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Abstract: Gold-containing nanoparticles are proven to be an effective radiosensitizer in the radio-
therapy of tumors. Reliable imaging of nanoparticles in a tumor and surrounding normal tissues is
crucial both for diagnostics and for nanoparticle application as radiosensitizers. The Fe3O4 core was
introduced into gold nanoparticles to form a core/shell structure suitable for MRI imaging. The aim
of this study was to assess the in vivo bimodal CT and MRI enhancement ability of novel core/shell
Fe3O4@Au theranostic nanoparticles. Core/shell Fe3O4@Au nanoparticles were synthesized and
coated with PEG and glucose. C57Bl/6 mice bearing Ca755 mammary adenocarcinoma tumors re-
ceived intravenous injections of the nanoparticles. CT and MRI were performed at several timepoints
between 5 and 102 min, and on day 17 post-injection. Core/shell Fe3O4@Au nanoparticles provided
significant enhancement of the tumor and tumor blood vessels. Nanoparticles also accumulated in the
liver and spleen and were retained in these organs for 17 days. Mice did not show any signs of toxicity
over the study duration. These results indicate that theranostic bimodal Fe3O4@Au nanoparticles are
non-toxic and serve as effective contrast agents both for CT and MRI diagnostics. These nanoparticles
have potential for future biomedical applications in cancer diagnostics and beyond.
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1. Introduction

Nanotechnology currently plays an important role in medical research. Unique physi-
cal and chemical properties of nanoparticles provide the opportunity to create multifunc-
tional nanoplatforms that integrate therapeutic and diagnostic characteristics. Oncology
is the most extensive field for the application of theranostic nanoparticles, since they can
be used simultaneously in the diagnostics and therapy of cancer without alterating their
pharmacologic nature.

Metal and metal oxide nanoparticles are being investigated as radiosensitizers for
radiation therapy and contrast agents for diagnostic imaging. NBTXR3 and AGuIX are
metal-containing nanoparticles undergoing clinical trials. NBTXR3 is a radioenhancer com-
posed of hafnium oxide. NBTXR3 nanoparticles have demonstrated safety and therapeutic
efficacy in combination with radiotherapy for locally advanced soft-tissue sarcoma [1]. Af-
ter intratumoral injection, the zone of nanoparticles’ retention was clearly visible in CT [2].

AGuIX are sub-5 nm nanoparticles made of a polysiloxane matrix and gadolinium
chelates. AGuIX was verified as a theranostic agent for radiotherapy of brain metastases.
The biodistribution of AGuIX and its uptake value in the metastases were monitored by
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MRI [3,4]. Besides clinical trials, many preclinical in vivo studies of theranostic metal
nanoparticles proving their efficacy are being performed [5–7].

Among metal nanoparticles, gold nanoparticles are considered to be the most effective
dose-enhancing agent in radiotherapy due to the high atomic number (Z = 79). A num-
ber of studies showed that gold nanoparticles administration in doses 1250–4000 mg/kg
into tumor bearing animals prior X-ray irradiation provides significant tumor suppress-
ing effect [8–10]. Gold nanoparticles can be also utilized as contrast medium in CT
imaging [11–13]. However, high concentration of gold is necessary for precise detection
of nanoparticles in CT, that hinders acquisition of biodistribution data in vivo. The MRI
modality has higher sensitivity than CT, and also provides more valuable diagnostic data.
Combining a dose-enhancing gold component with an MRI contrast component within
one nanostructure will form an excellent theranostic material both for radiosensitizing and
diagnostic imaging. The most commonly used MRI-enhancing element is gadolinium [14],
but iron-based contrast agents were also used in clinical practice [15], and additionally,
Mn-based contrast agents were explored in preclinical studies [16].

