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Abstract: The adventitious root (AR) is the basis for successful propagation by plant cuttings and
tissue culture and is essential for maintaining the positive traits of a variety. Members of the amino
acid/auxin permease (AAAP) gene family play indispensable roles in various plant metabolisms
and have few studies on root growth and amino acid transport. In this study, with a systematic
bioinformatics analysis of the Populus AAAP family, 83 PtrAAAPs were identified from Populus
trichocarpa and grouped into 8 subfamilies. Subsequently, chromosomal distribution, genetic structure,
cis-elements analysis, and expression pattern analysis of the AAAP family were performed and the
potential gene AAAP21 regulating root development was screened by combining the results of RNA-
Seq and QTL mapping. PsAAAP21 was proven as promoting root development by enhancing AR
formation. Differentially expressed genes (DEGs) from RNA-seq results of overexpressing lines
were enriched to multiple amino acid-related pathways, and the amino acid treatment to transgenic
lines indicated that PsAAAP21 regulated amino acid transport, including tyrosine, methionine, and
arginine. Analysis of the AAAP gene family provided a theoretical basis for uncovering the functions
of AAAP genes. The identification of PsAAAP21 on root promotion and amino acid transport in
Populus will help with breeding new woody plant species with strong rooting ability.

Keywords: Populus; PtrAAAPs; adventitious root; amino acid transport; QTL

1. Introduction

The root is an essential plant organ and plays roles in absorption, support, transport,
and synthesis; good root development is of great significance to the growth and develop-
ment of plants. Moreover, the research on plant root development has become increasingly
in-depth and has become a research hotspot [1–4]. Adventitious roots (ARs), which develop
from non-root organs and dormant preformed meristem, or from adjacent vascular tissue
cells in stems or leaves [5,6], form the structure of plant response to stress [7].

Nitrogen, an essential nutrient element for plant growth, is absorbed from the rhi-
zosphere by the roots in the form of nitrates and ammonium salts and is stored in the
form of amino acids and nitrogen-containing compounds [8]. Amino acids are important
organic substances that maintain the normal growth and development of life and regulate
the metabolism, structure, and biosynthesis of various compounds in eukaryotes [9,10].
Amino acids can be absorbed directly by roots as a nitrogen source [9], or evidently used
as neurotransmitters and hormones for communication between cells and tissues [11,12].
The realization of these functions requires a specific transport system to transport amino
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acids between nucleus tissues, and amino acid/auxin permease (AAAP) is a protein that
performs this function.

AtAAP1/NAT2 was the first identified plant amino acid transporter and was found
in Arabidopsis thaliana in 1993 [13]. The AAAP gene family is one of the largest amino
acid transporter families and includes members from almost all eukaryotic organisms [14].
Aa_trans is the specific domain of the AAAP genes [15], and according to their structure,
the AAAP family is further grouped into amino acid permease (AAP), lysine and histi-
dine transporter (LHT), γ-aminobutyric acid transporter (GAT), auxin transporter (AUX),
proline transporter (ProT), aromatic neutral amino acid transporter (ANT), and the amino
acid transporter-like (comprising ATLa and ATLb) subfamilies [15,16]. To date, the func-
tions of multiple AAAPs have been identified in several species, such as arabidopsis [15],
tea tree [17], etc.

The research on the function of AAAP genes is gradually deepening. OsAAP6 is
the positive regulator of rice grain protein content (GPC) promotes amino acid uptake by
the root system and influences amino acid distribution [18]. Overexpression of OsAAP4
increases rice tillering and grain yield as a result of enhancing the neutral amino acid
concentrations of Val, Pro, Thr, and Leu. Exogenous Val or Pro significantly promotes the
bud outgrowth and bud outgrowth overexpressing lines [19]. OsAAP1 has similar functions
in rice tillering and grain yield, the treatment with neutral amino acids can promote axillary
bud outgrowth [20]. In arabidopsis, AtAAP1 regulates root uptake and embryos loading
neutral amino acids [9,21] (Figure 1).
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Figure 1. Research status and prospect of AAAPs, roots, and amino acids.

Since the successful sequencing of Populus trichocarpa, Populus has become an impor-
tant woody model plant [22–24]. Meanwhile, Populus is an important energy tree species.
Improving the rooting status and nitrogen utilization capacity will help reduce the use
of fossil fuels, protect the global environment, and provide a reference for the research of
other woody plants [25].

