiency mediates dysregulation of genes
associated with lipid metabolism and leads to cholesterol ester overload in microglia [82].
Understanding the link between lipids and neuropathology of NPC (Niemann–Pick disease)
patients revealed that loss of NPC1, an intracellular cholesterol transporter in microglia
resulted in enhanced uptake of myelin but impaired myelin turnover. Macrophages derived
from the blood of NPC patients were found to be similar to the pathological alterations
exhibited by microglia of Npc1−/− mice. It was also revealed that Npc1−/− deficient
microglia accumulated undigested lipid materials, indicating the role of Npc1 in lipid
trafficking in microglia [83].

2.2. Lipids in Adipose Tissue Macrophages (ATMs)

Initially discovered for their role in microbial killing and phagocytosis, macrophages
are now known to have distinct and context-dependent functions in different physiological
settings. Lipids are the major source of energy for macrophages. Cell membranes of
macrophages and precursors of bioactive lipids are provided by lipids. Lipids are also
known to regulate the signal transduction during macrophage activation. Activation or
polarization of macrophages are dependent on environmental stimuli, which are even
tissue-specific, that dictate them to take up unique functions.

Adipose tissue macrophages (ATMs) are key players in metabolic diseases and obesity-
associated inflammation. Circulating monocytes accumulating in adipose tissue lead to
the development of ATMs [84]. In a study conducted by Prieur et al. in obese mice, it
was observed that increase in the accumulation of lipids in ATMs resulted in polarization
of macrophages into M1 phenotype, a phenotype associated with insulin resistance and
obesity. Their results indicate that M1 polarization of ATMs are associated with accumula-
tion and proliferation of lipid species, giving them the resemblance of vascular foam cells
(discussed later). In addition to M1 polarization, ATMs of obese mice strongly accumulated
lipids in their cytoplasm, resembling pro-atherosclerotic vascular foam cells. Increased
fat deposition in adipose tissue decreased the expandability of adipose tissue, leading to
adipocyte dysfunction and lipid leakage and thereafter lipid accumulation in ATMs [85].
Similarly, M1 macrophages treated with exogenous fatty acids showed an increase in TG
and CE levels. The accumulation of exogenous fatty acids was high in M2 macrophages,
revealing the impact of macrophage polarization on lipid composition and endogenous
lipid pools [86]. ATMs of obese individuals crucially function to scavenge and eliminate
adipocyte debris. Under increasing conditions of adiposity, excess lipid species are stored
in ATMs, leading to the formation of lipid-laden ATM population [87]. Cd36, Fabp4, Fabp5
and Lpl are the set of genes that are highly conserved in lipid-associated ATMs [88].

Lipid-associated macrophages (LAMs) are distinctly conserved subset of macrophages
predominantly expanded in adipose tissues of obese individuals. The formation of LAMs
in adipose tissues are driven by a TF called TREM2. TREM2-regulated TAMs were reported
to be inevitable during the loss of adipose tissue homeostasis, as they prevent metabolic
disorders [88]. Suppression of tumor growth of triple-negative breast cancer (TNBC) was
achieved by genetically depleting LAM subsets [89].

Atherosclerosis is another condition where the lipid homeostasis of macrophages is
disrupted. During atherosclerosis, initially, the modified lipoproteins and serum lipids
are deposited under the endothelial cells, activating them to secrete adhesion molecules.
Circulating monocytes interact with these adhesion molecules that adhere to the endothelial
cells and migrate to subendothelial space where they are differentiated into macrophages.
Ingestion of modified lipoproteins by macrophages takes place via receptor mediated
phagocytosis or pinocytosis. As a result of excess uptake of lipids, macrophages tend
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to store the excess neutral lipids in the form of lipid droplets in the cytoplasm. Excess
accumulation of lipid droplets (LDs) in macrophages gives them a foamy appearance and
hence they are called “macrophage foam cells”. These lipid-laden macrophages are the
hallmark of atherosclerosis.

