miRNAs, Mesenchymal Stromal Cells and Major Neoplastic and Inflammatory Skin Diseases: A Page Being Written: A Systematic Review
Abstract
:1. Introduction
2. Results
2.1. Neoplastic Diseases
2.1.1. Melanoma
2.1.2. Non-Melanoma Neoplastic Skin Disorders
Squamous Cell Carcinoma (SCC)
2.2. Inflammatory Skin Diseases
2.2.1. Psoriasis
2.2.2. Atopic Dermatitis
3. Materials and Methods
3.1. Identification of the Research Question
3.2. Study Selection Process
- “miRNAs AND human mesenchymal stromal cells AND melanoma”
- “miRNAs AND human mesenchymal stromal cells AND squamous cell carcinoma”
- “miRNAs AND human mesenchymal stromal cells AND basal cell carcinoma”
- “miRNAs AND human mesenchymal stromal cells AND psoriasis”
- “miRNAs AND human mesenchymal stromal cells AND atopic dermatitis”
3.3. Data Extraction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lazzarini, R.; Caffarini, M.; Delli Carpini, G.; Ciavattini, A.; Di Primio, R.; Orciani, M. From 2646 to 15: Differentially regulated microRNAs between progenitors from normal myometrium and leiomyoma. Am. J. Obstet. Gynecol. 2020, 222, 596.e1–596.e9. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed]
- Ardekani, A.M.; Naeini, M.M. The Role of MicroRNAs in Human Diseases. Avicenna J. Med. Biotechnol. 2010, 2, 161–179. [Google Scholar] [PubMed]
- Iezzi, I.; Lazzarini, R.; Cerqueni, G.; Hosein, A.; Rossato, M.; Licini, C.; De Quattro, C.; Orciani, M.; Belmonte, M.M. MicroRNA Profiling in Mesenchymal Stromal Cells: The Tissue Source as the Missing Piece in the Puzzle of Ageing. Stem Cell Rev. Rep. 2021, 17, 1014–1026. [Google Scholar] [CrossRef]
- Collino, F.; Bruno, S.; Deregibus, M.C.; Tetta, C.; Camussi, G. MicroRNAs and mesenchymal stem cells. Vitam. Horm. 2011, 87, 291–320. [Google Scholar]
- Schoolmeesters, A.; Eklund, T.; Leake, D.; Vermeulen, A.; Smith, Q.; Force Aldred, S.; Fedorov, Y. Functional profiling reveals critical role for miRNA in differentiation of human mesenchymal stem cells. PLoS ONE 2009, 4, e5605. [Google Scholar] [CrossRef]
- Lan, C.; Long, L.; Xie, K.; Liu, J.; Zhou, L.; Pan, S.; Liang, J.; Tu, Z.; Gao, Z.; Tang, Y. miRNA-429 suppresses osteogenic differentiation of human adipose-derived mesenchymal stem cells under oxidative stress via targeting SCD-1. Exp. Ther. Med. 2020, 19, 696–702. [Google Scholar]
- Du, G.; Cheng, X.; Zhang, Z.; Han, L.; Wu, K.; Li, Y.; Lin, X. TGF-Beta Induced Key Genes of Osteogenic and Adipogenic Differentiation in Human Mesenchymal Stem Cells and MiRNA-mRNA Regulatory Networks. Front. Genet. 2021, 12, 759596. [Google Scholar] [CrossRef]
- Campanati, A.; Orciani, M.; Sorgentoni, G.; Consales, V.; Offidani, A.; Di Primio, R. Pathogenetic Characteristics of Mesenchymal Stem Cells in Hidradenitis Suppurativa. JAMA Dermatol. 2018, 154, 1184–1190. [Google Scholar] [CrossRef]
- Di Vincenzo, M.; Martino, M.; Lariccia, V.; Giancola, G.; Licini, C.; Di Benedetto, G.; Arnaldi, G.; Orciani, M. Mesenchymal Stem Cells Exposed to Persistently High Glucocorticoid Levels Develop Insulin-Resistance and Altered Lipolysis: A Promising In Vitro Model to Study Cushing’s Syndrome. Front. Endocrinol. 2022, 13, 816229. [Google Scholar] [CrossRef]
- Bonifazi, M.; Di Vincenzo, M.; Caffarini, M.; Mei, F.; Salati, M.; Zuccatosta, L.; Refai, M.; Mattioli-Belmonte, M.; Gasparini, S.; Orciani, M. How the Pathological Microenvironment Affects the Behavior of Mesenchymal Stem Cells in the Idiopathic Pulmonary Fibrosis. Int. J. Mol. Sci. 2020, 21, 8140. [Google Scholar] [CrossRef] [PubMed]
- Orciani, M.; Caffarini, M.; Biagini, A.; Lucarini, G.; Delli Carpini, G.; Berretta, A.; Di Primio, R.; Ciavattini, A. Chronic Inflammation May Enhance Leiomyoma Development by the Involvement of Progenitor Cells. Stem. Cells Int. 2018, 2018, 1716246. [Google Scholar] [CrossRef] [PubMed]