Although AAAP genes have been identified and characterized in several plant
species [15,16], there are no systematic reports of a comprehensive analysis and verifi-
cation of root promotion and amino acid transport in Populus. Therefore, we aimed to
identify and characterize the phylogenetic relationship and conserved domain architec-
ture of AAAP genes in Populus, with the additional aim of selecting key genes to regulate
poplar root traits and clarify the association between PtrAAAPs, root traits, and amino acid
transport. This study provided a comprehensive bioinformatics analysis of AAAP genes in
Populus, a basis for studying the regulation of root development and amino acid transport
mediated by the AAAP gene PsAAAP21, and for cultivating new woody plant varieties
with excellent root development and remarkable growth.
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2. Results
2.1. Identification and Characteristics of PtrAAAPs

We identified 83 PtrAAAPs from Populus trichocarpa and PtrAAAPs encoding amino
acid numbers ranging from 73 to 554. Among these, PtrAAAP36 and PtrAAAP63 encoded
the least and most amino acid residues, respectively. Their relative molecular masses ranged
from 7920.24 to 60390.81, with PtrAAAP15 and PtrAAAP63 being the smallest and largest,
respectively. The theoretical pI ranged from 4.45 to 11.24, with PtrAAAP5 and PtrAAAP26
being the smallest and largest, respectively. The grand average of hydropathicity (GRAVY)
ranged from 0 to 117.13, with PtrAAAP15 and PtrAAAP41 being the smallest and largest,
respectively. Exon ranged from 1 to 11. The subcellular localization of PtrAAAPs was
also predicted, with all PtrAAAP proteins localized to the cytoplasm, membrane, nucleus,
vacuole, plasma membrane, and extracellular Only one signal peptide was predicted in
PtrAAAP35 for all PtrAAAP proteins (Table S1).

2.2. Chromosome Location and Evolutionary Analyses of PtrAAAPs

All PtrAAAPs were localized in chromosomes, except for PtrAAAP83, and PtrAAAPs
were distributed on each chromosome with the exception of chromosomes 12 and 19.
Chromosome 10 had the most PtrAAAPs, with 10, and chromosomes 7, 13, 15, and 18
had the fewest PtrAAAPs, all with only 1 (Figure 2A). Given that comparative co-linear
mapping is useful for the study of evolutionary traits, comparative syntenic mapping was
also established for P. trichocarpa, associated with Arabidopsis thaliana, and Oryza sativa,
respectively (Figure 2B). Based on the results of the common lineage analysis, 44 and
20 orthologous pairs of genes were found in arabidopsis and rice, respectively (Table S2).
P. trichocarpa was more closely related to arabidopsis. Two or more orthologous genes were
found in arabidopsis for twelve PtrAAAPs, two or more orthologous genes were found in
rice for four PtrAAAPs, and thirteen orthologous genes were found in both arabidopsis and
rice for thirteen PtrAAAPs.
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(B) Collinearity relationship of AAAP genes among Populus trichocarpa (Pt), Arabidopsis thaliana (At),
and Oryza sativa (Os). Identified collinear genes are linked by pink lines.
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2.3. Phylogenetic Classification, Subfamily Division, and Structure of PtrAAAPs

A phylogenetic tree of the PtrAAAPs was constructed by using the maximum like-
lihood estimate after aligning multiple protein sequences. PtrAAAPs were divided into
eight subfamilies which were involved in LHT, ProT, GAT, AAP, ATLa, ANT, ATLb, and
AUX. The number of genes in each subfamily also varies, with AAAP containing the largest
number of PtrAAAPs (23) and ProT having the smallest number (3) (Figure 3A).
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Figure 3. Phylogenetic tree of PtrAAAPs. (A) The name of each subfamily was marked on the outside
of the phylogenetic tree. The PtrAAAPs were divided into ATLa, ANT, ATLb, LHT, ProT, GAT, AAP,
and AUX 8 subfamilies. (B) The expression heatmap using phytozome online data. (C) Statistics of
the cis-elements contained in the promoter region of each PtrAAAP. (D) Distribution of cis-elements
of PtrAAAPs in chromosomes.

To further verify the accuracy of the phylogenetic tree, the AtAAAP protein sequences
were constructed together with the PtrAAAP protein sequences, and each subfamily was
distributed in P. trichocarpa and arabidopsis. At the same time, the motifs and structural
features of each protein were marked (Figure 4), and each AAAP protein contained the
Aa_trans domain. For each subfamily, the structures of the proteins were more conservative,
the motifs were consistent, and the LHT and AAP subfamilies had the most complex
structure and the largest number of proteins, which indicated that the phylogenetic tree
and the results were accurate.
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Figure 4. Phylogenetic and genetic structure analysis of PtrAAAPs. (A) Phylogenetic tree constructed
using the maximum likelihood method and 83 PtrAAAPs protein sequences were divided into
8 subfamilies. (B) Distribution of motifs in PtrAAAP proteins, 20 motifs in total. (C) Structure of the
PtrAAAPs, with the UTR in pink, the exon in green, the intron in the middle of the blank region, and
the Aa_trans domain in yellow.