Formation of lipid-laden macrophage foam cells in lungs occur even during the
infection of Mycobacterium tuberculosis. In response to TB infection, macrophages undergo
metabolic changes and develop into foam cells. Though they resemble atherosclerotic
foam cells, their lipid composition and roles remain different. Unlike atherosclerotic foam
cells, their lipid content is predominantly triglycerides (TG) and not cholesterol. Here, the
formation of TB foam cells is attributed to mycolic acid from pathogens. These TB foam
cells often dominate the mycobacterial granulomata associated with caseum [90].

2.3. Lipids in Tumor Associated Macrophages (TAMs)

TAMs are macrophages present in the microenvironment of solid tumors, creating an
immunosuppressive environment. Lipids play a key role in the development of TAMs in
the tumor microenvironment (TME). Accumulating evidence suggest that abnormal lipid
accumulation is inevitable for TAMs to engage in protumorigenic activity. Tumorigenesis
and tumor progression is associated with the functional plasticity of TAMs which is often
dictated by their metabolic features. The metabolic and functional landscape of tumor cells
keeps evolving according to the selective pressure of the inconsistency in the availability of
nutrients and oxygen in the TME, as a result of which functional features of TAMs are often
altered [91]. Macrophages from both murine and human tumors were found to express
high levels of a scavenger receptor, CD36, and ingest more lipids [92] for use as source of
energy via oxidative phosphorylation and fatty acid oxidation. Contradictorily, enhanced
fatty acid oxidation in macrophages caused by fatty acids in tumor microenvironment
results in increased ROS production and decreased IL-10 secretion to eliminate tumor cells.
This signifies the involvement of lipid metabolism in anti-tumor response [93]. Similarly, in
prostatic adenocarcinoma (PCa), TAMs in the TME were shown to have dysregulated lipid
metabolism. Accumulation of lipids in TAMs was reported to positively correlate with
the progression of PCa [94]. TAMs characterized as M2-like cells, suppress tumor immune
surveillance to promote tumor growth and metastasis. In a study, Wu et.al., demonstrated
that enhancing lipid metabolism is sufficient for modulating the phenotype of macrophages
into immunosuppressive TAMs [95]. Further, ingestion of a high amount of lipids from
tumor cells leads to over expression of phosphoinositide 3-kinase (PI3K-γ) resulting in the
polarization of TAMs into an M2-like phenotype. Inhibiting PI3K-γ reversed the pro-tumor
phenotype of LD-loaded TAMs, suppressing the growth of gastric cancer [96]. In a study
conducted on a melanoma model, it was reported that β-glucosylceramide released by
tumor cells served as a stimulus for protumorigenic polarization of TAMs via induction of
ER stress responses-mediated shuffling of lipid composition in macrophages [97]. In addi-
tion to lipid accumulation, TAMs exhibit decreased phagocytic activity with upregulated
expression of programmed death ligand 1 (PD-L1); they block anti–tumor T cell responses
to support immunosuppression [96]. From these reports, it is scientifically evident that,
lipid droplets are critical cell structures that can be targeted for the development of a novel
anti-tumor strategy and that reprogramming lipid metabolism can maximize the impact of
anti-tumor therapies.

2.4. Lipids in Phagocytic Function of Macrophages

Macrophages are phagocytic in nature. Through phagocytosis, macrophages engulf
foreign organisms and other invading pathogens, thereby defending the host against in-
fection. The crosstalk between hypoxia and inflammation has a significant implication for
infection and sterile inflammation in macrophages. Macrophages are the primary compo-
nent of the innate immune response that is known for phagocytosis of invading pathogens
and microorganism. Apoptotic cells are also eliminated by macrophages via phagocyto-
sis. Formation of lipid-rich organelles, called lipid bodies or lipid droplets (LDs), occur
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in parallel with formation and maturation of phagosomes containing pathogens [98,99].
Infections with microbes such as bacteria, virus and other parasites induced LD accumu-
lation in immune cells both clinically and experimentally [100,101]. These lipid bodies,
formed in response to infections relocate within cytoplasm to interact with the phago-
somes [102]. However, this association between LDs and phagosomes is yet ill-understood.
Nevertheless, this interaction is accounted for the survival of pathogens within host cells.

