Synaptoproteomic Analysis of the Prefrontal Cortex Reveals Spatio-Temporal Changes in SYNGAP1 Following Cannabinoid Exposure in Rat Adolescence
Abstract
:1. Introduction
2. Results
2.1. Synaptoproteomics Reveal GABAergic Changes in the PFC following WIN Exposure in Adolescence
2.2. Exposure to WIN in Adolescence Results in Spatio-Temporal Changes in SYNGAP1
2.3. No Changes in Synaptic Levels of SYNGAP1 When WIN Is Administered in Adulthood
2.4. Exposure to THC in Adolescence affects SYNGAP1 Levels at Specific Brain Regions
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Synaptosomal and Cytosolic Extractions
4.3. Synaptoproteomics
4.4. Western Blotting
4.5. Statistics
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gobbi, G.; Atkin, T.; Zytynski, T.; Wang, S.; Askari, S.; Boruff, J.; Ware, M.; Marmorstein, N.; Cipriani, A.; Dendukuri, N.; et al. Association of Cannabis Use in Adolescence and Risk of Depression, Anxiety, and Suicidality in Young Adulthood: A Systematic Review and Meta-analysis. JAMA Psychiatry 2019, 76, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Fergusson, D.M.; Boden, J.M. Cannabis use and later life outcomes. Addiction 2008, 103, 969–976, discussion 977–978. [Google Scholar] [CrossRef] [PubMed]
- Frolli, A.; Ricci, M.C.; Cavallaro, A.; Lombardi, A.; Bosco, A.; Di Carmine, F.; Operto, F.F.; Franzese, L. Cognitive Development and Cannabis Use in Adolescents. Behav. Sci. 2021, 11, 37. [Google Scholar] [CrossRef] [PubMed]
- Malone, D.T.; Hill, M.N.; Rubino, T. Adolescent cannabis use and psychosis: Epidemiology and neurodevelopmental models. Br. J. Pharmacol. 2010, 160, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Albaugh, M.D.; Ottino-Gonzalez, J.; Sidwell, A.; Lepage, C.; Juliano, A.; Owens, M.M.; Chaarani, B.; Spechler, P.; Fontaine, N.; Rioux, P.; et al. Association of Cannabis Use During Adolescence With Neurodevelopment. JAMA Psychiatry 2021, 78, 1031–1040. [Google Scholar] [CrossRef] [PubMed]
- Meyer, H.C.; Lee, F.S.; Gee, D.G. The Role of the Endocannabinoid System and Genetic Variation in Adolescent Brain Development. Neuropsychopharmacol. Off. Publ. Am. Coll. Neuropsychopharmacol. 2018, 43, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Luchicchi, A.; Pistis, M. Anandamide and 2-arachidonoylglycerol: Pharmacological properties, functional features, and emerging specificities of the two major endocannabinoids. Mol. Neurobiol. 2012, 46, 374–392. [Google Scholar] [CrossRef]
- Bornscheuer, L.; Lundin, A.; Forsell, Y.; Lavebratt, C.; Melas, P.A. The cannabinoid receptor-1 gene interacts with stressful life events to increase the risk for problematic alcohol use. Sci. Rep. 2022, 12, 4963. [Google Scholar] [CrossRef]
- Vinod, K.Y.; Hungund, B.L. Role of the endocannabinoid system in depression and suicide. Trends Pharmacol. Sci. 2006, 27, 539–545. [Google Scholar] [CrossRef]
- Marco, E.M.; Garcia-Gutierrez, M.S.; Bermudez-Silva, F.J.; Moreira, F.A.; Guimaraes, F.; Manzanares, J.; Viveros, M.P. Endocannabinoid system and psychiatry: In search of a neurobiological basis for detrimental and potential therapeutic effects. Front. Behav. Neurosci. 2011, 5, 63. [Google Scholar] [CrossRef]
