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Abstract: A novel adsorbent of N-doped carbonized microspheres were developed from chitin (N-
doped CM-chitin) for adsorption of Congo red (CR). The N-doped CM-chitin showed spherical shape
and consisted of carbon nanofibers with 3D hierarchical architecture. There were many micro/nano-
pores existing in N-doped CM-chitin with high surface area (455.703 m2 g−1). The N element was
uniformly distributed on the carbon nanofibers and formed with oxidize-N graphitic-N, pyrrolic-N,
and pyridinic-N. The N-doped CM-chitin showed excellent adsorption capability for CR and the
maximum adsorption amount was approximate 954.47 mg g−1. The π-π/n-π interaction, hydrogen-
bond interactions, and pore filling adsorption might be the adsorption mechanisms. The adsorption
of N-doped CM-chitin was considered as a spontaneous endothermic adsorption process, and which
well conformed to the pseudo-second-order kinetic and Langmuir isotherm model. The N-doped
CM-chitin exhibited an effective adsorption performance for dynamic CR water with good reusability.
Therefore, this work provides new insights into the fabrication of a novel N-doped adsorbent from
low-cost and waste biomasses.

Keywords: chitin; N-doped carbonized microspheres; congo red; remarkable adsorption

1. Introduction

Water pollution has become a severe issue in environment due to the rapid expansion
in industrialization and urbanization [1]. Among water pollutants, the highly stable toxic
dyes in aquatic ecosystems are one of the major pollutants present in the wastewater, which
mostly resulted from the leather, textile, food and paint industries [2]. As we all known,
dyes contain harmful aromatic structure that make them highly lethal and even carcinogenic
to body. Furthermore, dyes are easily broken into benzidine in the aqueous environment
and then exhibited high level of toxicity for human body [3,4]. Congo red (CR, Figure
S1A,B) is a typical azo anion reactive dye with good solubility in aqueous solution. CR is
mainly applied to textiles, printing and dyeing, paper, rubber and plastics industries [5,6].
Nearly 70% of the 10,000 dyes used in textile manufacturing alone are azo dyes [7]. CR
displayed severe toxicities of eye stimulator, nausea, vomiting, diarrhea, bold clotting, and
drowsiness [6,8]. CR also adversely affect the photosynthetic processes of aquatic creatures
because their colored nature reduces the light penetration [9,10]. Therefore, highly efficient
removal of CR methods from aquatic ecosystem are necessary.

Generally, CR removal approaches can be divided into chemical, physical, and biologi-
cal techniques [11,12]. The physical dye sequestration method has been considered as the
most efficient method due to the stability of dyes to light, non-biodegradable, and resistant
to aerobic digestion treatment [9,13]. Among these physical approaches, adsorption can
be regarded as the best technique for CR pollutant removal because of the advantages of
low cost, simple operation process, high efficiency, easy recovery, and repeatability [14,15].
Recently, great range of materials can be used as adsorbents for CR removal, such as
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metal oxides [16,17], Metal–organic frameworks (MOFs) [18], biochars [19], graphenes [20],
activated carbons [21], and Zeolitic imidazolate frameworks (ZIFs) [22]. However, these ad-
sorbents generally involved some drawbacks of high-cost and organic solvents during the
complicated manufacturing processes, which could lead to unacceptably second pollution
for environment and then seriously limit their applications [23,24]. Therefore, fabrication
of environmentally friendly, economical, and superior performance adsorbent is necessary.
Up to now, lots of renewable biomass resources have been used to development of high-
performance adsorbent for pollutant adsorption and removal due to the advantages of low
cost, easy of obtainment, nontoxicity to environment, and sustainable development [25].
Thus, functional carbon-based nanomaterials derived from renewable biomass of cellulose,
starch, chitosan and chitin are become more and more popular [26–29].