Though both CT and MRI modalities allow imaging of the internal anatomical struc-
tures of a studied object, the obtained diagnostic information is quite different. A CT
image is the attenuation map of different structures in the studied object; thus, organs that
attenuate X-rays very differently (e.g., bones and soft tissues) can be clearly distinguished
in CT images, and vice versa—if two adjacent anatomical structures have similar attenua-
tion properties (e.g., a tumor and muscles), it is difficult to differentiate them from each
other without additional tools. An MRI image is the map of protons’ nuclear magnetic
relaxation rate, whose value depends on the density of the protons (i.e., hydrogen) in
a particular region and on their chemical environment. This allows MRI to distinguish
different types of soft tissue, which is a valuable property for diagnostics. However, if the
imaged region contains little hydrogen, it cannot be visualized properly. For MRI, these
“stealth” matter are mainly air and bones [17,18]. CT and MRI provide rather opposing
imaging abilities and well complement each other. Using the diagnostic capabilities of both
modalities is especially important for oncology, in which tumor growth provides a new
and unpredictable anatomical structure (a tumor node) and can cause changes in other
anatomical structures, making them difficult to recognize [19–21].

We have recently developed novel nanoparticles comprised of gold and iron oxide
(Fe3O4@Au). Gold was chosen as an already proven radioenhancer and CT contrast agent,
while iron oxide was chosen as an MRI contrast agent [22]. Fe3O4@Au nanoparticles
can serve as a radiosensitizer in experimental oncology with a prospective translation
into clinical oncology. We showed that these nanoparticles in solution served as efficient
contrast materials for CT and MRI, even at low concentrations, which are more favorable
for clinical use.

Going beyond this early study, here we investigated the in vivo bimodal contrast
enhancement ability of the developed nanoparticles, assessed their safety and dosage, and
evaluated possible scientific and clinical applications. These studies will pave the way for
further investigations of therapeutic efficacy in combination with radiotherapy.

2. Results

Fe3O4@Au nanoparticles were produced in two stages: first, iron oxide nanoparticles
were synthesized, and then a gold shell was formed upon them. For the synthesis of core-
shell Fe3O4@Au nanoparticles (Figure 1A), iron oxide nanoparticles were first prepared
using a mixture of ferric chloride hexahydrate and ferrous chloride tetrahydrate and
dextran coating to prevent aggregation (as described in Methods); transmission electron
microscopy (TEM) indicated uniformly distributed spherical Fe3O4 nanoparticles with
a mean diameter of 8 ± 2 nm. To form a gold shell, the dextran coating was removed
and replaced by a citrate layer, and the iron oxide nanoparticle solution was then added
to an Au solution (50% w/v HAuCl4), yielding core-shell Fe3O4@Au nanoparticles. Next,
a SH-PEG-COOH linker was added, and the core-shell nanoparticles were then coated
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with glucose (Methods), as we have previously shown that glucose coating can enhance
tumor uptake [23–25].
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Figure 1. Nanoparticle characterization. (A) Scheme of glucose-coated Fe2O4@Au nanoparticles. Iron
oxide nanoparticles were coated with a gold shell and then with a PEG1000 linker for subsequent
glucose conjugation; (B) EDAX spectrum profile showed absorption peaks for Au and Fe in Fe2O4@Au
particles (left), and quantification of the EDAX results is shown (table, right).

UV-vis spectra showed a surface plasmon resonance peak at 522 nm. EDAX analysis
of the nanoparticle composition validated the presence of both Fe and Au in the final
particle, showing average weight percentages of 4.07% for Fe and 95.93% for Au (Figure 1B).
TEM imaging of the Fe3O4@Au nanoparticles showed that uniform spherical nanoparticles,
sized 27 nm, were obtained (Figure 2A). The mean hydrodynamic diameter, according to
DLS, was 28.5 nm, SD = 2.0 nm (Figure 2B).
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Figure 2. Nanoparticle characterization. (A) TEM image of the final nanoparticles. Scale bar = 20 nm;
(B) the hydrodynamic diameter Fe3O4@Au NPs distribution and its approximation by the
Gauss function.