- Viveros, M.P.; Llorente, R.; Suarez, J.; Llorente-Berzal, A.; Lopez-Gallardo, M.; de Fonseca, F.R. The endocannabinoid system in critical neurodevelopmental periods: Sex differences and neuropsychiatric implications. J. Psychopharmacol. 2012, 26, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Tortoriello, G.; Morris, C.V.; Alpar, A.; Fuzik, J.; Shirran, S.L.; Calvigioni, D.; Keimpema, E.; Botting, C.H.; Reinecke, K.; Herdegen, T.; et al. Miswiring the brain: Delta9-tetrahydrocannabinol disrupts cortical development by inducing an SCG10/stathmin-2 degradation pathway. EMBO J. 2014, 33, 668–685. [Google Scholar] [CrossRef]
- Rubino, T.; Parolaro, D. The Impact of Exposure to Cannabinoids in Adolescence: Insights From Animal Models. Biol. Psychiatry 2016, 79, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Scherma, M.; Qvist, J.S.; Asok, A.; Huang, S.C.; Masia, P.; Deidda, M.; Wei, Y.B.; Soni, R.K.; Fratta, W.; Fadda, P.; et al. Cannabinoid exposure in rat adolescence reprograms the initial behavioral, molecular, and epigenetic response to cocaine. Proc. Natl. Acad. Sci. USA 2020, 117, 9991–10002. [Google Scholar] [CrossRef] [Green Version]
- Renard, J.; Rushlow, W.J.; Laviolette, S.R. Effects of Adolescent THC Exposure on the Prefrontal GABAergic System: Implications for Schizophrenia-Related Psychopathology. Front. Psychiatry 2018, 9, 281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prini, P.; Rusconi, F.; Zamberletti, E.; Gabaglio, M.; Penna, F.; Fasano, M.; Battaglioli, E.; Parolaro, D.; Rubino, T. Adolescent THC exposure in female rats leads to cognitive deficits through a mechanism involving chromatin modifications in the prefrontal cortex. J. Psychiatry Neurosci. 2018, 43, 87–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cass, D.K.; Flores-Barrera, E.; Thomases, D.R.; Vital, W.F.; Caballero, A.; Tseng, K.Y. CB1 cannabinoid receptor stimulation during adolescence impairs the maturation of GABA function in the adult rat prefrontal cortex. Mol. Psychiatry 2014, 19, 536–543. [Google Scholar] [CrossRef] [Green Version]
- Renard, J.; Szkudlarek, H.J.; Kramar, C.P.; Jobson, C.E.L.; Moura, K.; Rushlow, W.J.; Laviolette, S.R. Adolescent THC Exposure Causes Enduring Prefrontal Cortical Disruption of GABAergic Inhibition and Dysregulation of Sub-Cortical Dopamine Function. Sci. Rep. 2017, 7, 11420. [Google Scholar] [CrossRef] [Green Version]
- Prescot, A.P.; Renshaw, P.F.; Yurgelun-Todd, D.A. γ-Amino butyric acid and glutamate abnormalities in adolescent chronic marijuana smokers. Drug Alcohol Depend. 2013, 129, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Prescot, A.P.; Locatelli, A.E.; Renshaw, P.F.; Yurgelun-Todd, D.A. Neurochemical alterations in adolescent chronic marijuana smokers: A proton MRS study. Neuroimage 2011, 57, 69–75. [Google Scholar] [CrossRef]
- Gamache, T.R.; Araki, Y.; Huganir, R.L. Twenty Years of SynGAP Research: From Synapses to Cognition. J. Neurosci. 2020, 40, 1596–1605. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.; Clemenza, K.; Rynn, M.; Lieberman, J. Evidence for the Risks and Consequences of Adolescent Cannabis Exposure. J. Am. Acad. Child Adolesc. Psychiatry 2017, 56, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M. Puberty as a highly vulnerable developmental period for the consequences of cannabis exposure. Addict. Biol. 2008, 13, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M. Adolescence as a vulnerable period to alter rodent behavior. Cell Tissue Res. 2013, 354, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Berryer, M.H.; Chattopadhyaya, B.; Xing, P.; Riebe, I.; Bosoi, C.; Sanon, N.; Antoine-Bertrand, J.; Levesque, M.; Avoli, M.; Hamdan, F.F.; et al. Decrease of SYNGAP1 in GABAergic cells impairs inhibitory synapse connectivity, synaptic inhibition and cognitive function. Nat. Commun. 2016, 7, 13340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, T.K.Y.; Abela, A.R.; Su, P.; Fletcher, P.J.; Liu, F. Prenatal disruption of D1R-SynGAP complex causes cognitive deficits in adulthood. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 105, 110122. [Google Scholar] [CrossRef] [PubMed]