At present, chitin is mainly produced from discarded shrimp and crab shells during
processing of aquatic products. Shrimp shell as shrimp or edible waste is not fully utilized,
but the content of chitin in shrimp shell accounts for 15–20%, and the content of chitin in
dried shrimp shell is as high as 20–30% [30]. As a natural macromolecular polysaccha-
ride, chitin is received increasing attention because of its properties of biodegradability,
biocompatibility, and nontoxicity [31], which widely exists in arthropods (crustaceans,
insects, and arachnids), single celled organisms, invertebrates and fish [32,33]. Addition-
ally, chitin contain numerous amino and hydroxyl groups (Figure S1C), and which can be
direct converted into nitrogen-doped carbon materials (Figure S1D) via direct carboniza-
tion method [34]. Chitin dissolve in NaOH/urea aqueous system at low temperature
shows worm-like chains, which can quickly self-aggregate in parallel via hydrogen bond-
ing and hydrophobic interactions to form nanofibers at elevated temperature [32]. The
corresponding nanofibrous microspheres were constructed via sol-gel transition method
from the chitin nanofibers solution. After carbonization, N-doped CM-chitin formed with
hierarchical porosity, a stable 3D interconnected structure, and a high specific surface
area [34,35]. Meanwhile, N-doped CM-chitin has the structure of disorder carbon phase
with pyridine-N-oxide, graphitic-N, pyrrolic-N, and pyridinic-N [35]. Owing to these
advantages, N-doped CM-chitin has been used as adsorbent to removal contaminants
from water, such as neonicotinoid residues [35], volatile organic compounds [36], and
methyl orange [37]. Up till now, N-doped CM-chitin was just used to statically removal
contaminants in stationary vessel. Therefore, N-doped CM-chitin act as the adsorbent for
dynamical separation and removal of contaminants might be more meaningful for practical
application. Meanwhile, to the best of our knowledge, N-doped CM-chitin was used to
adsorption and removal of CR is rarely reported.

Inspired by the previous reports and issues, in this study, an adsorbent of N-doped
CM-chitin was fabricated from chitin, which exhibited properties of hierarchical porosity,
a stable 3D interconnected structure, and a high specific surface area. The adsorption
performance toward CR was explored for the first time, and the kinetic, thermodynamic,
and equilibrium were all evaluated for the adsorption mechanism. Meanwhile, the N-
doped CM-chitin was also used as adsorbent for CR removal in dynamic water. Therefore,
this study may provide new insights into recycling biowaste resources to produce novel
adsorbent for contaminants removal from real water samples.

2. Results and Discussion
2.1. Fabrication of N-Doped CM-Chitin

Chitin, which obtained from sea food wastes, can be easily dissolved in NaOH/urea
aqueous solution via a freezing-thawing method [32]. The chitin chains were formed in
NaOH/urea solution and can self-aggregate in parallel to form nanofibers via hydrogen
bonding and hydrophobic interactions. The corresponding fibrous microspheres derived
from chitin (FM-chitin) were developed using a “bottom-up” fabrication method in isooc-
tane phase with surfactants Tween-85 and Span 85 at 0 ◦C with stirring, and the obtained
FM-chitin were induced by heating at 60 ◦C. The FM-chitin can be directly carbonized
to formation of N-doped carbonized microspheres (N-doped CM-chitin), which showed
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advantages of high surface aera, hierarchical porous structure, different doping N ele-
ments, and environmentally friendly processes. Because of these advantages, the N-doped
CM-chitin may be a potential adsorbent for pollutants removal in the wastewater treat-
ment field.

2.2. Characterizations

The morphology of FM-chitin and N-doped CM-chitin was shown in Figure 1, which
shows that FM-chitin exhibited a spherical shape with 3D interconnected porous structure
and nano/micro-pores on the surface (Figure 1A–C), which may be due to the phase
separation induced by the occupying H2O during the sol-gel process and the solvent-
rich regions contributed to the pore formation [38]. Obviously, there was no essential
change in the morphology for N-doped CM-chitin after carbonization (Figure 1D,E), the
chitin nanofibers converted into carbon nanofibers with high density after carbonization
(Figure 1F), which may be attributed to the shrinkage of nanofibers during the calcining
process. Fortunately, the 3D hierarchical porous structure was almost preserved, which was
good for adsorption performance. However, the relatively denser surface was observed
for N-doped CM-chitin after CR adsorption. The morphology of CR was also investigated
(Figure S2), it can be observed that CR showed a good crystal plate morphology. After
adsorption (Figure 1G–I), CR crystal cannot be found on the surface of N-doped CM-
chitin, suggesting that the native crystalline CR had changed into amorphous CR. It was
confirmed that CR has adsorbed onto the fibrous carbon surface of N-doped CM-chitin via
the pores and channels. The elements of N-doped CM-chitin were also determined using
EDX mapping, showing that the C, O and N elements were uniformly distributed over the
carbon nanofibers of N-doped CM-chitin (Figure 1J).
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Figure 1. SEM images of FM-chitin (A–C), N-doped CM-chitin before (D–F) and after (G–I) adsorp-
tion of CR, and elemental mappings (J) of C, N, and O of N-doped CM-chitin.

