Stable and Unstable Concentration Oscillations Induced by Temperature Oscillations on Reversible Nonequilibrium Chemical Reactions of Helicene Oligomers
Abstract
:1. Introduction
1.1. Temperature Oscillations
1.2. Temperature and Concentration Oscillations
1.2.1. Relationships between Temperature and Concentration Oscillations
1.2.2. Effect of Temperature Oscillations on Equilibrium
1.3. Effect of Temperature Oscillations on Reversible Nonequilibrium Chemical Reactions
2. Stable Concentration Oscillations
2.1. Delay and Amplify Hysteresis
2.2. Stable Concentration Oscillations with Delay Hysteresis
2.3. Stable Concentration Oscillations with Amplify Hysteresis
2.3.1. Stable Concentration Oscillations Involving Equilibrium Overlapping
2.3.2. Stable Concentration Oscillations Involving Equilibrium Intersecting
2.3.3. Equilibrium Overlapping and Equilibrium Intersecting
2.3.4. Stable Concentration Oscillations Involving Equilibrium Noncontact
2.3.5. Resonance Phenomenon
3. Unstable Concentration Oscillations
3.1. Unstable and Stable Concentration Oscillations
3.2. Unstable Concentration Oscillations with Amplify Hysteresis
3.3. Transformation from Unstable Concentration Oscillations to Stable Ones
3.3.1. A model with a Single Self-Catalytic Reaction
3.3.2. Models with Two Competitive self-Catalytic Reactions
3.4. Domains of Self-Catalytic Reactions in Concentration/Temperature Profiles
3.5. Scope of This Article
4. Stable Concentration Oscillations with Delay Hysteresis
5. Unstable Concentration Oscillations with Amplify Hysteresis Involving a Single Self-Catalytic Reaction
5.1. Stable Concentration Oscillations Involving Equilibrium Overlapping
5.2. Transformations from Unstable Concentration Oscillations to Stable Ones
5.3. Effect of Temperature Change Rate
5.4. Higher Order Stable Concentration Oscillation
5.5. Domains of Self-Catalytic Reaction of (P)-2
6. Unstable Concentration Oscillations with Amplify Hysteresis Involving Two Competitive Self-Catalytic Reactions
6.1. Unstable Concentration Oscillations Involving Equilibrium Touching
6.1.1. Transformation from Unstable Concentration Oscillations to Stable Ones
6.1.2. Convergence of Different Unstable Concentration Oscillations to a Single Stable Concentration Oscillation
6.1.3. Equilibrium Touching
6.1.4. Domains of Self-Catalytic Reactions of (P)-3-C16/(M)-4
6.2. Unstable Concentration Oscillations Involving Equilibrium Sliding
6.2.1. Unstable Concentration Oscillations under Different Temperature Change Rates
6.2.2. Unstable Concentration Oscillations under Different Temperature Ranges
6.2.3. Domains of self-catalytic reactions of (P)-3/(M)-5
6.2.4. Mechanism of Doubled-Frequency Concentration Oscillations
6.2.5. Comparison of Unstable Concentration Oscillations of (P)-3-C16/(M)-4 and (P)-3/(M)-5
7. Concentration Oscillations in Aqueous Solutions
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Available online: https://dictionary.cambridge.org/dictionary/english/oscillation (accessed on 4 December 2022).