- Su, P.; Lai, T.K.Y.; Lee, F.H.F.; Abela, A.R.; Fletcher, P.J.; Liu, F. Disruption of SynGAP-dopamine D1 receptor complexes alters actin and microtubule dynamics and impairs GABAergic interneuron migration. Sci. Signal. 2019, 12, eaau9122. [Google Scholar] [CrossRef]
- Araki, Y.; Hong, I.; Gamache, T.R.; Ju, S.; Collado-Torres, L.; Shin, J.H.; Huganir, R.L. SynGAP isoforms differentially regulate synaptic plasticity and dendritic development. Elife 2020, 9, e56273. [Google Scholar] [CrossRef]
- Gou, G.; Roca-Fernandez, A.; Kilinc, M.; Serrano, E.; Reig-Viader, R.; Araki, Y.; Huganir, R.L.; de Quintana-Schmidt, C.; Rumbaugh, G.; Bayes, A. SynGAP splice variants display heterogeneous spatio-temporal expression and subcellular distribution in the developing mammalian brain. J. Neurochem. 2020, 154, 618–634. [Google Scholar] [CrossRef] [Green Version]
- Mechoulam, R.; Parker, L.A. The endocannabinoid system and the brain. Annu. Rev. Psychol. 2013, 64, 21–47. [Google Scholar] [CrossRef]
- Parsons, L.H.; Hurd, Y.L. Endocannabinoid signalling in reward and addiction. Nat. Rev. Neurosci. 2015, 16, 579–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cyrus, E.; Coudray, M.S.; Kiplagat, S.; Mariano, Y.; Noel, I.; Galea, J.T.; Hadley, D.; Devieux, J.G.; Wagner, E. A review investigating the relationship between cannabis use and adolescent cognitive functioning. Curr. Opin. Psychol. 2021, 38, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Chye, Y.; Christensen, E.; Yucel, M. Cannabis Use in Adolescence: A Review of Neuroimaging Findings. J. Dual Diagn. 2020, 16, 83–105. [Google Scholar] [CrossRef]
- Jeyabalan, N.; Clement, J.P. SYNGAP1: Mind the Gap. Front. Cell. Neurosci. 2016, 10, 32. [Google Scholar] [CrossRef] [Green Version]
- Clement, J.P.; Aceti, M.; Creson, T.K.; Ozkan, E.D.; Shi, Y.; Reish, N.J.; Almonte, A.G.; Miller, B.H.; Wiltgen, B.J.; Miller, C.A.; et al. Pathogenic SYNGAP1 mutations impair cognitive development by disrupting maturation of dendritic spine synapses. Cell 2012, 151, 709–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Hamilton, P.J.; Reish, N.J.; Sweatt, J.D.; Miller, C.A.; Rumbaugh, G. Reduced expression of the NMDA receptor-interacting protein SynGAP causes behavioral abnormalities that model symptoms of Schizophrenia. Neuropsychopharmacology 2009, 34, 1659–1672. [Google Scholar] [CrossRef] [PubMed]
- Casadio, P.; Fernandes, C.; Murray, R.M.; Di Forti, M. Cannabis use in young people: The risk for schizophrenia. Neurosci. Biobehav. Rev. 2011, 35, 1779–1787. [Google Scholar] [CrossRef]
- Rumbaugh, G.; Adams, J.P.; Kim, J.H.; Huganir, R.L. SynGAP regulates synaptic strength and mitogen-activated protein kinases in cultured neurons. Proc. Natl. Acad. Sci. USA 2006, 103, 4344–4351. [Google Scholar] [CrossRef] [Green Version]
- Aceti, M.; Creson, T.K.; Vaissiere, T.; Rojas, C.; Huang, W.C.; Wang, Y.X.; Petralia, R.S.; Page, D.T.; Miller, C.A.; Rumbaugh, G. Syngap1 haploinsufficiency damages a postnatal critical period of pyramidal cell structural maturation linked to cortical circuit assembly. Biol. Psychiatry 2015, 77, 805–815. [Google Scholar] [CrossRef] [Green Version]