Figure S3A shows the XPS survey of N-doped CM-chitin before and after adsorption
of CR, which were carried out to further investigate the elemental contents and bonding
states. Three peaks attributed to C1s, N1s and O1s were observed in the full survey spectra
of N-doped CM-chitin. A new binding energy peak at 166.6 eV appeared after adsorption
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of CR, which was owing to the S2p element from CR molecule (Figure S3B). The high-
resolution XPS spectra of N-doped CM-chitin before and after adsorption of CR was also
measured. The C1s peaks could be deconvolved into the forms of C = O, C-O/C-N, and
C-C/C-H at 288.2, 286.3, and 284.8 eV (Figure S3C), respectively. The C-C/C-H became
the primary bonding state to form hydrophobic carbon skeleton structure of N-doped
CM-chitin. However, C1s exhibited a new peak at the binding energy of 283.50 eV after
adsorption of CR (Figure S3D), representing the C = C groups from the phenyl of CR
molecule. The O1s spectrum of N-doped CM-chitin before adsorption can be resolved
into three peaks at 535.8, 533.3 and 531.7 eV, which was attributed to N-O, O-H, C = O/C-
O-C, respectively. After adsorption of CR, a new peak at 531.1 eV of S-O/S = O can be
found (Figure S3F). The S-O/S = O bond interaction between surface oxygen functional
groups of N-doped CM-chitin and (Φ-NAzo str) groups of CR was beneficial to improve the
adsorption capability. The N1 s spectrum can be deconvoluted into the forms of oxidize-N
(N+O), graphitic-N (N-Q), pyrrolic-N (N-5), and pyridinic-N (N-6), the corresponding
peaks was at 403.6, 401.0, 399.1 and 398.2 eV (Figure S3G), respectively. After adsorption,
three new peaks at 406.7, 402.9, and 399.9 eV of N = N, C-N, and N-H were appeared
(Figure S3H), which may be due to the interaction π–π/n-π and H bonding interactions
between N-doped CM-chitin and CR. In conclusion, CR molecules were also adsorbed on
the carbon nanofibers surface of N-doped CM-chitin.

Figure 2A shows the FT-IR spectra of N-doped CM-chitin before and after adsorption
of CR. There are some new absorption peaks at 588, 713, 754, and 1172 cm−1 also appeared
for the N-doped CM-chitin after adsorption of CR. The peak at 588 cm−1 was attributed
to the shift of out-of-plane flexural stretch vibration peaks of C-H of arene. The peaks of
713 and 754 cm−1 were the shift of pure benzylamine bands, and the 1172 cm−1 peak was
the shift of S-O single bond or S = O double bond, which may be due to the characteristic
peaks of sulfo group in CR molecule.

Int. J. Mol. Sci. 2023, 24, 684 5 of 16 
 

 

D and G band of carbon structure, respectively [35]. The D band was attributed to the 
presence of sp3 carbon atoms, and the G band was related to the in-plane vibration of sp2 
carbon atoms [40,41]. The intensity ratio of G band to D band (IG:ID) presented the graph-
itization degree of carbon. The IG:ID for N-doped CM-chitin was 0.843 and 0.910 before 
and after adsorption of CR, respectively, indicating that the crystallinity decrease, and the 
ratio of disorder structures become larger. Meanwhile, a new peak at 1153 cm−1 was ap-
peared, which might be due to the azobenzene stretching of CR [42]. 

 
Figure 2. FT-IR spectra (A), XRD curves (B), Nitrogen adsorption-desorption isotherms (C), and 
Raman spectra (D) of N-doped CM-chitin before and after adsorption of CR. 

2.3. Optimization of Adsorption Conditions 
The effect of N-doped CM-chitin amounts (10, 20, 30, 40, and 50 mg) on the adsorp-

tion capacity and removal efficiency for CR (200 mg L−1, 50 mL) was evaluated (Figure 
3A). It can be observed that the removal efficiency increased from 92.64% to 99.79% with 
increasing the consumption of adsorbent in the same volume of solution. The removal 
efficiency has less change with adsorbent increasing from 20 mg to 50 mg, and the results 
also showed that the equilibrium absorption capacity (926.39 mg g−1) occurred in adsor-
bent dose of 10 mg (Figure 3A). The equilibrium absorption capacity decreased from 
926.39 mg g−1 to 199.57 mg g−1 with amount of N-doped CM-chitin increasing from 10 mg 
to 50 mg, which may be the adsorbents aggregation and overlapping of adsorption sites 
during the adsorption process [43]. Therefore, 10 mg of the adsorbent dose was used in 
the following experiments. 

