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Langmuir, Dubinin-Radushkevieh (D-R), and Freundlich isotherm models 

Langmuir model is described using Eqs. S1,2 [1,2]. 

஼೐ொ೐ = ଵ௞ಽொ೘ + ஼೐ொ೘                                       1 

 RL= 11+kLC0                                           2 

where Qm is the Langmuir maximum adsorption of the CR (mgg-1), kL is the Langmuir 

constant (Lmg-1), Ce is the equilibrium concentration of CR (mgL-1) and Qe is the 

equilibrium adsorption capacity of N-doped NCMs (mgg-1). C0 is the initial CR 

concentration(mgL-1). The adsorption behavior is favorable when RL between 0 and 1, 

and the adsorption is unfavorable when RL larger than 1. 

Dubinin–Radushkevich (D-R) model is described by Eqs. S3-5 [1,3]. 

 ln𝑄௘ = 𝑙𝑛𝑄௦ − 𝐴𝜀ଶ                                3 

 𝜀 = RTln(1 + ଵ஼೐)                                  4 

  E= 1√2A                                           5 

where Qe, Qm and Ce is mentioned in the Langmuir model, A is constant of the D-R 

model (mol2kJ-2). E is the adsorption energy (kJmol-1). The E was between 8-16 

kJmol-1, showing the ion-exchange adsorption, and the physical adsorption occurs 

when E ranged from 1 to 8 kJmol-1. 

Freundlich model is expressed by Eq. S6 [2]. 

log𝑄௘ = 𝑙𝑜𝑔𝑘௙ + ௟௢௚஼೐௡                                 6 

Where kf is the Freundlich constant related to the adsorption capacity and n is the 

heterogeneity factor.  

Pseudo-first order, Pseudo-second order and Weber-Morris internal diffusion 

kinetic models. 

Pseudo-first order kinetic model is described by Eqs. S7-8 [4]. 



ௗொ೟ௗ௧ = kଵ(Q௘ − Q௧)                               7  ln(𝑄௘ − 𝑄௧) = ln 𝑄௘ − 𝑘ଵ𝑡                        8 

where Qe is the equilibrium adsorption capacity of N-doped NCMs (mgg-1); Qt is the 

adsorption capacity at time t (mgg-1); K1 adsorption rate coefficient of Pseudo-first 

order kinetic model (min-1); t is the adsorption time (min). 

Pseudo-second order kinetic model is described by Eqs. S9,10 [5]. 

ௗொ೟ௗ௧ = 𝑘ଶ(𝑄௘ − 𝑄௧)                              9 ௧ொ೟ = ଵ௞మொ೐మ + ௧ொ೐                                  10 

where Qe is the equilibrium adsorption capacity of N-doped NCMs (mgg-1); Qt is the 

adsorption capacity at time t (mgg-1); K2 adsorption rate coefficient of Pseudo-second 

order model (gmg-1min-1);T is the adsorption time (min). 

Weber-Morris internal diffusion kinetic models is described by Eq. S11 [6]. 

𝑄௧ = 𝑘௪𝑡଴.ହ + 𝑍                               11 

where Qt is the adsorption capacity at time t (mgg-1); Kw is the adsorption rate 

coefficient of the Weber-Morris internal diffusion kinetic model (mg·g-1·min-0.5); t is 

the adsorption time (min); Z is the adsorption rate constant of the Weber-Morris internal 

diffusion model. 

Adsorption thermodynamics 

∆H (entropy change), ∆S (enthalpy change) and ∆G (Gibbs free energy change) were 

calculated from following Eq. S12,13 [1,7]. 

ln𝐾ୢ = ∆ୗோ − ∆ுோ்                             12 lnKୢ = − ∆ீோ்                               13       

where R is gas constant (8.314Jmol-1K-1), T is kelvin degree (K), Kd is the equilibrium 
constant (Ct/Ce). Ct is the concentration of the CR on adsorbent (mgL-1), and Ce is the 
equilibrium concentration of CR (mgL-1).  