- Melas, P.A.; Qvist, J.S.; Deidda, M.; Upreti, C.; Wei, Y.B.; Sanna, F.; Fratta, W.; Scherma, M.; Fadda, P.; Kandel, D.B.; et al. Cannabinoid Modulation of Eukaryotic Initiation Factors (eIF2alpha and eIF2B1) and Behavioral Cross-Sensitization to Cocaine in Adolescent Rats. Cell Rep. 2018, 22, 2909–2923. [Google Scholar] [CrossRef]
- Pontieri, F.E.; Monnazzi, P.; Scontrini, A.; Buttarelli, F.R.; Patacchioli, F.R. Behavioral sensitization to heroin by cannabinoid pretreatment in the rat. Eur. J. Pharmacol. 2001, 421, R1–R3. [Google Scholar] [CrossRef] [PubMed]
- Scherma, M.; Dessi, C.; Muntoni, A.L.; Lecca, S.; Satta, V.; Luchicchi, A.; Pistis, M.; Panlilio, L.V.; Fattore, L.; Goldberg, S.R.; et al. Adolescent Delta(9)-Tetrahydrocannabinol Exposure Alters WIN55,212-2 Self-Administration in Adult Rats. Neuropsychopharmacology 2016, 41, 1416–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubino, T.; Vigano, D.; Realini, N.; Guidali, C.; Braida, D.; Capurro, V.; Castiglioni, C.; Cherubino, F.; Romualdi, P.; Candeletti, S.; et al. Chronic delta 9-tetrahydrocannabinol during adolescence provokes sex-dependent changes in the emotional profile in adult rats: Behavioral and biochemical correlates. Neuropsychopharmacology 2008, 33, 2760–2771. [Google Scholar] [CrossRef]
- Kononoff, J.; Melas, P.A.; Kallupi, M.; de Guglielmo, G.; Kimbrough, A.; Scherma, M.; Fadda, P.; Kandel, D.B.; Kandel, E.R.; George, O. Adolescent cannabinoid exposure induces irritability-like behavior and cocaine cross-sensitization without affecting the escalation of cocaine self-administration in adulthood. Sci. Rep. 2018, 8, 13893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mi, H.; Muruganujan, A.; Casagrande, J.T.; Thomas, P.D. Large-scale gene function analysis with the PANTHER classification system. Nat. Protoc. 2013, 8, 1551–1566. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qvist, J.S.; Scherma, M.; Jayaram-Lindström, N.; Fratta, W.; Kandel, D.B.; Kandel, E.R.; Fadda, P.; Melas, P.A. Synaptoproteomic Analysis of the Prefrontal Cortex Reveals Spatio-Temporal Changes in SYNGAP1 Following Cannabinoid Exposure in Rat Adolescence. Int. J. Mol. Sci. 2023, 24, 698. https://doi.org/10.3390/ijms24010698
Qvist JS, Scherma M, Jayaram-Lindström N, Fratta W, Kandel DB, Kandel ER, Fadda P, Melas PA. Synaptoproteomic Analysis of the Prefrontal Cortex Reveals Spatio-Temporal Changes in SYNGAP1 Following Cannabinoid Exposure in Rat Adolescence. International Journal of Molecular Sciences. 2023; 24(1):698. https://doi.org/10.3390/ijms24010698
Chicago/Turabian StyleQvist, Johanna S., Maria Scherma, Nitya Jayaram-Lindström, Walter Fratta, Denise B. Kandel, Eric R. Kandel, Paola Fadda, and Philippe A. Melas. 2023. "Synaptoproteomic Analysis of the Prefrontal Cortex Reveals Spatio-Temporal Changes in SYNGAP1 Following Cannabinoid Exposure in Rat Adolescence" International Journal of Molecular Sciences 24, no. 1: 698. https://doi.org/10.3390/ijms24010698
APA StyleQvist, J. S., Scherma, M., Jayaram-Lindström, N., Fratta, W., Kandel, D. B., Kandel, E. R., Fadda, P., & Melas, P. A. (2023). Synaptoproteomic Analysis of the Prefrontal Cortex Reveals Spatio-Temporal Changes in SYNGAP1 Following Cannabinoid Exposure in Rat Adolescence. International Journal of Molecular Sciences, 24(1), 698. https://doi.org/10.3390/ijms24010698