To study the in vivo contrast-enhancing efficacy of the bimodal nanoparticles, CT and
MRI imaging of Ca755 tumor-bearing mice were performed before and after intravenous
Fe3O4@Au injection (at several timepoints from 5 min up to 17 days post injection).

The nanoparticles caused significant enhancement of blood vessels, both on CT and
MRI images. Even medium-sized blood vessels were clearly distinguished (Figure S1).
Heart chambers were clearly visualized with CT (Figure S2). The cardiovascular system
remained enhanced from 5 min to 90 min after administration. Significant lung edema was
observed in the CT images at 22 min after injection: the radiodensity of pulmonary tissue
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increased and was similar to that of soft tissue. The edema gradually decreased by 90 min
post-injection and was completely gone by day 17 (Figure S3).

Liver tissues became almost homogenously dark in MRI images even at 5 min post
injection (Figure 3B), which did not allow us to distinguish its vessels. In contrast, at 22 min
post injection, liver blood vessels were clearly visible in CT images, with the liver tissue
itself slightly enhanced (Figure 3E). Liver parenchyma radiodensity increased gradually,
reaching its maximum by day 17 post-injection, while the contrast agent had already cleared
from its blood vessels (Figure 3F).
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Figure 3. Coronal MRI and CT images of the mouse abdominal area. (A) Native T2 MRI; (B) T2 MRI,
5 min post injection of Fe3O4@Au; (C) T2 MRI, 17 days post injection of Fe3O4@Au; (D) Native CT
image; (E) CT image, 22 min post injection of Fe3O4@Au; (F) CT image, 17 days post injection of
Fe3O4@Au. Red arrows indicate the spleen, blue arrows indicate margin of the liver.

The spleen also accumulated nanoparticles avidly and was highly hyperdense in CT
images and hypointense in MRI, from 5 min to 17 days post-injection (Figure 3). At day
17, gold was observed only in the spleen and the liver, and traces of gold were detected in
the kidneys’ parenchyma. Other organs, including the cardiovascular system, returned to
baseline completely at this timepoint.

The tumor was clearly seen in CT and MRI. It was nearly ellipse-shaped and ap-
proximately 7 × 7 × 5 mm in size. Native images of the tumor were slightly hyperin-
tense in T2-weighted, and nearly isointense in T2*-weighted MRI, compared to adjacent
muscle (Figure 4A,B). Its structure was nearly homogenous, with a small subcapsular T2-
hypointense portion (Figure 4A). In CT, the tumor was isodense to muscle and completely
homogenous (Figure 4C).

Starting from 16 min after Fe3O4@Au administration, diffuse regions of moderate
enhancement appeared in the CT and MRI images of the tumor (Figure 5). They were
T2*-hypointense in MRI scans but could be more precisely visualized in CT images as a
triangular-shaped hyperdense zone.

Tumor blood vessels were enhanced and clearly distinguished in both imaging modal-
ities (Figure 6). The enhancement was seen not only in large nutrient vessels but also in
small convoluted vessels inside the tumor. CT allowed more detailed imaging of tumor
vasculature using the Fe3O4@Au bimodal nanoparticles.

Enhanced lines in the inner periphery, related to the tumor capsule, vaguely de-
marcated the tumor from the adjacent muscles (Figure 7). The subcutaneous part of the
tumor capsule avidly accumulated contrast agent, and became strongly hyperdense in
CT (Figure 7B).
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Figure 7. Coronal images of Ca755 mammary carcinoma. (A) T2*MRI 16 min post injection of
Fe3O4@Au; (B) CT image 22 min post injection of Fe3O4@Au. Enhanced lines in the inner periphery
(related to the tumor capsule) distinguish the tumor from adjacent muscle.