2.5. Oxidized Phosphocholines in the Immune Function of Macrophages

Phosphocholines, belonging to the class of phospholipids, are a vital component
of mammalian cells. Cell death occurring in the local environment of inflammatory or
non-inflammatory tissue injury results in ROS generation. This can oxidize the phos-
phocholines present in the plasma membrane. Upon exposure to ROS, arachidonic acid-
containing phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC),
the membrane component of mammalian cells, is oxidized at different positions, cre-
ating a heterogenous mixture of lipids called oxPAPCs. The scavenger receptor CD36
present on macrophages, induce the uptake of oxPAPCs. This leads to formation of foam
cells during atherosclerosis [103]. The internalization of oxPAPCs into endosomes and
their transport to cytosol is also mediated by bacterial lipopolysaccharide (LPS) receptor,
CD14 present on myeloid cells [104]. Post recognition by macrophages, oxPAPCs exert
proinflammatory or anti-inflammatory activities based on the context in which they were
encountered [105]. Pre-treatment with oxPAPCs modulated the phagocytosis of bacteria in
macrophages [106]. In contrast, oxPLs trigger CD36-mediated phagocytosis of apoptotic
cells in macrophages [107]. Further, oxPAPCs perform a metabolic rewiring in macrophages
which is speculated to increase mitochondrial fitness. This, in turn, could prolong their
lifespan [108]. In addition, pure lipids present in oxPAPCs contribute to metabolic hyper-
inflammation. In addition, oxPAPCs are stimulators of inflammation in airways. During
lung injury, oxPAPCs promote secretion of IL-6 from alveolar macrophages [109]. In con-
trast, pre-treatment of macrophages with oxPAPCs was reported to block the response of
nuclear factor-κB to LPS treatments. The competitive interaction of LPS and oxPAPCs with
CD14 remains the underlying mechanism [110]. The mechanism of oxPAPCs mediated
accumulation of lipids in macrophages is shown in Figure 2.
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3. Modulators of Lipid Metabolism at a Glance

Several modulators of lipid metabolism have been identified. Of these, lipid lowering
compounds are of high interest as most of the diseases associated with lipid metabolism
are characterized by increased levels of lipids and cholesterol. IFNγ stimulates lipid ac-
cumulation via upregulation of ACAT-1 mRNA expression [111]. Further, adipophilin
promotes triglyceride and cholesterol storage leading to increased cholesterol accumulation
and reduced efflux [112]. Further, YC-1, a potential anticancer drug induces lipid accumu-
lation via the sGC/cGMP/PKG pathway [113]. Torcetrapib is a lipid lowering drug that
functions by inhibiting cholesterol ester transfer protein (CETP). However, the drug has
been postulated to exert adverse off-target effects such as increased aldosterone levels in
plasma and blood pressure. The adverse outcome of the drug poses questions on whether
CETB inhibition or the molecule itself is the reason behind the failure of torcetrapib [114].
Statins are another group of lipid-lowering drugs that lower TG, LDL and VLDL levels
via inhibition of HMG CoA reductase. Fibrates are a class of lipid lowering drugs that
decrease TG and LDL levels and increase HDL cholesterol levels. Gene therapies are also
well-established to lower lipids. Further, these drugs are also used in combination to
achieve a maximum decrease in cholesterol levels. Additionally, key transcription factors
involved in the integration of autophagy in lipid metabolism are potential targets for modu-
lating lipid metabolism. Autophagy inducers can effectively lower lipids. For example, the
transcriptional factor AMPK is involved in the regulation of four major mechanisms: lipid
metabolism, glucose metabolism, autophagy and mitochondrial homeostasis [115]. Such
key players can evidently be targeted for repurposing as modulators of lipid metabolism.
Table 1 lists the modulators of lipid metabolism and their mechanism of action.

Table 1. Modulators of lipid metabolism.