The pH value of solution is one of the vital factors in the adsorption capacity due to 
affecting the surface charge properties of CR and N-doped CM-chitin, and then the elec-
trostatic interaction can be affected under different pH solutions. The CR solution was 
initially configured with pH of 7.4 and which was set up using 0.1 mol L−1 HCl and 0.1 
mol L−1 NaOH solution. The adsorption capability of N-doped CM-chitin for CR were in-
vestigated in different pH solutions with ranging from 3.0 to 11.0. As shown in Figure 3B, 
the adsorption capacity of CR increased with the pH increasing from 3.0 to 7.4, and the 
adsorption capability was 474.85 and 942.24 mg g−1 at pH value of 3.0 and 7.4, respectively. 

Figure 2. FT-IR spectra (A), XRD curves (B), Nitrogen adsorption-desorption isotherms (C), and
Raman spectra (D) of N-doped CM-chitin before and after adsorption of CR.



Int. J. Mol. Sci. 2023, 24, 684 5 of 16

The XRD results of the N-doped CM-chitin and CR were shown in Figure 2B.
The N-doped CM-chitin exhibited the similar XRD peaks before and after adsorption
of CR. The peaks of 24.30◦ and 43.21◦ was corresponded to the (002) and (101) re-
flection, respectively, which indicated that N-doped CM-chitin have amorphous and
graphite crystalline structures [39]. The pure CR exhibited a series of sharp peaks from
10 to 60◦ , which suggested that CR exhibited the crystalline nature. However, these
sharp peaks of CR almost disappeared after adsorption into the N-doped CM-chitin,
which indicated that the native crystalline CR had changed into amorphous CR. The
XRD results are consistent with SEM, and CR crystals do not appear on the surface of
N-doped CM-chitin (Figure S2A,B).

The surface areas of N-doped CM-chitin before and after adsorption were determined
using N2 adsorption and desorption method (Figure 2C). As can be seen, the N2 adsorption
and desorption isotherms of N-doped CM-chitin exhibited type II: the N2 uptakes increase
with the increase in relative pressures, especially at high relative pressures, and there is
minor hysteresis between the adsorption and desorption isotherms. The specific surface,
micropore volume, and total pore volume of N-doped CM-chitin was 455.703 m2 g−1,
0.098 cm3 g−1, and 1.565 cm3 g−1, respectively. However, these porosity parameters of
N-doped CM-chitin after adsorption decreased and the value was only 230.919 m2 g−1,
0.014 cm3 g−1, and 1.274 cm3 g−1, respectively. These parameters decreased due to the
adsorption of CR molecule on the nanofibrous carbon surface, which is in good agreement
with the results of XPS. Meanwhile, the pore size distribution results were determined and
shown in Figure 2C (inset), suggesting that N-doped CM-chitin have a meso/macropore
dominant hierarchical structure with an extended continuous pore size distribution. This
interconnected hierarchical porous nanofibrous architecture would provide more favorable
adsorption for CR.

Raman spectra of N-doped CM-chitin before and after adsorption of CR displays
in Figure 2D. The peaks at 1357 cm−1 and 1591 cm−1 were observed for N-doped
CM-chitin before adsorption, as well as 1375 cm−1 and 1591 cm−1 after adsorption,
which represent the D and G band of carbon structure, respectively [35]. The D band
was attributed to the presence of sp3 carbon atoms, and the G band was related to the
in-plane vibration of sp2 carbon atoms [40,41]. The intensity ratio of G band to D band
(IG:ID) presented the graphitization degree of carbon. The IG:ID for N-doped CM-chitin
was 0.843 and 0.910 before and after adsorption of CR, respectively, indicating that the
crystallinity decrease, and the ratio of disorder structures become larger. Meanwhile, a
new peak at 1153 cm−1 was appeared, which might be due to the azobenzene stretching
of CR [42].

2.3. Optimization of Adsorption Conditions

The effect of N-doped CM-chitin amounts (10, 20, 30, 40, and 50 mg) on the adsorption
capacity and removal efficiency for CR (200 mg L−1, 50 mL) was evaluated (Figure 3A). It
can be observed that the removal efficiency increased from 92.64% to 99.79% with increasing
the consumption of adsorbent in the same volume of solution. The removal efficiency has
less change with adsorbent increasing from 20 mg to 50 mg, and the results also showed
that the equilibrium absorption capacity (926.39 mg g−1) occurred in adsorbent dose of
10 mg (Figure 3A). The equilibrium absorption capacity decreased from 926.39 mg g−1