2.4. Identification of Cis-Elements of the PtrAAAPs Promoters

The cis-element in the 2000 bp region upstream of PtrAAAPs was identified, analyzed,
and classified into three types: hormones, stress, and growth and metabolism. The hormone
type contained the most cis-elements, followed by stress, and growth and metabolism con-
tained the least. Among all the cis-elements, there were four types of them more than 170,
abscisic acid (222), methyl jasmonate (172), ethylene (179), and anaerobic induction (220).
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Three of these, abscisic acid, methyl jasmonate, and ethylene, belonged to hormone type,
one belonged to stress type, and none belonged to growth and metabolism type (Figure S1).
The number of cis-elements in some PtrAAAPs was significantly different from other genes,
for example, PtrAAAP76 contained the most ethylene cis-element, and PtrAAAP11 and
PtrAAAP17 contained the most methyl jasmonate cis-element. The number of cis-elements
that differed significantly from other genes also indicated that they might play important
roles in the response process of ethylene and methyl jasmonate (Figure 3C). Therefore, we
concluded that PtrAAAPs play an important role in poplar hormone and stress response
(Figure S1), of all the PtrAAAPs, the promoter region of PtrAAAP59 contained the largest
number of 25 cis-elements (Figure 3C,D).

2.5. Analysis of the Expression Pattern of PtrAAAPs

The online website Phytozome was used to download tissue-specific expression data
for PtrAAAPs (including root, stem, and leaf) and to plot the expression heatmap. To further
validate the correctness of the tissue-specific expression data, 14 AAAP genes were selected,
except for ANT and ProT subfamilies, and two genes from each subfamily were selected
to determine their expression patterns in Populus simonii ‘Tongliao1’, and the expression
pattern results were generally consistent with those of Phytozome, meanwhile, all 14 genes
were highly expressed in the roots (Figure 5B).
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Figure 5. Expression pattern of PtrAAAPs and AAAP21. (A) PtrAAAPs selected from rooting RNA-
seq, BR and GR represent average FPKM values of three bad rooting and three good rooting hybrid
offspring, respectively. (B) Tissue-specific expression of selected PsAAAPs from P. simonii ‘Tongliao1’.
RNA was extracted from roots, stems, and leaves, respectively. (C) Prediction of genes interacting with
PsAAAP21. (D) Tissue-specific expression pattern of P. deltoids ‘Danhong’ and P. simonii ‘Tongliao1’.
AAAP21 expression from stress RNA-seq between parents and offspring and response to drought
and salt, between (E) and between treatment. (F) GR: good rooting offspring F64, BR: bad rooting
offspring F75. Pd: Populus deltoides ‘Danhong’, Ps: Populus simonii ‘Tongliao1’ and analysis based on
ANOVA * p < 0.05.

The expression pattern of PtrAAAPs did not show a uniform pattern that genes with
high expression were present in all tissues, of which PtrAAAP68 was most highly expressed
in young leaves and root tips, PtrAAAP28 in root standard and stem node, and PtrAAAP71
in stem node.
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2.6. PtrAAAPs Function Analysis

Almost half of the PtrAAAPs (39/83) were found to be differentially expressed in the
results of different individual root transcriptomes in the previous period. For these 39 genes,
two expression patterns existed for higher and lower expression, with 15 and 24 genes,
respectively, while the expression patterns of the 39 genes of the hybrid offspring and the
parents essentially remained consistent [26]. These 39 AAAP genes were distributed in
seven different subfamilies, with the largest number of AAP subfamilies, the least number
of ANTs, and no genes from the ProT subfamily. In the same way, PtrAAAPs were searched
in the results of QTL mapping for root and stem traits, and a total of three PtrAAAPs
were found (Table S3), among of which PtrAAAP21 and PtrAAAP83 were correlated with
root dry weight, and PtrAAAP60 was correlated with leaf number trait. Furthermore, the
qRT-PCR result of 14 PtrAAAPs showed the expression levels of PsAAAP20, PsAAAP21,
PsAAAP28, and PsAAAP78 were higher in roots (Figure 5B).