- Feynman, R.P.; Leighton, R.B.; Sands, M. The Feynman Lectures on Physics; Addison Wesley: Boston, MA, USA, 1989. [Google Scholar]
- Howard, G. The Physics of Waves; Prentice Hall: Hoboken, NJ, USA, 1993. [Google Scholar]
- Shirasawa, K.; Esumi, T.; Itai, A.; Isobe, S. Cherry Blossom Forecast Based on Transcriptome of Floral Organs Approaching Blooming in the Flowering Cherry (Cerasus × yedoensis) Cultivar ‘Somei-Yoshino’. Front. Plant Sci. 2002, 13, 802203. [Google Scholar] [CrossRef] [PubMed]
- Kudoh, H. Molecular Phenology in Plants: In Natura Systems Biology for the Comprehensive Understanding of Seasonal Responses under Natural Environments. New Phytol. 2016, 210, 399–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buhr, E.D.; Yoo, S.-H.; Takahashi, J.S. Temperature as a Universal Resetting Cue for Mammalian Circadian Oscillators. Science 2010, 330, 379–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibo, S.; Kurosawa, G. Non-sinusoidal Waveform in Temperature-Compensated Circadian Oscillations. Biophys. J. 2019, 116, 741–751. [Google Scholar] [CrossRef]
- Kidd, P.B.; Young, M.W.; Siggia, E.D. Temperature Compensation and Temperature Censation in the Circadian Clock. Proc. Natl. Acad. Sci. USA 2015, 112, E6284–E6292. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Tang, Q.; Chen, G.; Xie, M.; Yu, S.; Zhao, J.; Chen, L. New Insights into the Circadian Rhythm and Its Related Diseases. Front. Physiol. 2019, 10, 682. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Bao, M.; Yamaguchi, M. Thermal Input/Concentration Output Systems Processed by Chemical Reactions of Helicene Oligomers. Reactions 2022, 3, 89–117. [Google Scholar] [CrossRef]
- Frank, S.A. Input-output relations in biological systems: Measurement, information and the Hill equation. Biol. Direct. 2013, 8, 31. [Google Scholar] [CrossRef] [Green Version]
- Nicolis, G.; Portnow, J. Chemical Oscillations. Chem. Rev. 1973, 73, 365–384. [Google Scholar] [CrossRef]
- Cassani, A.; Monteverde, A.; Piumetti, M. Belousov-Zhabotinsky Type Reactions: The Non-linear Behavior of Chemical Cystems. J. Math. Chem. 2021, 59, 792–826. [Google Scholar] [CrossRef]
- Gurel, O.; Gurel, D. Types of Oscillations in Chemical Reactions; Topics in Current Chemistry; Springer: Berlin/Heidelberg, Germany, 1983; p. 118. [Google Scholar]
- Gray, P. Instabilities and Oscillations in Chemical Reactions in Closed and Open Systems. Proc. R. Soc. Lond. A 1988, 415, 1–34. [Google Scholar]
- Available online: https://dictionary.cambridge.org/dictionary/english/waveform (accessed on 4 December 2022).
- Yu, K.; Yang, J.; Zuo, Y.Y. Droplet Oscillation as an Arbitrary Waveform Generator. Langmuir 2018, 34, 7042–7047. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.britannica.com/science/phase-mechanics (accessed on 4 December 2022).
- Available online: https://www.merriam-webster.com/dictionary/periodic (accessed on 23 October 2022).
- Arisawa, M.; Iwamoto, R.; Yamaguchi, M. Unstable and Stable Thermal Hysteresis under Thermal Triangle Waves. Chem. Select 2021, 6, 4461–4465. [Google Scholar] [CrossRef]
- Fontanela, F.; Grolet, A.; Salles, L.; Hoffmann, N. Computation of Quasi-periodic Localised Vibrations in Nonlinear Cyclic and Symmetric Structures Using Harmonic Balance Methods. J. Sound Vibrat. 2019, 438, 54–65. [Google Scholar] [CrossRef] [Green Version]
- Martin, N.; Mailhes, C. About Periodicity and Signal to Noise Ratio—The Strength of the Autocorrelation Function. CM 2010—MFPT 2010—7th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies, 2010, Stratford-upon-Avon, United Kingdom. pp.n.c. ffhal-00449085. Available online: https://hal.archives-ouvertes.fr/hal-00449085/document (accessed on 4 December 2022).