to 199.57 mg g−1 with amount of N-doped CM-chitin increasing from 10 mg to 50 mg,
which may be the adsorbents aggregation and overlapping of adsorption sites during
the adsorption process [43]. Therefore, 10 mg of the adsorbent dose was used in the
following experiments.
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The pH value of solution is one of the vital factors in the adsorption capacity due to
affecting the surface charge properties of CR and N-doped CM-chitin, and then the electrostatic
interaction can be affected under different pH solutions. The CR solution was initially configured
with pH of 7.4 and which was set up using 0.1 mol L−1 HCl and 0.1 mol L−1 NaOH solution.
The adsorption capability of N-doped CM-chitin for CR were investigated in different pH
solutions with ranging from 3.0 to 11.0. As shown in Figure 3B, the adsorption capacity of CR
increased with the pH increasing from 3.0 to 7.4, and the adsorption capability was 474.85 and
942.24 mg g−1 at pH value of 3.0 and 7.4, respectively. However, the adsorption capability
decreased from 942.24 to 741.31 mg g−1 with pH value increasing from 7.4 to 11.0. CR molecule
existing in dissociated form as anionic dye ions with negatively charged (dye-SO3

−). Under
acidic solution, N-doped CM-chitin protonated to form positively charge sites [44], which
resulting in the electrostatic interaction between CR and N-doped CM-chitin. However, the
adsorption capability of N-doped CM-chitin not only depended on electrostatic interaction, but
also other interactions of hydrogen bonding and π-π interactions. In this study, the N-doped
CM-chitin exhibited highest adsorption capability at pH 7.4. Therefore, the pH 7.4 considered
as the optimum pH value during the N-doped CM-chitin adsorption processes.

The effect of the initial CR concentration (100, 150, 200, 300, and 400 mg L−1) on
the adsorption capability was also evaluated at pH 7.4 under different temperatures
(290 K, 300 K, and 310 K). As shown in Figure 4A, the adsorption capability of CR on N-
doped CM-chitin increased from 494.56 to 1003.94 mg g−1 (290 K), 490.80 to 1230.74 mg g1

(300 K), and 498.75 to 1076.89 mg g−1 (310 K) with the concentration of CR increasing from
100 to 400 mg L−1. This might be due to two reasons: the increased in initial concentration
caused the increase in driving force of the concentration gradient between the bulk solution
and N-doped CM-chitin, which could enhance the diffusion of CR into N-doped CM-chitin.
Additionally, more collision times occurred between CR and N-doped CM-chitin when
increasing CR concentration [45]. In the process of increasing CR concentration, the adsorp-
tion capacity of the process increased, the change of adsorption capacity is small and then
200 mg L−1 was adopted in subsequent experiments.
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2.4. Adsorption Isotherms, Kinetics, and Thermodynamics

Figure 4A shows the isothermal adsorption results of CR by N-doped CM-chitin at
different temperatures of 290, 300, and 310 K in pH 7.4 solution. To further investigate
the adsorption process, three models of Langmuir (Equations (S1) and (S2)), Dubinin-
Radushkevieh (D-R) (Equations (S3)–(S5)), and Feundlich (Equation (S6)) were used to fit
the isothermal data. The fitting results were described in Figure 4B–D and listed in Table S1.
The Langmuir model was better than D-R and Freundlich isotherm models to describe
the adsorption of CR into N-doped CM-chitin due to the highest R2 values at all different
temperatures. Meanwhile, the RL value was all lower than 1 at different temperatures. The
Freundlich constant n were larger than 1 and the E was lower than 8 kJ mol−1. Obviously,
N-doped CM-chitin exhibited a monolayer and favorable physical adsorption process.