The regulation of root development by AAAPs has been reported in several papers,
mostly in arabidopsis, but also in rice, pine, tea tree, ginseng, etc. In addition, several
AAAPs have been reported to have regulatory effects on root development, including the
translocation and uptake of amino acids, growth hormones, and nitrogen, improving plant
response to stress and regulating root and root hair growth (Table 1). For PtrAAAP21,
the expression level in the root was the highest (Figures 3B and 5A,B), however, the
expression pattern of AAAP21 showed a regular pattern and AAAP21 was highly ex-
pressed both in the xylem and roots of poplar, suggesting that AAAP21 may regulate the
growth and development of root and xylem, as well as the absorption and transport of
nutrients (Figure 5D).

Table 1. PtrAAAPs regulate root development.

Gene ID Species Description

OsAAP6 Oryza sativa Promoted amino acid uptake by the root [18].

OsAAAPs Oryza sativa FA-induced gene expression of AAAP transporters may
contribute to detoxicification of the autotoxin [27].

AUX1 Arabidopsis thaliana Restoration of root response to auxin [12].

AUX1 Arabidopsis thaliana Maintained root elongation through maintenance of the auxin
accumulation in root tips [28].

AtAAP1 Arabidopsis thaliana Regulated roots uptake neutral amino acids [9].

AtAAP3, AtAAP6 Arabidopsis thaliana
The transport of amino acids by AAP3 and AAP6 was important
for nematode infection [29], AAP3 was related to root nitrogen

uptake function [30].

AtLHT1 Arabidopsis thaliana
The capacity for amino acid uptake, and thus nitrogen use

efficiency, was increased severalfold by LHT1
overexpression [31].

AtProT2 Arabidopsis thaliana Influencing nitrogen distribution during water stress [32].

AAAP12 Vicia narbonensis Improved plant uptake and allocation of carbon and
nitrogen [33].

CsAAAPs Camellia sinensis Related to theanine transport [34].

CsAAP1 Camellia sinensis CsAAP1 expression in the root was highly correlated with
root-to-bud transport of theanine [35].

PpAAP1 Pinus pinaster High-affinity arginine transporter in maritime pine [36].

PgLHT Panax ginseng Promoted the development of plants, especially root hair [37].

Analysis of the stress RNA-seq of parents and hybrid offspring showed that the
expression of AAAP21 was stable in the four poplar species and the expression of P. deltoides
‘Danhong’ (Pd) and good rooting offspring (GR) was higher than that of P. simonii ‘Tongliao1’
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(Ps) and bad rooting offspring (BR). Moreover, AAAP21 could respond to drought, but
didn’t show significant reaction to salt, which indicated AAAP21 was the positive factor
for root development and drought response (Figure 5E,F). Several screening methods
were used and PsAAAP21 was selected, and it became of interest as to whether this gene
regulates adventitious root development in Populus.

2.7. Regulatory Effect of PsAAAP21 on Root Development

Agrobacterium tumefaciens-mediated genetic transformation was utilized to ob-
tain PsAAAP21 overexpression and inhibition expression lines. Phenotypic analysis of
PsAAAP21 transgenic plants showed that PsAAAP21 was a positive regulator of adven-
titious root (AR) development. Traits of root fresh weight and number of AR, but not
maximum root of length, showed differences. The inhibited expression of PsAAAP21
suppressed AR development, furthermore, this difference was caused by promoting the
formation of AR (Figure 6A–C); on this basis, the growth of aboveground parts was
also affected, which was consistent with the development of AR. This result showed
that the promotion of AR will also improve the development of the aboveground parts.
Therefore, the effect of PsAAAP21 on plant biomass was also the direction of follow-up
research (Figure S2).
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2.8. Analysis of RNA-Seq with Hybrid Parents and Offspring