Starting from 50 min after injection, the contrast-enhanced region enlarged and oc-
cupied most of the tumor volume (Figure 8). This indicates that more nanoparticles ex-
travasated and accumulated in the tumor tissue. Enhanced areas became more hypointense
in T2*-weighted MRI images and more hyperdense in CT images (Figure 8).
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Figure 8. Transversal images of Ca755 mammary carcinoma. (A) T2 MRI 50 min post injection of
Fe3O4@Au; (B) T2* MRI 50 min post injection of Fe3O4@Au; (C) CT image 65 min post injection of
Fe3O4@Au. Arrows mark the enhanced area of the tumor.

On the 17th day post injection, the tumor volume significantly increased and contained
necrotic areas, which were hypointense in T2- and T2*-weighted MRI and could hardly
be distinguished from contrast-enhanced areas (Figure 9A,B). In CT images, the tumor’s
structure remained homogenous, and areas of nanoparticle accumulation were easier to
recognize (Figure 9B,C). Nanoparticles were located mostly in connective tissue septa
and tumor capsules. Most likely, such a specific pattern formed due to the absorption of
the nanoparticles by tumor-associated macrophages, with the subsequent migration of
these cells to the capsule and accumulation within. Contrast-enhanced areas in the tumor
became enlarged, but only minimally hyperdense and vague, without precise margins.
The decrease in tumor tissue’s radiodensity was possibly related to enlargement of the
tumor volume and, thus, to a decrease in nanoparticle concentration. Blood vessels did not
contain any contrast agent at 17 days, all over the mouse body.
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3. Discussion

We have evaluated core/shell Fe3O4@Au as a contrast material for CT and MRI modal-
ities in vivo. Although investigation of radiosensitizing properties was not performed
in this study, we believe that nanoparticles can provide sufficient therapeutic efficacy in
combination with radiotherapy due to their high gold content and suitable particle size.
The surface of nanoparticles was formed by a thick gold shell, so from a physical and
physiological point of view, they are similar to gold nanoparticles, whose therapeutic
efficacy has been proven by numerous studies [26–28].

Biodistribution data is essential for the application of theranostic nanoparticles in
radiotherapy. Precise definition of nanoparticle uptake regions and their assignment to
either tumor node or surrounding normal tissue is necessary for correct treatment planning.
Since theranostic nanoparticles can serve as contrast enhancement agents, diagnostic
imaging modalities can be used to acquire a biodistribution map in vivo.

The limitations of CT in imaging different soft tissues become an advantage in the case
of nanoparticle mapping. The inherent uniformity of soft tissue representation in CT images
does not interfere with the contrast agent pattern perception and allows better imaging of
the contrast agent distribution. In contrast, for MRI, various specific physiological and mor-
phological peculiarities, as well as imaging artifacts, can interfere with and even hide the
contrast agent distribution, both positive and negative [29,30]. For example, necrosis and
hemorrhage areas can mask negative contrast agent patterns, and soft tissue edema as well
as marginal magnetic field artifacts can mask positive contrast agent distribution [31,32].

The correct assignment of a theranostic drug or contrast agent to a corresponding
anatomical structure is sophisticated for imaging tumors, whose shape and borders are
often difficult to identify with CT imaging. Using the bimodal Fe3O4@Au, enhanced areas
around the tumor can be clearly seen; however, it was difficult to identify whether this
area was part of the tumor volume or the surrounding normal tissues. Corresponding T2-
and T2*-weighted images revealed that the enhanced areas belong to the tumor node, and
significant enhancement was seen both at the tumor’s border and in some areas within the
tumor (Figure 8).
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Sun et al. applied 75 nm micelles, simultaneously loaded with 1.9 nm Au and 15 nm
Fe3O4 nanoparticles, for contrast enhancement of orthotopic and subcutaneous U251
gliomas in CT and MRI modalities. The tumor was sufficiently enhanced in T2 MRI, but CT
images demonstrated no contrast enhancement, probably due to the low amount of gold
accumulated in the tumor tissue. The radiosensitizing potential of developed micelles was
demonstrated in vitro [33].