SNo Modulator Mechanism Effect

1 IFNγ [116] ACAT1 mRNA expression Lipid accumulation

2 Adipophilin [112] Promotes TG and cholesterol storage Increased cholesterol accumulation and
reduced efflux

3
3-(5′-Hydroxymethyl-2′-
furyl)-1-benzylindazole
(YC-1) [113]

sGC/cGMP/PKG signaling pathway Induces lipid accumulation

4 Lomitapide [117] Inhibition of microsomal triglyceride transfer
protein (MTP) Lowers LDL cholesterol

5 Mipomersen [118] Selective degradation of the apoB-100
mRNA-antisense oligonucleotide

Reduction in LDL-C and other
lipoprotein levels

6 AAV8 (Adeno-associated viral
serotype 8) TBG.hLDLR [119]

(AAV8)-low-density lipoprotein receptor
(AAV8-LDLr) gene therapy Reduction of plasma cholesterol levels

7 Inclisiran [120] PCSK9 targeting siRNA Decreased LDL-c levels

8 Bempedoic acid [121] Inhibits ATP-citrate lyase Lowers LDL-c in hypercholesterolaemia
and established atherosclerosis

9 Gemcabene [122,123] Down regulation of CRP (C-reactive protein) Lipid lowering activity

10 Alipogene tiparvovec [124] Adeno-associated viruses (AAVs) targeting
lipoprotein lipase (LPL)- gene therapy

Reduce circulating plasma
triglyceride levels

11 Pradigastat [125]
Specific inhibition of diacylglycerol
acyltransferase 1 (DGAT1) blocking
chylomicron triglyceride (TG) synthesis

Reduced TG levels in FCS (familial
chylomicronemia syndrome)

12 Volanesorsen [126] Antisense oligonucleotides targeting
ApoC3 mRNA

Reducing triglyceride levels in patients
with hypertriglyceridemia or familial
chylomicronemia syndrome
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Table 1. Cont.

SNo Modulator Mechanism Effect

13 Colesevelam HCl [127] Accelerates cholesterol 7-α-hydroxylase
mediated conversion of bile acids

Reduces total and low-density
lipoprotein (LDL) cholesterol levels

14 Torcetrapib [114] Inhibits cholesteryl ester-transfer
protein (CETP)

Increased HDL-cholesterol and
apolipoprotein A-I levels and decreased
apolipoprotein B levels

15 Avasimibe [128] Enhances cholesterol efflux and reduces
LDL uptake Reduces foam cell formation

16 Implitapide [129] Inhibition of microsomal triglyceride transfer
protein (MTP)

Reduction in TG levels and total
cholesterol in plasma

17 Niacin [130] Inhibits synthesis of apolipoprotein B-100
required for synthesis of VLDL

Increases HDL cholesterol levels and
lowers LDL, VLDL and lipoprotein

18 Ezetimibe [131] Reduces intestinal absorption of cholesterol
Reduces LDL cholesterol levels in
patients with primary
hypercholesterolemia

19 Cholestyramine [132] Limits the reabsorption of bile acids in GI
tract by forming a resin

Reduction in LDL level in primary
hypercholesterolemia

20 Cholestipol [133] Formation of complex with bile acids Elimination of apoB-containing
lipoproteins and LDL

21 Atorvastatin [134] HMG-CoA reductase inhibition Lowers blood total cholesterol and LDL

22 Fluvastatin [135]
Competitive inhibition of
hydroxymethylglutaryl-coenzyme A
(HMG-CoA) reductase

Decreases total cholesterol, LDL
and triglyceride

23 Lovastatin [136] HMG-CoA reductase inhibtion Decreases triglyceride, VLDL and
increases HDL

24 Pitavastatin sodium [137] HMG-CoA reductase inhibtion Decreases triglyceride, VLDL and
increases HDL

25 Rosuvastatin [138] Inhibition of HMG-CoA reductase Lowers LDL-cholesterol, non-HDL
cholesterol and total cholesterol

26 Simvastatin [139] Competitive and reversible inhibition of
HMG-CoA reductase enzyme Reduced plasma LDL cholesterol levels