Compared with WT, PsAAAP21 overexpression line RNA-seq results showed dif-
ferences, 1277 genes were upregulated and 725 genes were downregulated, respectively
(FDR ≤ 0.05, Fold change ≥ 2) (Figure 7B). Moreover, the Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis of differentially expressed genes (DEGs) showed
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that pathway of biosynthesis of secondary metabolites and metabolic pathways contained
the most number DEGs, moreover, the value of -log10 transformed Qvalue was highest
with metabolic pathways, which denoted that PsAAAP21 was involved in metabolic path-
ways (Figure 7C). The analysis of DEGs showed that it contained a number of transcription
factors, including ARR-B, AP2-EREBP, ARF, TCP and so on, in which ARRs and ARFs are cy-
tokinin and auxin pathway genes, respectively, and these two hormones are key hormones
in AR initiation and development, meaning that PsAAAP21 regulated AR development
by affecting hormones. At the same time, we also noticed that genes XTHs, EXPAs, PMEs,
TUBs, and SWEETs, associated with cell wall and cell elongation, also showed differences
in expression, and these genes were also involved in the process of AR development.
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Figure 7. RNA-seq differentially expressed gene analysis. (A) Principal component analysis PCA of
the expressed genes showing sample separation. Principal component 1 (PC1) and PC2 explaining
94.1 and 3.4% of the total variance, respectively. (B) The number of DEGs with upregulated genes in
pink and downregulated genes in light blue. (C) Kyoto encyclopedia of genes and genomes KEGG.
enrichment analysis of DEGs, node color represents -log10 transformed Qvalue—corrected p-Value,
node size represents rich factor. (D) Number of transcription factors in DEGs. Heatmap of auxin (E) and
cytokinin (F) related genes. (G) Heatmap of cell wall development and cell elongation related genes.
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2.9. Regulatory Effect of PsAAAP21 on Amino Acid Transport

In the RNA-seq results of overexpressed strains (OE#6), the enrichment results of
KEGG with DEGs showed that many DEGs were enriched to amino acid related pathways,
including arginine and proline metabolism, tyrosine metabolism, and cystine and methion-
ine metabolism, which contained 9, 26 and 20 genes, respectively. Meanwhile, there were
two expression modes of positive and negative correlation (Figure 8A–D). Combined with
the existing research results (amino acid determination results of phloem and xylem of
hybrid parents and offspring), the correlation between AAAP21 expression and amino
acid content was analyzed. The expression of AAAP21 was significantly correlated with
tyrosine (Tyr) and arginine (Arg) content, especially with the opposite trend of Tyr content
in phloem and xylem (−0.89 and 0.93) (Figure S3). In order to further verify the transport
effect of PsAAAP21 on amino acids, transgenic lines and WT plants were treated with
amino acids, and the results showed that amino acids had inhibitory effects on plants.
There was a greater inhibitory effect from 2 mM Tyr on overexpression plants and WT
plants than on inhibited expression plants. However, there was a reduced inhibitory effect
from 4 mM methionine (Met) on overexpression plants and WT plants than on inhibited
expression plants, and this combined with the reduced inhibitory effect of 25 mM Arg on
overexpression plants compared to WT and inhibited expression plants (Figures 6 and S2).
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3. Discussion

Amino acid/auxin permease (AAAP), a family of proteins that perform amino acid
transport functions in plants, has been identified in several plants, including Camellia
sinensis, Medicago truncatula, Phyllostachys edulis, and Liriodendron chinense [15–17,38]. Al-
though the family has been reported, our knowledge of Populus, which important model
and energy species and plays an important role in scientific research and production, is
not comprehensive. [22–25,39]. As an important underground organ of plants, the good
developmental status of roots contributes to the growth and development of plants [3].
Consequently, given the important role of Populus and the potential role of AAAP proteins
on plant root development, the first systematic genome-wide analysis was performed in
the P. trichocarpa genome and genetic transformation of AAAP21 gene was performed to
verify its regulation function on root development.
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3.1. Genes Identified, Phylogenetic Classification, and Subfamily Division of PtrAAAPs

In this research, HMMER 3.0 was used to identify the PtrAAAPs, and 83 PtrAAAP
genes were identified from P. trichocarpa (Table S1), the AAAP proteins of arabidopsis and
rice were identified by the same method. Populus has 83 more AAAP genes than arabidopsis,
C. sinensis, M. truncatula, P. edulis, which may be related to the at least three whole-genome
duplication events in poplar and the subsequent multiple fragment duplication, tandem
duplication, and transposition events (Figure 4) [15–17,23]. Subsequently, based on their
structure, PtrAAAPs were divided into eight subfamilies, and the classification of each
subfamily was consistent with arabidopsis (Figure 3) [15], which also indicated that AAAP
family genes existed before the differentiation of P. trichocarpa and arabidopsis. By searching
for orthologs of P. trichocarpa with arabidopsis and rice, 44 and 20 AAAP orthologs were
present in the two species, respectively, indicating that arabidopsis is more closely related
to P. trichocarpa. P. trichocarpa and arabidopsis as dicotyledons and rice as monocotyledons
were also in good agreement with this result.