Goubault et al. developed radiosensitizing Fe-Au hollow nanocapsules (~100 nm)
with a hybrid shell made of crosslinked polymers and nanoparticles. A survival in vivo
study was performed to evaluate the therapeutic effect of radiotherapy in combination with
Fe-Au nanocapsules. Irradiation was applied after intratumoral injection of nanocapsules
to mice with orthotopic GL261 gliomas. The group of mice treated with Fe-Au nanocap-
sules combined with irradiation exhibited longer median survival (28 days), compared
with the irradiated-only group (24 days). Tumor growth was also monitored in MRI.
Nanocapsules were clearly visualized in an MRI, and their long retention in the tumor
tissue was confirmed [34].

However, using micelles for radiosensitization could be questionable because of
their possible instability in vivo. Particularly, cross-linking polymers can be disrupted by
enzymes. Core/shell nanoparticles seem to be a better option.

Kang et al. synthesized nanoflower-like core/shell Fe3O4/Au nanoparticles and used
them for bimodal MRI and photoacoustic imaging. They observed significant enhancement
of the tumor in T2-weighted MRI after intravenous injection of mice with LNCaP xenograft,
especially with magnetic targeting. Computed tomography was not performed in this
study. Nanoparticles also provided a sufficient signal in photoacoustic imaging, but this
method is not widely used in clinical practice [35].

Core-shell Fe@Au nanostructures were investigated as a theranostic agent for pho-
tothermal therapy. Caro et al. studied the biodistribution of core-shell Fe@Au nanoparticles
coated with polyvinylpyrrolidone in mice with subcutaneous C6 tumors. After intravenous
injection, nanoparticles had a blood circulation time below 24 h, and could not effectively
accumulate in the tumor. So photothermal therapy was performed after intratumoral injec-
tion [36]. Similar results were obtained by Li et al.: only intratumoral injection provided
a sufficient concentration of Fe3O4@Au core/shell nanostars in the subcutaneous HeLa
xenograft [37]. Despite the promising results of photothermal therapy in vivo, the lack of
tumor targeting after intravenous injection may be an obstacle to clinical translation.

Griaznova et al. reported successful tumor targeting of laser-ablated Fe-Au core-
satellite nanoparticles. Nanoparticles were injected intravenously into mice with EMT6/P
carcinoma. An ex vivo biodistribution study revealed that the concentration of nanopar-
ticles in the tumor reached 17 ± 5% ID/g. In vivo, a significant decrease in signal was
detected in T2-weighted MRI. However, no contrast enhancement was observed in CT
images, perhaps due to the rather low dose of injected gold: a total of 1 mg of Fe-Au@PAA
was injected into a mouse [38].

Fe3O4@Au nanoparticles used in the current study are suggested to serve as a ther-
anostic dose-enhancing agent for radiotherapy, which requires high gold concentration
in the tumor. Thus, 0.72 mg of iron and 30 mg of gold were administered intravenously
to each mouse, and significant contrast enhancement of the tumor (subcutaneous Ca755
carcinoma) was observed. Moreover, colocalization of enhanced region in MRI and CT
modalities was shown. The concentration of Fe3O4@Au nanoparticles in the tumor tissue
was high enough for radiotherapy up to 17 days post injection. That makes Fe3O4@Au
nanoparticles a promising substance for theranostic application in oncology.

In our study, we also observed that Fe3O4@Au nanoparticles were absorbed by the
liver and spleen and retained for at least 17 days with no signs of excretion from the
organism. Long-term retention of nanoparticles in the organism raises the issue of their
possible biodegradation and loss of MRI properties. As Zelepukin et al. reported, magnetic
iron oxide nanoparticles can slowly degrade in the mouse body. The biotransformation
half-life varied from 6.8 to 430 days depending on the external polymer coating of the
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iron oxide core [39]. Kolosnjaj-Tabi et al. also observed that the iron oxide moiety of
gold/iron oxide nanoheterostructures dissolved in 14 days after intravenous injection into
mice [40]. However, the mentioned nanoheterostructures consisted of a gold core and an
iron oxide coating, so iron oxide was outside and exposed to lysosomal enzymes and an
acidic environment. In our Fe3O4@Au nanoparticles, the iron oxide core is inside the thick
gold shell. We suppose that they are highly stable in physiological conditions because metal
gold is chemically inert and cannot be broken down by lysosomal enzymes. An indirect
evidence of stability was persistent contrast enhancement of the spleen, liver, and tumor
capsule in at least 17 days both in CT and MRI modalities, without any decrease in signal.