- Campanati, A.; Di Vincenzo, M.; Radi, G.; Rizzetto, G.; Carnevale, G.; Marchi, S.; Orciani, M.; Offidani, A. The less-known face of dupilumab: Its role in mesenchymal stem cells by interleukin-13 modulation. Br. J. Dermatol. 2021, 185, 217–219. [Google Scholar] [CrossRef] [PubMed]
- Campanati, A.; Caffarini, M.; Diotallevi, F.; Radi, G.; Lucarini, G.; Di Vincenzo, M.; Orciani, M.; Offidani, A. The efficacy of in vivo administration of Apremilast on mesenchymal stem cells derived from psoriatic patients. Inflamm. Res. 2021, 70, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Campanati, A.; Orciani, M.; Marani, A.; Di Vincenzo, M.; Magi, S.; Gregoriou, S.; Diotallevi, F.; Martina, E.; Radi, G.; Offidani, A. Mesenchymal Stem Cells Profile in Adult Atopic Dermatitis and Effect of IL4-IL13 Inflammatory Pathway Inhibition In Vivo: Prospective Case-Control Study. J. Clin. Med. 2022, 11, 4759. [Google Scholar] [CrossRef] [PubMed]
- Campanati, A.; Bobyr, I.; Sorgentoni, G.; Diotallevi, F.; Caffarini, M.; Pellegrino, P.; Di Primio, R.; Offidani, A.; Orciani, M. Mesenchymal stem cell profile in actinic keratosis and its modification after topical application of ingenol mebutate. J. Eur. Acad. Dermatol. Venereol. 2020, 34, e148–e149. [Google Scholar] [CrossRef] [PubMed]
- Caffarini, M.; Armeni, T.; Pellegrino, P.; Cianfruglia, L.; Martino, M.; Offidani, A.; Di Benedetto, G.; Arnaldi, G.; Campanati, A.; Orciani, M. Cushing Syndrome: The Role of MSCs in Wound Healing, Immunosuppression, Comorbidities, and Antioxidant Imbalance. Front. Cell Dev. Biol. 2019, 7, 227. [Google Scholar] [CrossRef]
- Orciani, M.; Caffarini, M.; Lazzarini, R.; Delli Carpini, G.; Tsiroglou, D.; Di Primio, R.; Ciavattini, A. Mesenchymal Stem Cells from Cervix and Age: New Insights into CIN Regression Rate. Oxid Med. Cell Longev. 2018, 2018, 1545784. [Google Scholar] [CrossRef]
- Lazzarini, R.; Guarnieri, S.; Fulgenzi, G.; Mariggiò, M.A.; Graciotti, L.; Martiniani, M.; Orciani, M.; Specchia, N.; Di Primio, R. Mesenchymal Stem Cells from Nucleus Pulposus and Neural Differentiation Potential: A Continuous Challenge. J. Mol. Neurosci. 2019, 67, 111–124. [Google Scholar] [CrossRef]
- Pisciotta, A.; Bertoni, L.; Riccio, M.; Mapelli, J.; Bigiani, A.; La Noce, M.; Orciani, M.; de Pol, A.; Carnevale, G. Use of a 3D Floating Sphere Culture System to Maintain the Neural Crest-Related Properties of Human Dental Pulp Stem Cells. Front. Physiol. 2018, 9, 47. [Google Scholar] [CrossRef]
- Di Vincenzo, M.; De Quattro, C.; Rossato, M.; Lazzarini, R.; Delli Carpini, G.; Ciavattini, A.; Orciani, M. A Possible Cause for the Differential Expression of a Subset of miRNAs in Mesenchymal Stem Cells Derived from Myometrium and Leiomyoma. Genes 2022, 13, 1106. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Yang, X.; Liu, M.; Zhang, Z.; Xing, E. Roles of miRNA dysregulation in the pathogenesis of multiple myeloma. Cancer Gene Ther. 2021, 28, 1256–1268. [Google Scholar] [CrossRef] [PubMed]
- Iaquinta, M.R.; Lanzillotti, C.; Mazziotta, C.; Bononi, I.; Frontini, F.; Mazzoni, E.; Oton-Gonzalez, L.; Rotondo, J.C.; Torreggiani, E.; Tognon, M.; et al. The role of microRNAs in the osteogenic and chondrogenic differentiation of mesenchymal stem cells and bone pathologies. Theranostics 2021, 11, 6573–6591. [Google Scholar] [CrossRef]