3.2. Structure and Evolution of PtrAAAPs

The conserved protein motifs and gene structures of PtrAAAPs were further investi-
gated. As the important molecular basis for genes in the plant process of evolution, the
structural features of genes play a crucial role in plant adaptation to environmental changes,
which can be foundations to distinguish them from other gene families [40]. The subfami-
lies LHT and AAP of the PtrAAAPs’ eight subfamilies were more complex in terms of motif
number, length, and structure, which also meant that they perform more complex functions
in plants (Figure 4). As an important gene structure, introns participate in alternative
splicing and control the speed of gene evolution [41]. The PtrAAAPs contained introns
ranging from 0 to 10, and the number of introns contained in each subfamily of PtrAAAPs
was similar (Figure 4), indicating that the genes in each subfamily play similar regulatory
roles and corroborating the accuracy of the classification.

3.3. Regulatory Function on the Root of PsAAAP21 in Populus

In the existing studies, in addition to AAAPs regulating amino acid absorption and
transport, there are also reports on promoting root development [28,37]. AUX1 regulates
root elongation by maintaining auxin accumulation, as a plant hormone, auxin regulates
the development of AR [42]. AR development of PsAAAP21 transgenic plants was changed,
and PsAAAP21 promoted root development by regulating the occurrence of AR (Figure 9),
leading to the change of root dry weight. PPI forecast results showed that PsAAAP21
interacted with MAF1, LST8, and SNF4 (Figure 5C), which were confirmed to participate in
root growth in existing research [43–45]. Although the results of yeast two-hybrid showed
that PsAAAP21 did not interact with these three proteins, the reason for this result may be
caused by differences between homologous genes, and in subsequent trials we will further
clarify and look for the regulatory mode of PsAAAP21 (Figure S4).
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Based on results of RNA-seq, there were differences in the related gene expressions
of auxin, cytokinin, and cell development. Auxin and cytokinin are important hormones
for adventitious root initiation and development, auxin is involved in the initiation of
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adventitious roots, and cytokinin inhibits the initiation of adventitious roots but promotes
the elongation of adventitious roots [46], and this antagonistic regulation has also been
confirmed [47,48]. PeARR12 inhibits AR formation by inhibiting the expression of WOX5/11
and PIN1/3 [49]. PtRR13 is also a negative regulator of adventitious root development [50].
LBDs is an auxin pathway gene that regulates lateral root development and is accompanied
by auxin concussion in this process [51,52]. PIN protein plays a key role in the auxin
polar transport, and the response of roots to auxin gradient also needs to be mediated by
AUX/IAA and ARF proteins [53,54]. ARF7 and ARF19 regulate the composition of root hair
cell walls through ERU [55]. PME and PMEI are also necessary for the occurrence of lateral
roots [51]. The expression levels of PIN5 homologous genes and LBDs were increased in
overexpressed lines, indicating that there were differences in the transport and synthesis
of auxin in highly PsAAAP21 expressed lines. Moreover, the expression levels of XTHs,
EXPAs [56,57], PMEs, and TUBs were mostly increased in PsAAAP21 overexpressed lines,
therefore, PsAAAP21 promoted the formation of adventitious roots by regulating auxin,
and genes related to cell wall and cell elongation were also involved.

3.4. AAAPs Is Involved in Amino Acid Transport

Nitrogen is an important nutrient for plant growth and development. High nitro-
gen fertilizer can enable crops to obtain the highest yield. In the past few decades, to
meet the population’s demand for food, the use of synthetic nitrogen fertilizer has in-
creased significantly [58]. AAAPs are helpful for the transportation and utilization of amino
acids, which is a source of nitrogen the soil, by plants [58,59]. PsAAAP21 belonged to
the AAAP gene family, which is involved in the transport of amino acids and auxin in
plants [9,12,28,59,60]. Subcellular localization results showed that PsAAAP21 was localized
to the endoplasmic reticulum (Figure S5), at the same time, transgenic lines and WT treated
with amino acids showed different responses to amino acids, and the amino acid transport
capacity of PsAAAP21 was also proven (Figure 9). Since amino acids are a source of ni-
trogen in soil and there are precedents for AAAPs to improve nitrogen use efficiency [31],
the amino acid transport capacity of PsAAAP21 makes us think about whether PsAAAP21
can affect the utilization of nitrogen by plants. Therefore, in subsequent experiments,
transgenic lines will be treated with different concentrations of nitrogen sources to observe
the response of plants to different concentrations of nitrogen, which can also provide a
theoretical basis for the efficient utilization of nitrogen by plants.