Figure S1. Structure of CR (A and B), chitin (C), and chitin fibrous carbon (D) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure S2. SEM and morphology of CR 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure S3. Fully XPS survey spectra of N-doped CM-chitin (A). C1s (C), O1s (E), 

and N1s (G) split fitting spectra for the N-doped CM-chitin before adsorption. S2p 

(B), C1s (D), O1s(F), and N1s(H) split fitting spectra for the N-doped CM-chitin 

after adsorption of CR. 

 



Figure S4. Plot of lnKd versus 1/T of CR adsorption onto N-doped-NCMs 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 



Figure S5. Desorption of N-doped NCMs (10 mg) using different eluents of A (0.1M, 

HCl) B (0.1M, NaOH), C (0.1M, NaCl), and D (60%, acetone) 

  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S1. Fitting parameters of Langmuir, Dubinin–Radushkevich, and 

Freundlich isotherm models 

Model Constants Temperature (K) 
  290 300 310 
 Qe,exp (mgg-1) 943.33 932.78 922.35 

Langmuir Qm (mgg-1) 1012.21 1080.04 1243.71 
 RL 1.6778×10-3 6.2253×10-3 1.8973×10-2 
 R2 0.9996 0.9998 0.9982 

Freundlich 
KF 528.4087 667.9439 606.7643 
1/n 0.1774 0.1011 0.1148 
R2 0.8768 0.8702 0.7352 

D-R 

Qs(mgg-1) 1152.75 1306.27 1185.90 
A (mol2kJ-2) 67.565 76.697 61.328 
E (kJmol-1) 8.60×10-2 8.07×10-2 9.03×10-2 

R2 0.9728 0.9930 0.9967 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S2. Fitting parameters of Pseudo-first-order, Pseudo-second-order and 

Weber-Morris internal diffusion kinetic models 

Experimental Qe,exp(mgg-1) C0(mgL-1) K1(min-1) Qe,cal(mgg-1) R2 
Pseudo-first 
order kinetic 

model 
954.47 200 0.0122 185.38 0.7050 

Pseudo-second 
order kinetic 

model 

 C0(mgL-1) K2(gmg-1min-1) Qe,cal(mgg-1) R2 

 200 1.05×10-4 1000 0.9996 
 
Weber-Morris 

internal 
diffusion 

kinetic models 

 C0(mgL-1) Kw,1(mgg-1min-0.5) Z1 R1
2 

 200 24.721 627.823 0.9921 
 C0(mgL-1) Kw,2(mgg-1min-0.5) Z2 R2

2 
 200      0.154 949.773 0.6222 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S3. Thermodynamic parameters of N-doped NMCs toward CR adsorption 

T(K) lnKd G(kJ•mol-1) H(kJ•mol-1) S(J•mol-1•K-1) 

290 0.8204 -1.9781 

9.6218 39.7226 300 0.8508 -2.1222 

310 1.0802 -2.7840 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table S4. Comparison of absorption capacity with other sorbents 

Adsorbent qmax (mgg-1) Ref 

AlF-rGO 178.57 [8] 

Chitosan(CTS)beads 166.67 [9]  

sonoenzymolysis of chitin suspension 261.89 [10]  

Bentonite/zeolite-NaP composite 46.29 [11]  

Chitosan–carbon nanotube(CS/CNT)beads 450.40 [12]  

Ca-bentonite 107.41 [13]  

SMC(cationic surfactant modified 
clinoptilolite) 

200.00 [14] 

cetyltrimethylammonium bromide-acid 
modified celery residue(CTAB-ACR) 

526.32 [15]  

hierarchical porous zinc oxide (ZnO) 334.00 [16]  

NiO HPHAs 490.20 [17]  

tremella-like ferrocene based metal-orgainc 
framework (TFMOF) 

254.14 [18]  

ZIF-8DMF-M 394 [19] 

Ni/Mg/Al layered double hydroxides (NMA-
LDHs) 

1250 [20]  

magnetic polydopamine (PDA)-LDH (MPL) 584.56 [21]  

CNF–GnP aerogel 585.3 [22] 

N-doped CM-chitin 954.47 This work 
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