- Zhou, Q.; Gu, T.; Zhang, Y.; Li, H.; Zhuansun, X.; Xu, S.; Kuang, Y. Human Umbilical Cord Mesenchymal Stem Cells Ameliorate Hepatic Stellate Cell Activation and Liver Fibrosis by Upregulating MicroRNA-455-3p through Suppression of p21-Activated Kinase-2. Biomed Res. Int. 2021, 2021, 6685605. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Ding, X.; Zhou, L.; Zhang, L.; Yang, X. Mesenchymal stem cells-derived exosomal microRNA-139-5p restrains tumorigenesis in bladder cancer by targeting PRC1. Oncogene 2021, 40, 246–261. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Li, X.; Duan, M.; Dou, Y.; Feng, Y.; Nan, N.; Zhang, W. MiR-153-3p induces immune dysregulation by inhibiting PELI1 expression in umbilical cord-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Autoimmunity 2020, 53, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Vishnubalaji, R.; Elango, R.; Al-Toub, M.; Manikandan, M.; Al-Rikabi, A.; Harkness, L.; Ditzel, N.; Atteya, M.; Hamam, R.; Alfayez, M.; et al. Neoplastic Transformation of Human Mesenchymal Stromal Cells Mediated via LIN28B. Sci. Rep. 2019, 9, 8101. [Google Scholar] [CrossRef]
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Wang, X.; Cui, Z.; Zeng, B.; Qiong, Z.; Long, Z. Human mesenchymal stem cell derived exosomes inhibit the survival of human melanoma cells through modulating miR-138-5p/SOX4 pathway. Cancer Biomark. 2022, 34, 533–543. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, S.; Ye, Z.; Zheng, Y.; Zheng, Z.; Liu, X.; Zhou, X. NEAT1 in bone marrow mesenchymal stem cell-derived extracellular vesicles promotes melanoma by inducing M2 macrophage polarization. Cancer Gene Ther. 2022, 29, 1228–1239. [Google Scholar] [CrossRef]
- Gyukity-Sebestyén, E.; Harmati, M.; Dobra, G.; Németh, I.B.; Mihály, J.; Zvara, Á.; Hunyadi-Gulyás, É.; Katona, R.; Nagy, I.; Horváth, P.; et al. Melanoma-Derived Exosomes Induce PD-1 Overexpression and Tumor Progression via Mesenchymal Stem Cell Oncogenic Reprogramming. Front. Immunol. 2019, 10, 2459. [Google Scholar] [CrossRef] [PubMed]
- Sahranavardfard, P.; Madjd, Z.; Razavi, A.E.; Ghanadan, A.; Firouzi, J.; Khosravani, P.; Ghavami, S.; Ebrahimie, E.; Ebrahimi, M. An integrative analysis of the micro-RNAs contributing in stemness, metastasis and B-Raf pathways in malignant melanoma and melanoma stem cell. Cell J. 2021, 23, 261–272. [Google Scholar] [PubMed]
- Fomeshi, M.R.; Ebrahimi, M.; Mowla, S.J.; Khosravani, P.; Firouzi, J.; Khayatzadeh, H. Evaluation of the expressions pattern of MIR-10b, 21, 200c, 373 and 520c to find the correlation between epithelial-to-mesenchymal transition and melanoma stem cell potential in isolated cancer stem cells. Cell. Mol. Biol. Lett. 2015, 20, 448–465. [Google Scholar] [CrossRef] [PubMed]
- Sahranavardfard, P.; Firouzi, J.; Azimi, M.; Khosravani, P.; Heydari, R.; Emami Razavi, A.; Dorraj, M.; Keighobadi, F.; Ebrahimi, M. MicroRNA-203 reinforces stemness properties in melanoma and augments tumorigenesis in vivo. J. Cell Physiol. 2019, 234, 20193–20205. [Google Scholar] [CrossRef]
- Wang, Y.; Lou, N.; Zuo, M.; Zhu, F.; He, Y.; Cheng, Z.; Wang, X. STAT3-induced ZBED3-AS1 promotes the malignant phenotypes of melanoma cells by activating PI3K/AKT signaling pathway. RNA Biol. 2021, 18, 355–368. [Google Scholar] [CrossRef] [PubMed]
- Divisato, G.; Piscitelli, S.; Elia, M.; Cascone, E.; Parisi, S. Micrornas and stem-like properties: The complex regulation underlying stemness maintenance and cancer development. Biomolecules 2021, 11, 1074. [Google Scholar] [CrossRef] [PubMed]
- Maadi, H.; Moshtaghian, A.; Taha, M.F.; Mowla, S.J.; Kazeroonian, A.; Haass, N.K.; Javeri, A. Multimodal tumor suppression by miR-302 cluster in melanoma and colon cancer. Int. J. Biochem. Cell Biol. 2016, 81, 121–132. [Google Scholar] [CrossRef]
- Wang, X.; Guo, J.; Yu, P.; Guo, L.; Mao, X.; Wang, J.; Miao, S.; Sun, J. The roles of extracellular vesicles in the development, microenvironment, anticancer drug resistance, and therapy of head and neck squamous cell carcinoma. J. Exp. Clin. Cancer Res. 2021, 40, 35. [Google Scholar] [CrossRef]
- Panvongsa, W.; Pegtel, D.M.; Voortman, J. More than a Bubble: Extracellular Vesicle microRNAs in Head and Neck Squamous Cell Carcinoma. Cancers 2022, 14, 1160. [Google Scholar] [CrossRef]