4. Materials and Methods
4.1. Plant Materials

The Populus simonii ‘Tongliao1’ (Ps), used in this study was originally collected from
a natural stand in Tongliao, Inner Mongolia Autonomous Region, and Populus deltoides
‘Danhong’ (Pd), a fast-growing and insect-resistant variety, were preserved in the nursery
of Chinese Academy of Forestry. The 84K poplar (Populus alba × Populus glandulosa) was
now preserved in the experimental site and tissue culture room of the Chinese Academy of
Forestry under 2500 lx and 25 ◦C.

4.2. Identification, Characteristic, Chromosome Distribution, and Evolutionary
Analysis of PtrAAAPs

After retrieving the Hidden Markov Model profiles of the Aa_trans domain (PF01490)
from the Pfam database (http://pfam.xfam.org/, accessed on 19 February 2020) [61], the
Populus bHLH proteins were identified with HMMER 3.0 (http://hmmer.janelia.org/,
accessed on 19 February 2020) (E-Value < 0.01) from P. trichocarpa (Pt) (v3), downloaded
from Ensembl Plant (http://plants.ensembl.org/index.html, accessed on 19 February 2020).
Meanwhile, the PtrAAAPs were confirmed on SMART [62], pfam(http://pfam.xfam.org/,
accessed on 19 February 2020) [61] and NCBI CDD (http://www.ncbi.nlm.nih.gov/cdd/,
accessed on 19 February 2020). The PtrAAAPs characteristic and located information were
identified with ProtParam (https://web.expasy.org/protparam/, accessed on 19 February

http://pfam.xfam.org/
http://hmmer.janelia.org/
http://plants.ensembl.org/index.html
http://pfam.xfam.org/
http://www.ncbi.nlm.nih.gov/cdd/
https://web.expasy.org/protparam/


Int. J. Mol. Sci. 2023, 24, 624 13 of 17

2020) [63] and TBtools [64] software, and the subcellular localization and signal peptides
were analyzed with online database of Softberry (http://linux1.softberry.com/, accessed
on 19 February 2020) and SignalP 4.1 (http://www.cbs.dtu.dk/services/SignalP-4.1/,
accessed on 19 February 2020) [65]. TBtools [64] was used to finish synteny analysis with
Arabidopsis thaliana and Oryza sativa.

4.3. Sequence Alignment and Phylogenetic Construction Tree of PtrAAAPs

Protein sequences of PtrAAAPs, extracted with Bio-Linux after being aligned by
ClustalW with MEGA X (https://www.megasoftware.net/dload_win_gui, accessed on
19 February 2020), were divided into eight subfamilies according to their amino acid
conservation. The Maximum likelihood estimate was used.

4.4. Structural Analysis of PtrAAAPs

MEME (http://meme-suite.org/, accessed on 19 February 2020) [66] was used to
search for conserved motifs of PtrAAAPs protein sequences, the length and number were
set to 6–50 and 20, and other parameters were the default values. The structure information
of PtrAAAPs was extracted and TBtools [64] was used to draw PtrAAAPs structure map.

4.5. Analysis of Cis-Acting Elements and Protein-Protein Interaction Network of PtrAAAPs

PlantCARE [67] (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/, ac-
cessed on 19 February 2020) of 2000 bp upstream sequences of the transcriptional start
point for PtrAAAPs online website was used to identify cis-acting regulatory elements and
then cis-acting regulatory elements were analyzed and classified after that. The PsAAAP21
protein sequence was submitted to the online website String (https://string-db.org/, ac-
cessed on 19 February 2020) [68] to query and predict the potential regulatory effect of
PtrAAAPs on root growth. The P. trichocarpa was selected as reference.

4.6. RNA Isolation and PtrAAAPs Expression Pattern Analysis

The expression pattern of PtrAAAPs was downloaded from Phytozome (https://
phytozome-next.jgi.doe.gov/, (accessed on 19 February 2020). We analyzed the expression
pattern of some genes from different subfamily in P. simonii ‘Tongliao1’ by qRT-PCR.
RNAprep Pure Plant Kit (TIANGEN, Beijing, China) was used to extract the total RNA of
roots, stems, and leaves of P. simonii ‘Tongliao1’ according to the manufacturer’s protocol,
and then the total RNA was reverse transcribed into cDNA using a TIANScript II RT Kit
(TIANGEN, Beijing, China). The Actin gene (Potri.001G309500) was used as the reference
gene and the 2−∆∆CT method was used to analyze. All the experiments were performed
with three replicates, primer information in Table S4.