27 Pravastatin sodium [140] HMG-CoA reductase inhibition Reduces plasma LDL

28 Gernfibrosil [141] Reduces TG production in liver Reduction in plasma TG levels

4. The Network of Lipids and ROS in Macrophages

Accumulating studies have implied the putative role of ROS in regulating lipid
metabolism in different cell types. The role of ROS in cellular processes varies for cell
types; while non-phagocytic cells utilize ROS for various functions such as gene expression,
signal transduction and other physiological roles, phagocytic cells such as macrophages
utilize ROS for killing invading pathogens. ROS generation plays an important role in
macrophage polarization. Cellular events such as uptake and oxidation of fatty acids dur-
ing the activation of M2 macrophages infer the key role of lipid metabolism in macrophage
polarization. ROS mediated the Lipopolysaccharide (LPS)-induced differentiation of THP-1
monocytes and activated HIF-1α [142]. Similarly, elimination of ROS using ROS inhibitors
resulted in complete blockage of monocyte/macrophage differentiation [143]. In addition,
ROS-mediated oxidation of lipids and proteins presented on membranes of apoptotic cells
facilitated the recognition and attachment of macrophages to the dying cells [144]. More-
over, macrophages failed to identify and engulf apoptotic cells when the oxLDL epiptopes
on the apoptotic cells were blocked using mitochondrial antibody [145], indicating the cru-
cial role of ROS in regulation of lipid metabolism for the phagocytic activity of macrophages.
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The functions of ROS and lipid metabolism are interchanging in macrophages; resolvin D1
(RvD1), a docosahexaenoic acid derivative, a specialized endogenous pro-resolving lipid
mediator, functions to inhibit ROS generation from apoptotic cells after their encounter and
engulfment by macrophages, thereby preventing excess ROS-mediated macrophage cell
death [146].

5. HIF-1α, a Master Regulator of Lipid Metabolism

HIF-1α is a metabolic regulator, that participates in M1 polarization of macrophages.
Overexpression of HIF-1α increased the expression of genes involved in glycolysis. This
eventually mediated the M1 polarization of macrophages [147]. This function of HIF-1α
in activating inflammatory macrophages signifies its role in the crosstalk of inflammation
and hypoxia in macrophages. Contrastingly, activation of HIF-1 was reported to attenuate
periapical inflammation. HIF-1α activation by dimethyloxalylglycine (DMOG) specifically
inhibits the LPS-induced M1 polarization of macrophages while increasing the M2 polariza-
tion. Further, this also resulted in the suppression of NF-κB and proinflammatory cytokine
production in macrophages [148]. In addition, the role of HIF-1α as a metabolic regulator
in the immune function of macrophages is confirmed by the fact that HIF-1α-mediated
glycolysis was reported to be essential for the function of pro-inflammatory macrophages
to protect against fungal and bacterial infections [149].

Tissue-resident alveolar macrophages (TR-AMs) are a population of macrophages that
are functionally distinct and are often characterized by low glucose and high oxygen. The
effector function of TR-AMs is predominantly reliant on mitochondrial function rather than
glycolysis. Progressive loss of TR-AMs is observed in acute respiratory distress syndrome
(ARDS). Hypoxia was reported to stabilize HIF-1α promoting glycolytic phenotype in
TR-AMs, resulting in the attenuation of acute lung injury in mice [150]. Expression levels
of HIF have been shown to be upregulated by ligands of Toll-like receptor 4 (TLR-4) similar
to LPS in macrophages. Under hypoxic conditions, protein synthesis of HIF-1α in human
peripheral T cells increased with T-cell receptor (TCR) engagement [151].