- Fitriana, M.; Hwang, W.-L.; Chan, P.Y.; Hsueh, T.Y.; Liao, T.T. Roles of micrornas in regulating cancer stemness in head and neck cancers. Cancers 2021, 13, 1742. [Google Scholar] [CrossRef]
- Tu, H.F.; Lin, S.C.; Chang, K.W. MicroRNA aberrances in head and neck cancer: Pathogenetic and clinical significance. Curr. Opin. Otolaryngol. Head. Neck. Surg. 2013, 21, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, C.; Kovatch, K.J.; Sim, M.W.; Wang, G.; Prince, M.E.; Carey, T.E.; Davis, R.; Blagg, B.S.J.; Cohen, M.S. Novel C-Terminal Heat Shock Protein 90 Inhibitors (KU711 and Ku757) Are Effective in Targeting Head and Neck Squamous Cell Carcinoma Cancer Stem cells. Neoplasia 2017, 19, 1003–1011. [Google Scholar] [CrossRef]
- Bai, X.P.; Zhou, Y.; Chen, P.; Yang, M.; Xu, J. MicroRNA-142-5p induces cancer stem cell-like properties of cutaneous squamous cell carcinoma via inhibiting PTEN. J. Cell Biochem. 2018, 119, 2179–2188. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Zhou, Z.; Chen, W.; Wei, X.; Zhou, H.; Luo, W. MicroRNA-495 confers inhibitory effects on cancer stem cells in oral squamous cell carcinoma through the HOXC6-mediated TGF-β signaling pathway. Stem Cell. Res. Ther. 2020, 11, 117. [Google Scholar] [CrossRef]
- Yu, C.C.; Chen, P.N.; Peng, C.Y.; Yu, C.H.; Chou, M.Y. Suppression of miR-204 enables oral squamous cell carcinomas to promote cancer stemness, EMT traits, and lymph node metastasis. Oncotarget 2016, 7, 20180–20192. [Google Scholar] [CrossRef] [PubMed]
- Ghuwalewala, S.; Ghatak, D.; Das, S.; Roy, S.; Das, P.; Butti, R.; Gorain, M.; Nath, S.; Kundu, G.C.; Roychoudhury, S. MiRNA-146a/AKT/β-Catenin Activation Regulates Cancer Stem Cell Phenotype in Oral Squamous Cell Carcinoma by Targeting CD24. Front. Oncol. 2021, 11, 651692. [Google Scholar] [CrossRef]
- Liu, X.; Fu, Y.; Huang, J.; Wu, M.; Zhang, Z.; Xu, R.; Zhang, P.; Zhao, S.; Liu, L.; Jiang, H. ADAR1 promotes the epithelial-to-mesenchymal transition and stem-like cell phenotype of oral cancer by facilitating oncogenic microRNA maturation. J. Exp. Clin. Cancer Res. 2019, 38, 315. [Google Scholar] [CrossRef]
- Cetin, Z.; Saygili, E.I.; Görgisen, G.; Sokullu, E. Preclinical Experimental Applications of miRNA Loaded BMSC Extracellular Vesicles. Stem. Cell. Rev. Rep. 2021, 17, 471–501. [Google Scholar] [CrossRef]
- Mensà, E.; Recchioni, R.; Marcheselli, F.; Giuliodori, K.; Consales, V.; Molinelli, E.; Prattichizzo, F.; Rippo, M.R.; Campanati, A.; Procopio, A.D.; et al. MiR-146a-5p correlates with clinical efficacy in patients with psoriasis treated with the tumour necrosis factor-alpha inhibitor adalimumab. Br. J. Dermatol. 2018, 179, 787–789. [Google Scholar] [CrossRef]
- Prattichizzo, F.; Giuliani, A.; Recchioni, R.; Bonafè, M.; Marcheselli, F.; De Carolis, S.; Campanati, A.; Giuliodori, K.; Rippo, M.R.; Brugè, F.; et al. Anti-TNF-α treatment modulates SASP and SASP-related microRNAs in endothelial cells and in circulating angiogenic cells. Oncotarget 2016, 7, 11945–11958. [Google Scholar] [CrossRef]
- Orciani, M.; Campanati, A.; Salvolini, E.; Lucarini, G.; Di Benedetto, G.; Offidani, A.; Di Primio, R. The mesenchymal stem cell profile in psoriasis. Br. J. Dermatol. 2011, 165, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Campanati, A.; Orciani, M.; Consales, V.; Lazzarini, R.; Ganzetti, G.; Di Benedetto, G.; Di Primio, R.; Offidani, A. Characterization and profiling of immunomodulatory genes in resident mesenchymal stem cells reflect the Th1-Th17/Th2 imbalance of psoriasis. Arch. Dermatol. Res. 2014, 306, 915–920. [Google Scholar] [CrossRef] [PubMed]
- Campanati, A.; Orciani, M.; Lazzarini, R.; Ganzetti, G.; Consales, V.; Sorgentoni, G.; Di Primio, R.; Offidani, A. TNF-α inhibitors reduce the pathological Th1 -Th17 /Th2 imbalance in cutaneous mesenchymal stem cells of psoriasis patients. Exp. Dermatol. 2017, 26, 319–324. [Google Scholar] [CrossRef]