Despite the retention of nanoparticles in the liver and spleen, mice exhibited no signs
of toxicity within 17 days. All mice continued to gain normal amounts of body mass, and
no changes were observed in their water and food consumption or in their behavior. In CT
images, no pathological changes of the liver were detected: the liver had smooth margins
and a homogenous structure, and the size of the organ was not enlarged within 17 days
post-injection. We could not evaluate long-term toxicity because only tumor-bearing mice
were used in this study, so all mice were sacrificed within 17 days in accordance with
ethical standards.

Besides theranostics, our bimodal Fe3O4@Au nanoparticles also have potential use for
clinical interventional treatments in oncology, such as different types of tumor ablation and
embolization, which require blood vessel enhancement for X-ray and MRI modalities lasting
up to several hours. A single dose of Fe3O4@Au can likely provide better enhancement of
images and be better tolerated by patients than multiple injections of iodine and gadolinium
contrast agents during the same medical procedure.

Fe3O4@Au can also aid animal research, as it allows enhanced imaging with MRI and
CT in the same animal, with a single contrast medium and single injection, thus obtaining
maximum information with a minimum number of animals and manipulations, making
animal imaging studies more reliable, informative, and ethical, and at the same time,
less tedious.

4. Materials and Methods
4.1. Nanoparticle Synthesis

Fe3O4@Au synthesis was described in detail elsewhere [22]. Briefly, dextran T1-coated
iron oxide nanoparticles were prepared by a mixture of ferric chloride hexahydrate (3 g)
and ferrous chloride tetrahydrate (1.5 g) in 32 mL deionized water mixed with dextran T1
(Mw = 41 kDa) solution (1.7 g in 20 mL deionized water) for 30 min at room temperature
under nitrogen flow. The mixture was cooled to 5 ◦C, and ammonium hydroxide (28%,
12.7 g) was added under stirring for 2 min. Then, the mixture was heated to 60 ◦C for
40 min, and to 80 ◦C for 2 h. To allow coating of the particles with a gold shell, the dextran
coating was removed and replaced by a citrate layer by washing the solid phase twice
with a 10% sodium citrate solution followed by centrifugation (4000 rpm, 20 min). After
purification, the iron oxide particle pellet was dissolved in 10% sodium citrate solution to
yield a final Fe concentration of 4 mg/mL. To form a gold shell, an Au solution (414 µL
of 50% w/v HAuCl4 in 200 mL of purified water) was heated until boiling, and 4.04 mL of
the as-prepared IONP solution were added under stirring (10 min), yielding core/shell
Fe3O4@Au nanoparticles. After cooling to room temperature, the SH-PEG-COOH (1 kDa)
solution (80 µL, 36.5 mg/mL) was added and stirred for 3 h. Next, the particles were
coated by D-(β)-glucosamine hydrochloride (30 µL, 25 mg/mL), which was added to the
solution together with N-ethyl-N-(3-dimethylaminopropyl) carbodiimide (EDC, 200 µL,
10 mg/mL) and N-hydroxysuccinimide (NHS, 200 µL, 10 mg/mL), followed by 3 h of
stirring at room temperature.