Figure 5A shows the kinetic curve of CR adsorption by N-doped CM-chitin at different
time. The adsorption capability increased quickly within 90 min, which was due to the
hierarchical porous, high surface area, and N-doping structure of N-doped CM-chitin. The
adsorption capability attenuated gradually from 90 min to 180 min, and which has no
obvious increased after 180 min. After 90 min, the diffusion resistance of CR increased
with an increasing amount of CR on the microspheres surface, resulting in a lower ad-
sorption rate. Additionally, the remained CR concentration gradually decreased and the
adsorption driving force also gradually decreased, which further decreased the adsorp-
tion rate of N-doped CM-chitin for CR after 90 min. Therefore, the kinetic curve of CR
adsorption by N-doped CM-chitin was fitted using the pseudo-first order kinetic model
(Equations (S7) and (S8) and Figure 5B), pseudo-second order kinetic model
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(Equations (S9) and (S10) and Figure 5C), and diffusion model (Equation (S11) and Fig-
ure 5D) and corresponding parameter results were listed in Table S2. Obviously, Qe,cal
(1000 mg g−1) obtained from the pseudo-second order kinetic model has good agreement
with the experimental result 954.47 mg g−1 with the highest R2 (0.9996), which showed
that the adsorption is subject to chemisorption such as hydrogen bond and π-π interactions.
The adsorption processes can be expressed by two linear models using the intra-particle
diffusion model, showing that the adsorption rate was not only mainly depended on intra-
particle diffusion process, but also affected by surface layer adsorption or boundary layer
diffusion. As shown in Figure 5D, CR diffuses rapidly on the fibrous carbon surface via the
pore channels at the first stage, and instantaneous adsorption occurs on the outer surface of
the fibrous carbon of N-doped CM-chitin. The second stage almost horizontal suggesting a
dramatic decrease in adsorption rate.
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For investigation the effect of temperature on the adsorption of CR on N-doped CM-
chitin, the adsorption experiments were carried out at 290, 300, and 310 K. The energy of
activations (∆H) and enthalpy change (∆S) was calculated from the Van ‘t Hoff equation
(Equation (S12) and Figure S4), the Gibbs free energy change (∆G) was measured from
Equation (S13), and the thermodynamic results were listed in Table S3. From the results,
∆H > 0 and negative ∆G, indicating that the adsorption process is endothermic nature and
spontaneous. ∆S > 0 showed an entropy increase irregularities at the solid-liquid interface
on the carbon nanofibers surface of N-doped CM-chitin.
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2.5. Effect of Salt Ions

Previous reports suggest that oxyanions, monovalent and divalent cations present
in the waters of an ecosystem could significantly influence the sorption of organic com-
pounds [46]. Figure 6 shows the effect of added cations (Na+, K+, Mg2+ and Ca2+) and
anions (Cl−, NO3−, SO4

2− and CO3
2−) on the adsorption of CR onto N-doped CM-chitin.

In the experiment, the ion concentration increased from 10 to 50 mmol L. As shown Figure 6,
it was found that cation has a greater promoting effect on N-doped CM-chitin adsorption
of CR than anion. For cations, Mg2+ ≈ Ca2+ > K+ > Na+ promotes adsorption. The order
of the radius of cations is Na+ > K+ > Ca2+ > Mg2+, and the larger the radius of cations,
the less the polymerization capacity of dyes, and which caused the less promotion of
adsorption. For anions, the inhibition of adsorption is CO3

2− > SO4
2− > Cl− > NO3

−. With
the same valence state, the smaller the hydration radius of ions, the stronger the affinity and
the stronger the inhibition of adsorption. Therefore, adsorbent affinity for Cl− is greater
than NO3

−.
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2.6. Possible Adsorption Mechanism

As shown Figure 7A, the possible adsorption mechanism of N-doped CM-chitin was
proposed according to the abovementioned characterization results as followings: (1) the
π-π and n-π interaction can be formed between the π electrons in N-doped CM-chitin and
the benzene/naphthalene ring structure of CR; (2) the hydrogen-bond interactions also
can be formed between these carbonyl, hydroxyl and hydroxylamine groups of N-doped
CM-chitin and CR; (3) the electrostatic interaction could be happened between the negative
charges of CR and positive charges of N-doped CM-chitin; (4) the pore filling adsorption
may be also play vital role during the adsorption process [35]. The adsorption capability of
N-doped CM-chitin were compared with the other sorbent used in CR adsorption as listed
in Table S4, which showed that the adsorption capability of N-doped CM-chitin was better
than those of other sorbents in Table S4. The excellent adsorption capability of N-doped
CM-chitin was attributed to the multiple adsorption mechanisms, porous structure, and
high surface area.
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2.7. Regeneration and Reuse

The regeneration of N-doped CM-chitin is very important for real application. Thus,
five consecutive adsorption-desorption experiments were carried out to evaluate the regen-
eration performance. In this study, HCl, NaOH, NaCl and acetone solution were used as
eluent for N-doped CM-chitin desorption. During the experiments, it was found that the
desorption performance of CR by acid, base and salt solution was almost no desorption
capability (Figure S5). However, the organic solvent (acetone, acetonitrile, and isopropanol
solution) had good effective for the desorption performance (Figure 7B). It can be observed
that acetone solution exhibited best elution capability than that of acetonitrile and iso-
propanol. Therefore, acetone solution (60.00%) was used as the desorption eluent for the
N-doped CM-chitin generation. As shown Figure 7C, the adsorption amount exhibited a
downward trend with the adsorption times increasing, and the adsorption amount still
maintained about 573.15 mg g−1 after recycling 5 times. The decreasing adsorption capa-
bility might be due to the losing of N-doped CM-chitin during the adsorption-desorption
processes, which was consistent with the results of increased disorder of materials shown
by Raman spectroscopy. The other reason may be because treatment with acetone solution
cannot completely remove CR in the N-doped CM-chitin at the previous adsorption step.