- Campanati, A.; Orciani, M.; Gorbi, S.; Regoli, F.; Di Primio, R.; Offidani, A. Effect of biologic therapies targeting tumour necrosis factor-α on cutaneous mesenchymal stem cells in psoriasis. Br. J. Dermatol. 2012, 167, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Campanati, A.; Orciani, M.; Sorgentoni, G.; Consales, V.; Mattioli Belmonte, M.; Di Primio, R.; Offidani, A. Indirect co-cultures of healthy mesenchymal stem cells restore the physiological phenotypical profile of psoriatic mesenchymal stem cells. Clin. Exp. Immunol. 2018, 193, 234–240. [Google Scholar] [CrossRef]
- Liu, R.; Wang, Q.; Chang, W.; Zhou, L.; Li, J.; Zhang, K. Characterisation of the circular RNA landscape in mesenchymal stem cells from psoriatic skin lesions. Eur. J. Dermatol. 2019, 29, 29–38. [Google Scholar]
- Wang, Q.; Chang, W.; Yang, X.; Cheng, Y.; Zhao, X.; Zhou, L.; Li, J.; Li, J.; Zhang, K. Levels of miR-31 and its target genes in dermal mesenchymal cells of patients with psoriasis. Int. J. Dermatol. 2019, 58, 198–204. [Google Scholar] [CrossRef]
- Hou, R.X.; Liu, R.F.; Zhao, X.C.; Jia, Y.R.; An, P.; Hao, Z.P.; Li, J.Q.; Li, X.H.; Yin, G.H.; Zhang, K.M. Increased miR-155-5p expression in dermal mesenchymal stem cells of psoriatic patients: Comparing the microRNA expression profile by microarray. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, X.; Li, J.; Zhou, L.; Chang, W.; Li, J.; Hou, R.; Li, J.; Yin, G.; Li, X.; et al. MiR-155 inhibits TP53INP1 expression leading to enhanced glycolysis of psoriatic mesenchymal stem cells. J. Dermatol. Sci. 2022, 105, 142–151. [Google Scholar] [CrossRef]
- Li, X.; Li, J.; Lu, F.; Cao, Y.; Xing, J.; Li, J.; Hou, R.; Yin, G.; Zhang, K.J. Role of SPRED1 in keratinocyte proliferation in psoriasis. J. Dermatol. 2020, 47, 735–742. [Google Scholar] [CrossRef]
- Hawkes, J.E.; Nguyen, G.H.; Fujita, M.; Florell, S.R.; Callis Duffin, K.; Krueger, G.G.; O’Connell, R.M. microRNAs in psoriasis. J. Investig. Dermatol 2016, 136, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lee, S.H.; Kim, Y.; Kwon, Y.; Park, Y.; Lee, H.K.; Jung, H.S.; Jeoung, D. Human Adipose Tissue-Derived Mesenchymal Stem Cells Attenuate Atopic Dermatitis by Regulating the Expression of MIP-2, miR-122a-SOCS1 Axis, and Th1/Th2 Responses. Front. Pharmacol. 2018, 9, 1175. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Kyriakou, G.; Melachrinou, M. Cancer stem cells, epigenetics, tumor microenvironment and future therapeutics in cutaneous malignant melanoma: A review. Future Oncol. 2020, 16, 1549–1567. [Google Scholar] [CrossRef] [PubMed]
- Dar, A.A.; Majid, S.; Rittsteuer, C.; de Semir, D.; Bezrookove, V.; Tong, S.; Nosrati, M.; Sagebiel, R.; Miller, J.R., 3rd; Kashani-Sabet, M. The role of miR-18b in MDM2-p53 pathway signaling and melanoma progression. J. Natl. Cancer Inst. 2013, 105, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Babaei, G.; Raei, N.; Toofani Milani, A.; Gholizadeh-Ghaleh Aziz, S.; Pourjabbar, N.; Geravand, F. The emerging role of miR-200 family in metastasis: Focus on EMT, CSCs, angiogenesis, and anoikis. Mol. Biol. Rep. 2021, 48, 6935–6947. [Google Scholar] [CrossRef]
- Coordes, A.; Zhifeng, S.; Sangvatanakul, V.; Qian, X.; Lenarz, M.; Kaufmann, A.M.; Albers, A.E. Cancer stem cell phenotypes and miRNA. HNO 2014, 62, 867–872. [Google Scholar] [CrossRef]
- Ghafouri-Fard, S.; Gholipour, M.; Taheri, M.; Farsani, Z.S. MicroRNA profile in the squamous cell carcinoma: Prognostic and diagnostic roles. Heliyon 2020, 6, e05436. [Google Scholar] [CrossRef]
- He, Z.; Li, W.; Zheng, T.; Liu, D.; Zhao, S. Human umbilical cord mesenchymal stem cells-derived exosomes deliver microRNA-375 to downregulate ENAH and thus retard esophageal squamous cell carcinoma progression. J. Exp. Clin. Can. Res. 2020, 39, 140. [Google Scholar] [CrossRef]