- Atkins, P.; de Paula, J. Physical Chemistry, 10th ed.; Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Gill, P.; Moghadam, T.T.; Ranjbar, B. Differential Scanning Calorimetry Techniques: Applications in Biology and Nanoscience. J. Biomol. Tech. 2010, 21, 167–193. [Google Scholar] [PubMed]
- Flynn, J.H.; Wall, L.A. General Treatment of the Thermogravimetry of Polymers. J. Res. Natl. Bur. Stand. A. Phys. Chem. 1966, 70A, 487–523. [Google Scholar] [CrossRef] [PubMed]
- Woods, B.P.; Hoye, T.R. Differential Scanning Calorimetry (DSC) as a Tool for Probing the Reactivity of Polyynes Relevant to Hexadehydro-Diels−Alder (HDDA) Cascades. Org. Lett. 2014, 16, 6370–6373. [Google Scholar] [CrossRef] [Green Version]
- Vyazovkin, S.; Wight, C.A. Isothermal and Nonisothermal Reaction Kinetics in Solids: In Search of Ways toward Consensus. J. Phys. Chem. A 1997, 101, 8279–8284. [Google Scholar] [CrossRef]
- Lyon, R.E. An Integral Method of Nonisothermal Kinetic Analysis. Thermochim. Acta 1997, 297, 117–124. [Google Scholar] [CrossRef]
- Yamaguchi, M. Thermal Hysteresis Involving Reversible Self-Catalytic Reactions. Acc. Chem. Res. 2021, 54, 2603–2613. [Google Scholar] [CrossRef] [PubMed]
- Roduner, E.; Radhakrishnan, S.G. In Command of Non-equilibrium. Chem. Soc. Rev. 2016, 45, 2768–2784. [Google Scholar] [CrossRef] [PubMed]
- Sawato, T.; Yamaguchi, M. Synthetic Chemical Systems Involving Self-Catalytic Reactions of Helicene Oligomer Foldamers. ChemPlusChem 2020, 85, 2017–2038. [Google Scholar] [CrossRef] [PubMed]
- Shigeno, M.; Kushida, Y.; Yamaguchi, M. Molecular Switching Involving Metastable States: Molecular Thermal Hysteresis and Sensing of Environmental Changes by Chiral Helicene Oligomeric Foldamers. Chem. Commun. 2016, 52, 4955–4970. [Google Scholar] [CrossRef] [PubMed]
- Shigeno, M.; Kushida, Y.; Yamaguchi, M. Energy Aspects of Thermal Molecular Switching: Molecular Thermal Hysteresis of Helicene Oligomers. Chem. Phys. Chem. 2015, 16, 2076–2083. [Google Scholar] [CrossRef]
- Sawato, T.; Saito, N.; Yamaguchi, M. Chemical Systems Involving Two Competitive Self-catalytic Reactions. ACS Omega 2019, 4, 5879–5899. [Google Scholar] [CrossRef] [Green Version]
- Shigeno, M.; Sato, M.; Kushida, Y.; Yamaguchi, M. Aminomethylenehelicene Oligomers Possessing Flexible Two-Atom Linker Form Stimuli-responding Double-helix in Solution. Asian J. Org. Chem. 2014, 3, 797–804. [Google Scholar] [CrossRef]
- Mergny, J.-L.; Lacroix, L. Analysis of Thermal Melting Curves. Oligonucleotides 2003, 13, 515–537. [Google Scholar] [CrossRef]
- Hennecker, C.D.; Lachance-Brais, C.; Sleiman, H.; Mittermaier, A. Using Transient Equilibria (TREQ) to Measure the Thermodynamics of Slowly Assembling Supramolecular Systems. Sci. Adv. 2022, 8, eabm8455. [Google Scholar] [CrossRef]
- Miyagawa, M.; Yagi, A.; Shigeno, M.; Yamaguchi, M. Equilibrium Crossing Exhibited by an Ethynylhelicene (M)-Nonamer during Random-coil-to-double-helix Thermal Transition in Solution. Chem. Commun. 2014, 50, 14447–14450. [Google Scholar] [CrossRef]
- Sotomayor, F.J.; Cychosz, K.A.; Thommes, M. Characterization of Micro/Mesoporous Materials by Physisorption: Concepts and Case Studies. Acc. Mater. Surf. Res. 2018, 3, 34–50. [Google Scholar]
- Lapshin, R.V. An Improved Parametric Model for Hysteresis Loop Approximation. Rev. Sci. Instrum. 2020, 91, 065106. [Google Scholar] [CrossRef] [PubMed]
- Alberty, R.A. Principle of Detailed Balance in Kinetics. J. Chem. Educ. 2004, 81, 1206–1209. [Google Scholar] [CrossRef]
- Available online: https://www.britannica.com/science/resonance-vibration (accessed on 23 October 2022).