The determination of iron and gold concentrations in the final solution was carried
out by inductively coupled plasma (ICP) atomic emission spectrometry (Agilent 4200
MP-AES, Santa Clara, CA, USA) using calibration curves for each element. Standard
solutions with Fe or Au concentrations of 500, 1000, 1500, and 2000 ppb were prepared by
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dilution of Fe or Au standard solutions (1 mg/mL) in 2% (w/w) HNO3 for ICP (Merck,
Rahway, NJ, USA). A 2% aqueous solution of HNO3 was also used as a blank. Samples of
nanoparticles were prepared by dissolving them (10 µL) with 90 µL of aqua regia (1 mL
of HNO3 + 3 mL of HCl) at 60 ◦C for 2 h and then at room temperature for 12 h. After
digestion, the solutions were diluted 20 and 450 times for the ICP-AES analysis of iron and
gold, respectively. The gold and iron concentrations in the studied solution, determined by
ICP-AES, was 164.0 ± 4.0 mg/mL and 4.0 ± 0.1 mg/mL, respectively. Nanoparticles were
further characterized by dynamic light scattering (ZetaSizer 3000HS; Malvern Instruments,
Malvern, UK), energy-dispersive X-ray spectroscopy, and transmission electron microscopy
(TEM, JEM-1400, JEOL, Akishima, Japan).

4.2. Animal In Vivo Imaging

Imaging was performed in female C57Bl/6 mice, 20–22 g body weight, with subcuta-
neous Ca755 mammary adenocarcinoma inoculated into the hind right leg, performed with
0.2 mL of 14% tumor tissue suspension prepared ex tempore. Imaging was conducted when
the tumor node volume reached approximately 200 mm3. Imaging was performed under
isoflurane gas anesthesia. CT imaging of the animals was performed with the IVIS Spec-
trum CT imaging system (Perkin Elmer, Waltham, MA, USA) and MRI with the ClinScan
7T scanner (Bruker, Billerica, MA, USA). Mice under isoflurane gas anesthesia were injected
intravenously via the tail vein with 180 µL of Fe3O4@Au solution containing 0.72 mg of
iron and 30 mg of gold. T2* weighted MRI images of the mice were acquired using gradient
echo sequence with the following parameters: TR = 400 ms, TE = 3.5 ms, flip angle = 30,
FOV = 27 × 35 mm, base resolution = 200 × 256, slice thickness = 0.69 mm. Each mouse
underwent CT and MRI imaging before the Fe3O4@Au injection and after the injection, at
several time points on the day of the injection and at 17 days post-injection. As it was crucial
to perform imaging of the same animal with both modalities, MRI and CT scans were
made sequentially, at close but different time points. The following MRI and CT timepoint
pairs were used for the purpose of comparison: 16 min and 22 min; 50 min and 65 min.
Additionally, the following studies, which were not accompanied by another modality,
were conducted: MRI, 5 min p.i., and CT, 90 min p.i. The last time point was 17 days
post-injection for both modalities. Mice were euthanized on day 17th post Fe3O4@Au ad-
ministration, immediately after imaging. All animal studies were performed in accordance
with local ethical regulations and approved by the institutional ethics committee.

5. Conclusions

Our results showed that bimodal CT-MRI nanoparticles serve as effective contrast
agents, providing useful information for tumor diagnostics. CT imaging demonstrated
excellent distribution of the bimodal nanoparticle contrast agent, while MRI allowed reliable
identification of the particular organs and structures to which the obtained distribution
belonged. Application of bimodal Fe3O4@Au as contrast agents for MRI/CT is especially
valuable for tumor study and imaging. The unpredictability and variety of tumors’ shape
and location require special imaging tools for proper tumor diagnostics and treatment.

Due to their high gold content and long retention in tumors, theranostic Fe3O4@Au
nanoparticles can be considered promising radiosensitizers for radiotherapy. Although
the uptake and retention of the Fe3O4@Au nanoparticles in the liver could limit routine
clinical application of the nanoparticles, their use for imaging and therapy in cancer patients
can be highly beneficial in oncological patients, especially with advanced tumors with a
poor prognosis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms24010070/s1. Figure S1: Enhancement of blood vessels;
Figure S2: Enhancement of heart chambers; Figure S3: Transversal CT images of mouse lungs.
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