During atherosclerosis, the arterial walls tend to thicken, exceeding the diffusion limit
of oxygen. In atherosclerotic plaques, the hypoxic regions are usually filled with lipid-
laden macrophage foam cells. Hypoxia-inducible factor-1 (HIF-1) is a transcriptional factor
that plays a key role in the process of adaptation to hypoxia. During hypoxia, the HIF-1α
subunit of HIF-1 undergoes nuclear translocation to heterodimerize with HIF-1β [152]. Post-
translocation, HIFs bind to hypoxia-response elements (HREs) or to vascular endothelial
growth factor (VEGF) such as oxygen-sensitive genes. HIF-1α was reported to affect lipid
metabolism in cancer cell lines. Hypoxia-induced lipid accumulation has been found to
decrease in macrophage-like cells lacking HIF-1α [153]. Expression of HIF-1α promotes the
development and progression of atherosclerosis. Under normoxic conditions, expression
of HIF-1α is upregulated in activated macrophages. In atherosclerotic plaques, they are
associated with an atheromatous inflammatory plaque phenotype [154]. Accumulation
of lipid droplets (LDs) during hypoxia is due to the activation of adipophilin (ADRP)
which is crucial for uptake of FA via activation of FABP3 and FABP7 instead of de novo
FA synthesis and for the formation of LD membranes. In tumor cells, hypoxia induces
accumulation of LDs in HIF-1α dependent manner. Inhibition of HIF-1α expression resulted
in decreased levels of LDs after hypoxia [155]. Additionally, in apolipoprotein E deficient
mice, accumulation of neutral lipids in macrophages that contributes to atherosclerosis
was mediated by hypoxia-inducible protein 2 Hig2/Hilpda [156]. Exposure of human
macrophages to hypoxic conditions resulted in the cytosolic accumulation of TG-containing
LDs [157]. The mechanism of hypoxia-mediated lipid accumulation is shown in Figure 3.
Nevertheless, the cellular response to hypoxia differs from cell to cell and is often prone to
modulation by several environmental cues.
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Figure 3. Hypoxia induces HIF-1α mediated lipid accumulation in macrophages. Activation of
HIF-1α induces lipid accumulation in macrophages via activation of ADRP. Uptake of fatty acids in
macrophages is facilitated by HIF-1α. DMOG mediated activation of HIF-1α suppresses production of
pro-inflammatory cytokines. HIF-1α mediates macrophage polarization by activating genes involved
in glycolysis.

6. Integration of Autophagy in Lipid Metabolism

Autophagy is an intracellular, self-degradative mechanism that balances energy
sources and plays a housekeeping role, in that it eliminates aggregated misfolded proteins
and clears damaged organelles. Moreover, autophagy plays a key role as a defense mecha-
nism during conditions of defective lipid metabolism. Autophagy is a molecular switch to
regulate lipid metabolism via activation of lipolysis. In contrast, autophagy is also reported
to contribute in the formation of lipid droplets by mechanisms still unclear [158]. Certain
transcriptional factors regulate lipid metabolism in cells by integrating autophagy. Their
interaction with transcriptional regulators of various stress responses dictates the cells to
switch directly between pathways.

6.1. PPARα

Primarily, expressed in the heart, kidney, brown adipose tissue, PPARα is involved
in the expression of genes related to fatty acid transport [159]. Activation of PPARα effec-
tively eliminates lipotoxicity [160]. Supporting the role of PPARα, extended in the linkage,
autophagy-deficient cells displayed impaired lipid oxidation and decreased PPARα pro-
tein expression [161]. PPARα-autophagy functions to promote cell survival [162]. PPARα
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transcriptionally activates β-oxidation upon sensing the fatty acids. This process involves
the activation of a key player of autophagy, called AMP-dependent protein kinase (AMPK),
which functions to sense the availability of AMP/ATP to initiate pro-survival autophagy
(Figure 4). It was also reported that pharmacological inhibition of autophagy with chloro-
quine (CQ) caused accumulation of LDs and cellular TG content with decreased PPARα
protein levels in zebrafish liver cells [163]. This clearly indicates that PPARα regulates the
non-autophagic function of AMPK [164].
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Figure 4. Integration of autophagy in lipid metabolism by selective key players. The illustration
shows the molecular network of key transcriptional factors involved in connecting autophagy and
lipid metabolism. PPARα, JNK, TFEB, NF-Kb and AMPK are the major transcriptional factors
involved in the regulation of autophagy and lipid metabolism among several other pathways.