- Available online: https://www.merriam-webster.com/dictionary/resonance (accessed on 4 December 2022).
- Robinett III, R.D.; Wilson, D.G. What is a limit cycle? Int. J. Control 2008, 81, 1886–1900. [Google Scholar] [CrossRef]
- Sawato, T.; Iwamoto, R.; Yamaguchi, M. Figure-eight Thermal Hysteresis of Aminomethylenehelicene Oligomers with Terminal C16 Alkyl Groups during Hetero-double-helix Formation. Chem. Sci. 2020, 11, 3290–3300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Y.; Chen, C.-F. Helicenes: Synthesis and Applications. Chem. Rev. 2012, 112, 1463–1535. [Google Scholar] [CrossRef]
- Gingras, M. One Hundred Years of Helicene Chemistry. Part 1: Non-stereoselective Syntheses of Carbohelicenes. Chem. Soc. Rev. 2013, 42, 968–1006. [Google Scholar] [CrossRef]
- Gingras, M.; Félix, G.; Peresutti, R. One Hundred Years of Helicene Chemistry. Part 2: Stereoselective Syntheses and Chiral Separations of Carbohelicenes. Chem. Soc. Rev. 2013, 42, 1007–1050. [Google Scholar] [CrossRef]
- Gingras, M. One Hundred Years of Helicene Chemistry. Part 3: Applications and Properties of Carbohelicenes. Chem. Soc. Rev. 2013, 42, 1051–1095. [Google Scholar] [CrossRef]
- Crassous, J.; Stara, I.; Stary, I. (Eds.) Helicenes: Synthesis, Properties, and Applications; Wiley-VCH: Weinheim, Germany, 2022. [Google Scholar]
- Zhao, L.; Kaiser, R.I.; Xu, B.; Ablikim, U.; Lu, W.; Ahmed, M.; Evseev, M.M.; Bashkirov, E.K.; Azyazov, V.N.; Zagidullin, M.V.; et al. Gas Phase Synthesis of [4]-Helicene. Nat. Commun. 2019, 10, 1510. [Google Scholar] [CrossRef] [Green Version]
- Matxain, J.M.; Ugalde, J.M.; Mujica, V.; Allec, S.I.; Wong, B.M.; Casanova, D. Chirality Induced Spin Selectivity of Photoexcited Electrons in Carbon-Sulfur [n]Helicenes. ChemPhotoChem 2019, 3, 770–777. [Google Scholar] [CrossRef]
- Shigeno, M.; Kushida, Y.; Yamaguchi, M. Molecular Thermal Hysteresis in Helix-Dimer Formation of Sulfonamidohelicene Oligomers in Solution. Chem. Eur. J. 2013, 19, 10226–10234. [Google Scholar] [CrossRef] [PubMed]
- Kushida, Y.; Shigeno, M.; Yamaguchi, M. Concentration Threshold and Amplification Exhibited by a Helicene Oligomer during Helix-Dimer Formation: A Proposal on How a Cell Senses Concentration Changes of a Chemical. Chem. Eur. J. 2015, 21, 13788–13792. [Google Scholar] [CrossRef] [PubMed]
- Shigeno, M.; Kushida, Y.; Kobayashi, Y.; Yamaguchi, M. Molecular Function of Counting the Numbers 1 and 2 Exhibited by a Sulfoneamidohelicene Tetramer. Chem. Eur. J. 2014, 20, 12759–12762. [Google Scholar] [CrossRef] [PubMed]
- Shigeno, M.; Kushida, Y.; Yamaguchi, M. Heating/Cooling Stimulus Induces Three-state Molecular Switching of Pseudoenantiomeric Aminomethylenehelicene Oligomers: Reversible Nonequilibrium Thermodynamic Processes. J. Am. Chem. Soc. 2014, 136, 7972–7980. [Google Scholar] [CrossRef] [PubMed]
- Kushida, Y.; Saito, N.; Shigeno, M.; Yamaguchi, M. Multiple Competing Pathways for Chemical Reaction: Drastic Reaction Shortcut for the Self-catalytic Double-helix Formation of Helicene Oligomers. Chem. Sci. 2017, 8, 1414–1421. [Google Scholar] [CrossRef] [Green Version]