- Jiang, J.; Zheng, M.; Zhang, M.; Yang, X.; Li, L.; Wang, S.S.; Wu, J.S.; Yu, X.H.; Wu, J.B.; Pang, X.; et al. PRRX1 Regulates Cellular Phenotype Plasticity and Dormancy of Head and Neck Squamous Cell Carcinoma Through miR-642b-3p. Neoplasia 2019, 21, 216–229. [Google Scholar] [CrossRef]
- Liu, X.Y.; Zhang, Q.; Guo, J.; Zhang, P.; Liu, H.; Tian, Z.B.; Zhang, C.P.; Li, X.Y. The Role of Circular RNAs in the Drug Resistance of Cancers. Front. Oncol. 2022, 11, 790589. [Google Scholar] [CrossRef] [PubMed]
- Pan, G.; Liu, Y.; Shang, L.; Zhou, F.; Yang, S. EMT-associated microRNAs and their roles in cancer stemness and drug resistance. Cancer Commun. 2021, 41, 199–217. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Yang, S.; Zhou, A.; Li, X.; Fang, R.; Zhang, S.; Zhao, G.; Li, P. Small Extracellular Vesicles in the Development, Diagnosis, and Possible Therapeutic Application of Esophageal Squamous Cell Carcinoma. Front. Oncol. 2021, 11, 732702. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Zheng, L.; Shen, J.; Zhang, D.; Xiong, M.; Zhang, Y.; He, X.; Tanyi, J.L.; Yang, F.; Montone, K.T.; et al. Suppression of MicroRNA 200 Family Expression by Oncogenic KRAS Activation Promotes Cell Survival and Epithelial-Mesenchymal Transition in KRAS-Driven Cancer. Mol. Cell Biol. 2016, 36, 2742–2754. [Google Scholar] [CrossRef]
- Sha, H.; Gan, Y.; Xu, F.; Zhu, Y.; Zou, R.; Peng, W.; Wu, Z.; Ma, R.; Wu, J.; Feng, J. MicroRNA-381 in human cancer: Its involvement in tumour biology and clinical applications potential. J. Cell Mol. Med. 2022, 26, 977–989. [Google Scholar] [CrossRef]
- Takeda, Y.S.; Xu, Q. Neuronal Differentiation of Human Mesenchymal Stem Cells Using Exosomes Derived from Differentiating Neuronal Cells. PLoS ONE 2015, 10, e0135111. [Google Scholar] [CrossRef]
- Cuciniello, R.; Filosa, S.; Crispi, S. Novel approaches in cancer treatment: Preclinical and clinical development of small non-coding RNA therapeutics. J. Exp. Clin. Cancer Res. 2021, 40, 383. [Google Scholar] [CrossRef]
- Kim, G.; An, H.J.; Lee, M.J.; Song, J.Y.; Jeong, J.Y.; Lee, J.H.; Jeong, H.C. Hsa-miR-1246 and hsa-miR-1290 are associated with stemness and invasiveness of non-small cell lung cancer. Lung Cancer 2016, 91, 15–22. [Google Scholar] [CrossRef]
- Jiao, X.; Qian, X.; Wu, L.; Li, B.; Wang, Y.; Kong, X.; Xiong, L. MicroRNA: The impact on cancer stemness and therapeutic resistance. Cells 2019, 9, 8. [Google Scholar] [CrossRef]
- Fang, C.; Wang, L.; Gong, C.; Wu, W.; Yao, C.; Zhu, S. Long non-coding RNAs: How to regulate the metastasis of non–small-cell lung cancer. J. Cell Mol. Med. 2020, 24, 3282–3291. [Google Scholar] [CrossRef]
- Korfiati, A.; Grafanaki, K.; Kyriakopoulos, G.C.; Skeparnias, I.; Georgiou, S.; Sakellaropoulos, G.; Stathopoulos, C. Revisiting miRNA Association with Melanoma Recurrence and Metastasis from a Machine Learning Point of View. Int. J. Mol. Sci. 2022, 23, 1299. [Google Scholar] [CrossRef] [PubMed]
- Ohno, S.I.; Drummen, G.P.C.; Kuroda, M. Focus on extracellular vesicles: Development of extracellular vesicle-based therapeutic systems. Int. J. Mol. Sci. 2016, 17, 172. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Dai, J.; Chen, M.; Chen, Q.; Xie, Q.; Zhang, W.; Li, G.; Yan, M. miR-139-5p Was Identified as Biomarker of Different Molecular Subtypes of Breast Carcinoma. Front. Oncol. 2022, 12, 857714. [Google Scholar] [CrossRef] [PubMed]
- Hyun, J.; Jung, Y. MicroRNAs in liver fibrosis: Focusing on the interaction with hedgehog signaling. World J. Gastroenterol. 2016, 22, 6652–6662. [Google Scholar] [CrossRef] [PubMed]
N. Records | |||
---|---|---|---|
PubMed | Web of Science | Scopus | |
Melanoma | 15 | 18 | 23 |