6.2. JNK

Another key player in the axis is c-Jun N-terminal kinase (JNK). Activated IRE1α
phosphorylates JNK which in turn phosphorylates Bcl2, dissociating it from BECN1 to
induce autophagy. JNK plays a pivotal role in the autophagy–lipid metabolism axis
(Figure 4). Hepatic deficiency of JNK resulted in dysregulation of lipid homeostasis [165].
In contrast, inhibiting JNK activation resulted in ameliorated insulin signaling in adipocytes
treated with FFA [166]. Correspondingly, both genetic and pharmacological inhibition of
JNK alleviated saturated FFA-mediated lipopaoptosis in hepatocytes. Moreover, autophagic
cell deaths had been reported to be mediated by JNK [167].
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6.3. AMPK

Under normal physiological conditions, AMPK remains inactive while mTORC1
remains active. Active mTORC1 then participates in the synthesis of lipids via PPARγ and
SERBP1c. AMPK directly phosphorylates SREBP1c to inhibit its proteolytic cleavage and
nuclear translocation, thereby reducing de novo lipogenesis [168]. In addition, mTORC1
inhibits β-oxidation of fatty acids by inactivating PPARα. The overall lipid metabolism is
controlled by AMPK via suppression of fatty acid synthesis by directly phosphorylating
acetyl CoA carboxylase (ACC1) and ACC2 with simultaneous induction of fatty acid
oxidation (Figure 4). Furthermore, AMPK phosphorylates lipases such as ATGL and HSL
(rate limiting enzyme in TG synthesis) to stimulate lipid absorption and release [169].
Similarly, the rate limiting enzyme in cholesterol biosynthesis, HMGCR (3-hydroxy-3-
methyl-glutaryl-coA reductase) undergoes inhibitory phosphorylation by AMPK as a result
of which the sterol and lipid synthesis within the cell is preprogrammed [170]. AMPK
activation inhibits GPAT activity and subsequently TG synthesis. GPAT is an enzyme
critical for the catalysis of TG synthesis [171]. Activation of AMPK elevated fatty acid
oxidation and reduced hepatic lipid content in vivo [172]. Under conditions of excess
nutrients, AMPK activation inhibits mTORC1 signaling and ER stress response to prevent
hepatic lipid accumulation [173].

6.4. TFEB

Activation of transcription factor EB (TFEB) is another transcription mechanism that
connects autophagy and lipid metabolism. TFEB, also known as a master regulator of lyso-
some biogenesis and autophagy, transcriptionally regulates lipid catabolism via PPAR1α
and PPARgc1α [174]. Overexpression of TFEB perturbed the expression of genes involved
in lipid metabolism [175] (Figure 4). Lipid droplets are the reliable energy reserves for the
cells and are broken down under nutrient deficient conditions to meet the cellular energy
demands. During such conditions, the lipid metabolism often tends to be dynamic and
requires synergistic regulation of autophagy to maintain lipid flux. Several evidences sug-
gest that TFEB translocates from cytoplasm to nucleus and regulates the lipophagy-related
genes to modulate degradation and efflux of lipids [176].

6.5. TAK1

Participating in lipid metabolism and autophagy, TGFβ-activated kinase 1 (TAK1), re-
mains yet another important member of the interactome connecting the two pathways. Sim-
ilarly, TAK1 overexpression-induced autophagy was not cytoprotective but cytotoxic [177].
In contrast, TAK1-deficient hepatocytes display inhibited autophagy, expression of PPARα
target genes and beta-oxidation with severe hepatosteatosis and high mTORC1 activity.
The accumulation of lipids in TAK1- deleted livers under nutrient deprived conditions
indicates the role of TAK1 in autophagy mediated clearance of lipids. TAK1 prevented
excessive lipid accumulation through inhibition of mTORC1, activation of AMPK and
subsequent induction of autophagy [178] (Figure 4). TAK1 additionally regulates energy
expenditure, survival of adipocytes and high-fat-diet-induced obesity in mice [179].