2.8. Dynamic Removal of N-Doped CM-Chitin toward CR

The highly adsorption efficient and the facile application of N-doped CM-chitin are
important in the adsorption field. Therefore, dynamic removal experiments were carried
out with an N-doped CM-chitin syringe device. As is shown in Figure 8 and Video S1, the
real adsorption and removal of CR using N-doped CM-chitin dynamic injector system was
evaluated. When CR solution was syringed through the N-doped CM-chitin packing, the
CR solution become colorless (Figure 8A). Moreover, the penetration curve of Congo red
solution to N-doped CM-chitin is shown in Figure 8B, the N-doped CM-chitin still remain
excellent adsorption capability and the CR solution also changed into colorless. Above all,
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the N-doped CM-chitin exhibited effective adsorption and removal capability for dynamic
CR solution, which is suitable for the practical application in water pollution treatment.
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2.9. Comparison of Adsorption Capacity with Different Sorbents

The adsorption performance of N-doped CM-chitin for CR was compared with other
adsorbents and the results were listed in Table S4. It can be seen from Table S4 that the
adsorption capacity of N-doped CM-chitin was higher than those of other sorbents. The
excellent adsorption capability of N-doped CM-chitin was attributed to the multiple adsorp-
tion mechanisms, porous structure, and high surface area. Therefore, N-doped CM-chitin
can be applied as a potential adsorbent for practical application in water pollution removal.

3. Materials and Methods
3.1. Materials

Chitin was supplied by the Golden-shell Biochemical Co., Ltd. (Zhejiang, China) and
was purified according to previous report [32,40]. Span 85, isooctane and Tween 85 were
purchased from Aladdin (Shanghai, China). CR (>75.00%) was bought from the Solarbio
Life Science (Beijing, China). All chemicals used were of analytical grade. Ultrapure
water used during the whole processes was manufactured by the Hyperpure water system
(Millopore, Bdford, MA, USA).

3.2. Fabrication of N-Doped CM-Chitin

Briefly, 94 g of aqueous solution containing NaOH (10.34 g), and urea (3.76 g) was
prepared and then stirred continuously for 5 min. After that, 6 g of purified chitin was
added into the NaOH/urea solution with stirring for another 10 min, which was placed
into a refrigerator at −30 ◦C for 4 h and then thawed at room temperature. After three
cycles of freezing-thawing processes, a transparent and homogeneous chitin aqueous phase
was obtained. The oil phase (200 g of isooctane and 8.8 g of Span 85) was added into flask
at 0 ◦C under stirring for 30 min. After that, the chitin aqueous phase was dropped into
the oil phase within 5 min and further stirred for 60 min. The emulsification containing
20 g isooctane and 4.8 g Tween85 was added into the flask and stirred for another 60 min.
The emulsified chitin solution was transferred to a water bath (60 ◦C) within 5 min to form
the fibers rapidly and woven into microspheres. Subsequently, the fibrous microspheres
derived from chitin (FM-chitin) were separated and washed with deionized water and
ethanol to completely remove removal of isooctane, Tween-85 and Span-85. The FM-chitin
were subjected to solvent-exchange with tertbutanol for 12 h and followed by freeze-dried
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(−68 ◦C) for 24 h. Finally, the dried FM-chitin were carbonized under N2 atmosphere in
a tube furnace heating from room temperature to 650 ◦C at a rate of 3 ◦C/min and the
equilibrating for 2 h, and then the nitrogen-doped carbonized microspheres derived from
chitin (N-doped CM-chitin) were obtained after cooling to room temperature.

3.3. Characterizations

The morphology of different samples was observed with scanning electron microscope
(SEM) (JSM-6701F, JEOL, Tokyo, Japan). The phase structure of CR before and after adsorp-
tion was determined using X-ray diffractometry (XRD, D8 ADVANCE, Bruker, Germany).
X-ray photoelectron spectroscopy (XPS) measurements were performed using 2000 a XPS
system (ESCALAB250Xi, ThermoFisher Scientific, Waltham, MA, USA). Fourier transform
infrared (FT-IR) spectra was recorded on an infrared spectrometer (Nicolet5700, Thermo
Nicolet, Waltham, MA, USA). The nitrogen adsorption-desorption isotherms were per-
formed using the Brunauer-Emmett-Teller (BET) (Autosorb-2, Quantachrome, Boynton
Beach, FL, USA). Raman spectroscopy was performed using a Confocal Raman microscope
(Renishaw, UK).