4.7. Transcriptional Expression of PtrAAAPs during Root Development

Analysis and selection of the PtrAAAP genes in the differentially expressed genes
in the RNA-seq of root development (transcriptome data comes from previous research
by the research group of badly rooted and good rooted hybrid offspring), and qRT-PCR
was used to analyze the expression of differential genes in the roots, stems, and leaves of
P. simonii ‘Tongliao1’.

4.8. Gene Cloning, Vector Construction and Plant Transformation

In the previous research of the research group, PtrAAAP21 was selected out based on
the result of QTL mapping and RNA-seq of root growth of hybrid of P. deltoides ‘Danhong’
and P. simonii ‘Tongliao1’. The CDS sequence fragments of the PtrAAAP21 gene was cloned
from P. simonii ‘Tongliao1’ cDNA via specific primers, and the sequence was first cloned
into the pDONR222 and then into pMDC32, utilizing BP and LR (Invitrogen, Shanghai,
China). The method of Agrobacterium-mediated genetic transformation was taken to
transform 84K poplar. PsAAAP21 and LST8.1, SNF4, and MAF4, cloned from 84K poplar,
were cloned into pGBDT7 and pGADT7-rec1, respectively.

http://linux1.softberry.com/
http://www.cbs.dtu.dk/services/SignalP-4.1/
https://www.megasoftware.net/dload_win_gui
http://meme-suite.org/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
https://string-db.org/
https://phytozome-next.jgi.doe.gov/
https://phytozome-next.jgi.doe.gov/
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4.9. Determination of Physiological Indexes of PsAAAP21 Overexpression Plants

Transgenic 84K poplar lines (OE#6, OE#9, RNAi#7, and RNAi#11) and wild-type 84K
poplar (WT) were cultured in the tissue culture room of the Chinese Academy of Forestry,
and the growth phenotype was determined after one month of growth.

4.10. RNA-Seq for Stress Treatment Hybrid Parents and Offspring and PsAAAP21
Overexpression Line

Hybrid parents and offspring cutting seedlings with consistent growth were selected
for treatment. The water content in the drought treatment group was controlled to be
60–70% of the maximum water holding capacity, the salt stress group was treated with
150 mM NaCl, and the control group was treated with water, and the water content of
salt stress and control was 100%. After one month of growth, root tips were collected,
frozen in liquid nitrogen and sent to Biomarker Technologies Co, Ltd. (Beijing, China) for
RNA-seq, three replicates per line. The 150 bp paired-end reads were generated on the
Illumina NovaSeq 6000 platform and P. trichocarpa v4.0 was used as reference (FDR ≤ 0.05,
Fold change ≥ 2).

Roots from one-month seedlings of PsAAAP21 overexpression line #6 and wild type
tissue culture were sampled, frozen in liquid nitrogen and sent to GENEDENOVO Biotech-
nology Co., Ltd. (Guangzhou, China) for RNA-seq, three replicates per line, and each
replicate was pooled from three plants. The 150 bp paired-end reads were generated on the
Illumina NovaSeq 6000 platform, and P. trichocarpa v3.1 was used as reference (FDR ≤ 0.05,
Fold change ≥ 2).

4.11. Amino Acid Treatment

In order to verify the amino acid transport function of PsAAAP21, wild-type 84K
poplar (WT) and transgenic plants (OE#6, OE#9, RNAi#7, and RNAi#11) and a variety of
amino acids were selected for verification, including tyrosine (Tyr), methionine (Met), and
arginine (Arg), their concentrations were 2 mM, 4 mM, and 25 mM, respectively, and the
amino acid solution was added to sterilized 1/2 MS medium after filtration sterilization.
The culture conditions were 25 ◦C and 2500 lx with three replicates at least per line.

5. Conclusions

In this study, HMMER search was used to identy PtrAAAPs in Populus and PsAAAP21
was identified to integrate adventitious roots development and amino acid transport.
Consequently, 83 PtrAAAPs were identified and characterized in Populus, and systematic
bioinformatics analysis was performed and the possible regulatory role of PtrAAAPs
was predicted. Combining RNA-seq and QTL mapping results, PsAAAP21 was screened
and cloned from P. simonii ‘Tongliao1’. The phenotype of transgenic plants showed that
PsAAAP21 promoted adventitious root development by regulating auxin. The results of
the RNA-seq and amino acid content determination showed that PsAAAP21 was related
to amino acid transport, which was proved by amino acid treatment experiment. This
study helps us to understand the AAAP gene family of Populus and uncover the theoretical
basis for improving rooting and growth traits. Finally, we could preserve excellent traits of
woody plants by using AAAP gene family and increase plant nitrogen utilization by the
AAAPs function on amino acid transport.
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