- Sawato, T.; Shinozaki, Y.; Saito, N.; Yamaguchi, M. Chemical CD Oscillation and Chemical Resonance Phenomena in a Competitive Self-catalytic Reaction System: A Single Temperature Oscillation Induces CD Oscillations Twice. Chem. Sci. 2019, 10, 1735–1740. [Google Scholar] [CrossRef] [Green Version]
- Sawato, T.; Yuzawa, R.; Kobayashi, H.; Saito, N.; Yamaguchi, M. Formation and Dissociation of Synthetic Hetero-double-helix Complex in Aqueous Solutions: Significant Effect of Water Content on Dynamics of Structural Change. RSC Adv. 2019, 9, 29456–29462. [Google Scholar] [CrossRef]
Stable/Unstable Concentration Oscillations | Waveform | Hysteresis | Symbol |
---|---|---|---|
Stable concentration oscillations | |||
under equilibrium | |||
sinusoidal | ––––– | SE-1 | |
triangle | ––––– | SE-2 | |
with delay hysteresis | |||
normal | normal | SD-1 | |
sinusoidal | oval | SD-2 | |
with amplify hysteresis involving equilibrium overlapping | |||
sinusoidal | semi-normal | SAO-1 | |
retarded | inflation | SAO-2 | |
retarded | inflation | SAO-3 | |
(equilibrium crossing) | |||
frequency-doubled | figure-eight | SAO-4 | |
with amplify hysteresis involving equilibrium intersecting | |||
sinusoidal | semi-normal | SAI-1 | |
retarded | inflation | SAI-2 | |
frequency-doubled | figure-eight | SAI-3 | |
sinusoidal | long oval | SAI-4 | |
(equilibrium touching) | |||
with amplify hysteresis involving equilibrium noncontact | |||
retarded | inflation | SAN-1 | |
sinusoidal | oval | SAN-2 | |
Unstable concentration oscillations | |||
with amplify hysteresis involving equilibrium noncontact | |||
wrinkled | zigzag | UAN-1 | |
gradient sinusoidal | loop | UAN-2 | |
gradient retarded | swing | UAN-3 | |
with amplify hysteresis involving equilibrium intersecting (equilibrium sliding) | |||
wrinkled | zigzag | UAI-1 | |
gradient frequency-doubled | twisted loop | UAI-2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Bao, M.; Arisawa, M.; Yamaguchi, M. Stable and Unstable Concentration Oscillations Induced by Temperature Oscillations on Reversible Nonequilibrium Chemical Reactions of Helicene Oligomers. Int. J. Mol. Sci. 2023, 24, 693. https://doi.org/10.3390/ijms24010693
Zhang S, Bao M, Arisawa M, Yamaguchi M. Stable and Unstable Concentration Oscillations Induced by Temperature Oscillations on Reversible Nonequilibrium Chemical Reactions of Helicene Oligomers. International Journal of Molecular Sciences. 2023; 24(1):693. https://doi.org/10.3390/ijms24010693
Chicago/Turabian StyleZhang, Sheng, Ming Bao, Mieko Arisawa, and Masahiko Yamaguchi. 2023. "Stable and Unstable Concentration Oscillations Induced by Temperature Oscillations on Reversible Nonequilibrium Chemical Reactions of Helicene Oligomers" International Journal of Molecular Sciences 24, no. 1: 693. https://doi.org/10.3390/ijms24010693
APA StyleZhang, S., Bao, M., Arisawa, M., & Yamaguchi, M. (2023). Stable and Unstable Concentration Oscillations Induced by Temperature Oscillations on Reversible Nonequilibrium Chemical Reactions of Helicene Oligomers. International Journal of Molecular Sciences, 24(1), 693. https://doi.org/10.3390/ijms24010693