3.4. Adsorption Experiments

Adsorption of N-doped CM-chitin toward CR were performed in the triangle flask
was shaken for a rate about 120 rpm under dark condition. The experiment will be re-
peated three times in parallel to ensure the accuracy of the data. For the effect of the
pH value, 10 mg of N-doped CM-chitin was added into 50 mL CR solution with dif-
ferent initial pH (3.0, 5.0, 7.4, 9.0, and 11.0) value for 12 h. The kinetic experiments of
N-doped CM-chitin (10 mg) were conducted in CR solution (50 mL, 200 mg L−1) and
3 mL solution was withdraw at specific time intervals. For the adsorption isotherms, N-
doped CM-chitin (10 mg) was added into CR solutions (50 mL) with concentration ranging
from 100 to 400 mg L−1. Meanwhile, the dosage effect of N-doped CM-chitin varied from
10 mg to 50 mg for the adsorption capability was also investigated in CR solution (50 mL,
200 mg L−1). The CR concentration was measured using UV-vis spectroscopy at 498 nm.
The removal efficiency and equilibrium adsorption capacity of CR by N-doped CM-chitin
was calculated using the following formulas [16,45]:

R(%) =
C0 − Ce

C0
× 100% (1)

qe =
(C0 − Ce)

M
× V (2)

where R is the removal rate of CR, C0 is initial concertation of CR (mg L−1), Ce is the
equilibrium concentration (mg L−1), qe (mg L−1) is the equilibrium adsorption capacity of
N-doped CM-chitin, V is the volume of solution (L), Ce is the equilibrium concentration
(mg L−1), and M is the quantity of N-doped CM-chitin (mg).

3.5. Desorption, Regeneration, and Re-Usability of N-Doped CM-Chitin

N-doped CM-chitin (10 mg) was added into CR solution (50 mL, 200 mg L−1) and
shaken with 120 rpm at 25 ◦C for 12 h to reach adsorption equilibrium. After filtration,
CR on the surface of N-doped CM-chitin was washed using water. After that, N-doped
CM-chitin were added into eluents (acetone, isopropanol, and acetonitrile) with desired
concentrations and then shaken at 120 rpm at 25 ◦C for 12 h. The CR concentrations in the
regenerated liquid were measured using UV at 498 nm and the desorption efficiency (DE)
was then calculated by the following equation [47]:

DE% =
(A0 − Ad)

A0
× 100% (3)
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where A0 is the initial absorbance of CR solution (200 mg L−1), Ad is the residual absorbance
of UV after desorption. For further investigation the regeneration and re-usability, the
re-adsorption experiments were carried out in CR solution (50 mL, 200 mg L−1) for 5 times
abide by the procedure described in adsorption section.

3.6. Dynamic Removal of N-Doped CM-Chitin toward CR

Dynamic removal experiments were carried out with syringe device. N-doped CM-
chitin were packed into an injector (10 mL), which acted as an adsorption column to form a
static bed (50 mg N-doped CM-chitin and 0.2 g cotton). A certain amount of cotton was
placed at the bottom of the injector to prevent the outflow of N-doped CM-chitin. The CR
solution (10 mL, 20 mg L−1) was added into the injector from the top and flowed naturally
from the fixed bed. Samples were taken every 3 min. The absorbance was measured with
UV-vis spectra and the penetration curve was drawn [48,49].

4. Conclusions

In conclusion, a novel adsorbent (N-doped CM-chitin) with 3D porous framework
architecture was developed from chitin, and which was used to removal of CR from water
for the first time. Different N forms of oxidize-N, graphitic-N, pyrrolic-N, and pyridinic-N
distributed in the carbon nanofibers of N-doped CM-chitin. Meanwhile, N-doped CM-
chitin had micro/nano-pores and high specific surface area. The N-doped CM-chitin
showed excellent removal capability with maximum adsorption amount of 954.47 mg g−1

for CR (200 mg L−1). The significant adsorption capability might be due to the hydrophobic
interaction, electrostatic interaction, π-π/n-π interaction and hydrogen-bond interaction
between N-doped CM-chitin and CR. The CR adsorption into the N-doped CM-chitin was
considered as a spontaneous endothermic process, and well conformed to the pseudo-
second-order kinetic and Langmuir isotherm model. Interestingly, the N-doped CM-chitin
also exhibited effective removal capability for the dynamic CR water with long-time stability.
Therefore, this study provides new insight into fabrication of novel N-doped adsorbent
from low-cost and waste biomass resource, and which has great potential for practical
application in water pollution removal.
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