Squamous cell carcinoma | 36 | 26 | 39 |
Basal cell carcinoma | 1 | 1 | 3 |
Psoriasis | 6 | 1 | 2 |
Atopic dermatitis | 1 | 0 | 0 |
Author(s) Name | Publication Date, Type | doi | miRNA | Function | |
---|---|---|---|---|---|
MELANOMA | Wang X. et al. [29] | 2022 OA | 10.3233/CBM-210409 | miR-138-5p | miR-138-5p targets the stem gene SOX4 and its high expression in MSC-derived EVs increases cell apoptosis |
Yang Y. et al. [30] | 2022 OA | 10.1038/s41417-021-00392-8 | miR-374a-5p | miR-374 expression is inhibited by EVs derived from BM-MSCs carrying NEAT1; its inhibition is connected to the M2 polarization of macrophages and the occurrence/development of melanoma | |
Gyukity-Sebestyén E et al. [31] | 2019 OA | 10.3389/fimmu.2019.02459 | More than 120 miRNAs inside EVs | miRNAs and proteins inside the melanoma EVs can re-educate multipotent tissue-derived MSCs, forming a melanoma-like MSCPD−1+ subpopulation promoting tumor progression | |
Sahranavardfard P. et al. [32] | 2021 OA | 10.22074/cellj.2021.7311 | miR-205, -203, -9, and -15b | miR-205, -203, -9 and -15b promote stemness pluripotency, proliferation and EMT of malignant cells | |
Fomeshi RL et al. [33] | 2015 OA | 10.1515/cmble-2015-0025 | miR-10b, 21, 200c, 373 and 520c | miR-10b, 21, 200c, 373 and 520c are upregulated in melanospheres | |
Sahranavardfard P et al. [34] | 2019 OA | 10.1002/jcp.28619 | miR-203 | miR-203 reinforces the ability of proliferation, colony and spheres formation, migration and tumorigenesis in melanoma cell lines | |
Whang Y. et al. [35] | 2021 OA | 10.1080/15476286.2021.1950463 | miR-381-3p | Sequestering miR-381-3p leads to an increase in cell proliferation, migration and stemness in melanoma via the ZBED3-AS1/ARID4B axis | |
Divisato G. et al. [36] | 2021 R | 10.3390/biom11081074 | miR-29a | miR-29a mediates antiproliferative effects by downregulating CDK6, a regulator of the G1/S phase | |
Maadi H. et al. [37] | 2016 OA | 10.1016/j.biocel.2016.11.004 | miR-302 | miR-302 inhibits proliferation, angiogenesis and invasion through the MET process, leading to a reduction in tumorigenic potential | |
SQUAMOUS CELL CARCINOMA | Wang X. et al. [38] | 2021 R | 10.1186/s13046-021-01840-x. | miRNA-34c, 101-3p, 185 | MSCs-derived EVs overexpressing miRNA-34c inhibit invasion, migration, proliferation in HNSCC, as do miRNA-101-3p and 185 in OSCC |
Panvongsa W. et al. [39] | 2022 R | 10.3390/cancers14051160 | miRNA-101-3p, 185 | BM-MSCs-derived EVs overexpressing miR-101-3p or miR-185 suppress cancer cell proliferation and tumor growth both in vitro and in vivo in HNSCC | |
Fitriana M et al. [40] | 2021 R | 10.3390/cancers13071742 | miRNA-125, 134, 196b, 19a, 424, 106A-5p, 629-3p miRNA let-7, 520b | miRNA-125, 134, 196b, 19a, 424, 106A-5p and 629-3p act as oncomirs in HNSCC. miRNA let-7 family activates the expression of POU5F1, NANOG and SOX2, suppresses tumor formation and metastasis. miRNA-520b inhibits EMT and sensitizes cells to chemoradiotherapy through suppression of CD44 | |
Tu H. et al. [41] | 2013 R | 10.1097/MOO.0b013e32835e1d6e | miR-21 | miR-21 is oncomir and regulates stemness and the epithelial–mesenchymal transition of tumour cells | |
Subramanian C. et al. [42] | 2017 OA | 10.1016/j.neo.2017.09.003 | miRNA-15b, 16, 17, 107,20a, 106b, 128, 425, 223, 299, 145, 302a, 494, 409, and 128 | miRNA-15b, 16, 17, 107,20a, 106b, 128, 425, 223, 299, 145, 302a, 494, 409 and 128 are implicated in CSCs, improving self-renewal, differentiation, metastasis development and tumor recurrence | |
Bai XP et al. [43] | 2018 OA | 10.1002/jcb.26379 | miR-142-5p | The expression of miR-142-5p can promote the expression of stem markers, such as CD44, SOX2, NANOG and OCT4 | |
You X. et al. [44] | 2020 OA | 10.1186/s13287-020-1576-3 | miR-495 | miR-495 targets CSCs and its expression is inversely correlated to EMT, proliferation and metastasis in OSSC | |