6.6. NF-κB

Relish, among the five different DNA-binding subunits of NF-κB, governs the lipid
metabolism during fasting conditions, conserving the cellular triglyceride level under
metabolically adapted conditions in Drosophila by limiting the function of Foxo [180].
Activation of NF-κB was also reported to be a pathological mechanism in lipid metabolism
and atherosclerosis [181]. During cardiac hypertrophy, NF-κB activation leads to a fall in
fatty acid oxidation. Protein–protein interaction of the PPARβ/δ and P65 subunit of NF-κB
was reported to be the underlying mechanism indicating the key role of NF-κB in lipid
metabolism [182]. Furthermore, blocking NF-κB aids protection against insulin resistance
and diet-induced hepatic steatosis [183]. (Figure 4).
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7. The Lysosomal Lipid Handling in Macrophages

Lysosomes, as membrane-bound subcellular structures, play a pivotal role in regulat-
ing energy metabolism, nutrient sensing, recycling and degradation of extracellular materi-
als, intracellular materials and in the export of recycled material via exocytosis [184,185].
Lysosomes play a predominant role in maintaining lipid homeostasis. The cellular traffick-
ing pathways such as endocytosis and autophagy eventually converge at the lysosomes
where both the exogenous and endogenous lipids are coordinated and sorted to various
compartments [186,187]. LDL particles delivered into the lysosomal lumen are acted upon
by lysosomal acid lipase type A (LIPA) to be de-esterified into cholesterol and triglyceride
molecules and are transported out of the lysosomal lumen [186]. The lysosomal membrane
proteins LAMP 1 and 2 have been reported to strongly bind to free cholesterol (FC) and
facilitate their export from lysosomes [188]. Dysregulated lipid metabolism is often associ-
ated with lysosomal impairment. Correspondingly, impaired export of FC leads to their
accumulation in the lysosomal lumen inhibiting the activity of Lysosomal acid lipase (LAL)
and eventually that of lysosomes [189]. Further, lysosomes fail to maintain active pH when
incubated with mildly OxLDL, AggLDL, and DISP for a longer period of time indicating
the effect of cholesterol accumulation on LAL and lysosome activity [190]. Interestingly,
formation of foam cells by arterial smooth muscle cells (SMCs) was reported to be affected
by lysosome dysfunction. Macrophages express high level of LAL than arterial SMCs;
in that, when treated with aggregated LDL (low-density lipoprotein), SMCs displayed
accumulation and retention of neutral lipids in lysosomal compartments while most of
them were stored as lipid droplets in the cytoplasm of macrophages [191]. In contrast,
lysosomes of macrophage foam cells loaded with oxLDL were found to be accumulated
with oxidized cholesterol esters and not free sterols. Lysosomal accumulation of cholesterol
derived from mildly oxidized low density lipoprotein in lysosomes showed resistance for
efflux [192]. Inhibition of lysosomal activity by chloroquine resulted in reduced AT lipol-
ysis [193]. Additionally, lysosomal lipolysis is associated with macrophage polarization.
In response to FFA, lysosomal lipolysis induces M2 phenotype in peritoneal and bone
marrow-derived macrophages (BMDM) [194]. Lysosomes are recently identified as nutrient
sensors. Further, their role in lipid catabolism and trafficking confirms the intimate link of
lipid sensing and trafficking functions in lysosomes [186].

8. Conclusions

Lipid metabolism is an integral part of variety of functions in our body, including
nerve impulse transmission, energy storage and hormone regulation. There are several
studies that have reviewed lipid metabolism and associated diseases. Lipids play a pivotal
role in the survival and functioning of macrophages. Lipids remain an integral part of
macrophage functions such as phagocytosis and drive the macrophage polarization. Se-
lective players such as AMPK and PPARα support macrophage survival via integration
of pro-survival autophagy. While there are several lipid lowering drugs, such as statins,
being identified and developed, their off-target effects remain a challenge for researchers.
Although lipid accumulation/impaired lipid metabolism is widely reported to be one of
the reasons for the pathogenesis of lipid metabolism-associated diseases, there is always a
need for the development of effective modulators of lipid metabolism to study the under-
lying mechanism of disrupted lipid metabolism and uncontrolled accumulation of lipids
in diseases.
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