Yu CC. et al. [45] | 2016 OA | 10.18632/oncotarget.7745 | miR-204 | miR-204 binds on the 3′UTR-regions of SOX4, suppressing the stemness of the tumor and therefore its growth in OSCC | |
Ghuwalewala S et al. [46] | 2021 OA | 10.3389/fonc.2021.651692 | miR-146a | miR-146a enhances stemness phenotype and self-renewal capacity in OSCC and HNSCC | |
Liu X. et al. [47] | 2019 OA | 10.1186/s13046-019-1300-2 | miR-21–3p, miR-18a-3p, miR-210-3p, miR-155-5p, miR-181a-5p e miR-19a-3p | miR-21–3p, miR-18a-3p, miR-210-3p, miR-155-5p, miR-181a-5p e miR-19a-3p regulate the stemness of OSCC cell lines affecting the expression of SOX2 and POU5F1 via ADAR1 | |
Cetin Z. et al. [48] | 2021 R | 10.1007/s12015-020-10082-x | miR-185, 101-3p | Inhibition of proliferation and angiogenesis as well as of COL10A1 expression have been reported for MSC-EVs loaded, respectively, with miR-185 or miR-101-3p | |
PSORIASIS | Liu R. et al. [56] | 2019 OA | 10.1684/ejd.2018.3483 | miR-17-5p, 30e-5p, miR-142-3p/5p | miR-17-5p, 30e-5p, miR-142-3p/5p are differentially expressed in psoriatic vs healthy skin MSCs and are related to inflammation |
Wang Q. et al. [57] | 2019 OA | 10.1111/ijd.14197 | miR-31 | The reduced expression of miR-31 in dermal MSCs participates in psoriasis onset facilitating the activation of T lymphocytes | |
Hou R.X. et al. [58] | 2016 OA | 10.4238/gmr.15038631 | miR-155 | miR-155 is overexpressed in psoriatic MSCs and it is related to increased inflammation | |
Liu Z. et al. [59] | 2022 OA | 10.1016/j.jdermsci.2022.02.001 | miR-155 | miR-155 promotes glycolysis in psoriatic MSCs causing their metabolic abnormalities | |
Li X. et al. [60] | 2020 OA | 10.1111/1346-8138.15369 | miR-21-3p and miR-1 | Keratinocytes, after co-cultures with psoriatic MSCs, overexpress miR-21-3p and miR-1, which are associated to increased levels of IL6, VEGF and enhanced proliferation | |
Hawkes JE. et al. [61] | 2016 R | 10.1038/JID.2015.409 | miR-203 | miR-203 regulates self-renewing and differentiation capacity of stem cells located within the basal layer of the epidermis | |
ATOPIC DERMATITIS | Kim M. et al. [62] | 2018 OA | 10.3389/fphar.2018.01175 | miR-122a-5p | miR-122a-5p acts as a negative regulator of SOCS1 that, together with CXCL13, causes the activation of macrophages and T cells responses during AD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Vincenzo, M.; Diotallevi, F.; Piccirillo, S.; Carnevale, G.; Offidani, A.; Campanati, A.; Orciani, M. miRNAs, Mesenchymal Stromal Cells and Major Neoplastic and Inflammatory Skin Diseases: A Page Being Written: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 8502. https://doi.org/10.3390/ijms24108502
Di Vincenzo M, Diotallevi F, Piccirillo S, Carnevale G, Offidani A, Campanati A, Orciani M. miRNAs, Mesenchymal Stromal Cells and Major Neoplastic and Inflammatory Skin Diseases: A Page Being Written: A Systematic Review. International Journal of Molecular Sciences. 2023; 24(10):8502. https://doi.org/10.3390/ijms24108502
Chicago/Turabian StyleDi Vincenzo, Mariangela, Federico Diotallevi, Silvia Piccirillo, Gianluca Carnevale, Annamaria Offidani, Anna Campanati, and Monia Orciani. 2023. "miRNAs, Mesenchymal Stromal Cells and Major Neoplastic and Inflammatory Skin Diseases: A Page Being Written: A Systematic Review" International Journal of Molecular Sciences 24, no. 10: 8502. https://doi.org/10.3390/ijms24108502
APA StyleDi Vincenzo, M., Diotallevi, F., Piccirillo, S., Carnevale, G., Offidani, A., Campanati, A., & Orciani, M. (2023). miRNAs, Mesenchymal Stromal Cells and Major Neoplastic and Inflammatory Skin Diseases: A Page Being Written: A Systematic Review. International Journal of Molecular Sciences, 24(10), 8502. https://doi.org/10.3390/ijms24108502