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Abstract: Differential methylation (DM) is actively recruited in different types of fundamental and
translational studies. Currently, microarray- and NGS-based approaches for methylation analysis are
the most widely used with multiple statistical models designed to extract differential methylation
signatures. The benchmarking of DM models is challenging due to the absence of gold standard data.
In this study, we analyze an extensive number of publicly available NGS and microarray datasets
with divergent and widely utilized statistical models and apply the recently suggested and validated
rank-statistic-based approach Hobotnica to evaluate the quality of their results. Overall, microarray-
based methods demonstrate more robust and convergent results, while NGS-based models are highly
dissimilar. Tests on the simulated NGS data tend to overestimate the quality of the DM methods and
therefore are recommended for use with caution. Evaluation of the top 10 DMC and top 100 DMC in
addition to the not-subset signature also shows more stable results for microarray data. Summing
up, given the observed heterogeneity in NGS methylation data, the evaluation of newly generated
methylation signatures is a crucial step in DM analysis. The Hobotnica metric is coordinated with
previously developed quality metrics and provides a robust, sensitive, and informative estimation of
methods’ performance and DM signatures’ quality in the absence of gold standard data solving a
long-existing problem in DM analysis.

Keywords: differential methylation; microarrays; WGBS; RRBS; methylation signature; rank statistic;
quality metric

1. Introduction

DNA methylation is an epigenetic mark that plays a significant role in many biological
processes, such as regulating gene expression and chromatin remodeling (reviewed in [1]).
Methylation contributes to normal mammalian development [2] as well as disease onset
and progression, including cancer [3], neuro-generative [4] and metabolic disorders [5].

Differential methylation (DM) analysis is resulting in differentially methylated cy-
tosines (DMCs), -probes (DMPs), or -regions (DMRs). Here, we refer to the list of DMCs
or DMPs as a methylation signature (or simply a signature). A signature is supposed to
accurately classify samples into two or more groups and capture the majority of the DNA
methylation alterations associated with a disorder or other case state [6]. Many signatures
for various types of diseases, such as cancer, metabolic disorders, and neuropsychiatric dis-
orders have been recently identified [7–11]. DM signatures, alongside differential gene ex-
pression (DGE) signatures, play an important role in clinical and translational applications.

1.1. Evaluation Studies

Given the variety of available models for DM analysis, the choice of a particular
method is a challenging task [12–14], making the methods benchmark and comparison
critical for DM analysis. Numerous studies to evaluate DM analysis methods can be
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classified based on signature quality (1), methods similarity (2), and methods performance
(3) (Table 1). Benchmark approaches based on quality metrics are the most numerous
and can utilize simulated, real, or permuted data. Since no experimental “gold standard”
is available for DM analysis, the most popular evaluation techniques involve simulated
datasets. A “ground truth” list of DMCs or DMRs allowing for a larger number of available
metrics to be estimated is predefined in such a design. However, simulated data are
highly dependent on a chosen distribution and could lack the general characteristics of real
bisulfite sequencing data, causing bias in the performance evaluation.

Benchmarks based on experimental data are limited to imprinted DMRs [15], gold-
standard DMRs inferred from the results of RNA-seq and DNase-seq experiments [16] and
methylation titration data [17]. While using real data, the assumptions and biases that are
inevitable in the simulation approach can be avoided. Nevertheless, approaches with lim-
ited validation introduce biases of a different nature, as the “ground truth” signature may
require additional verification, and only a part of the DMCs or DMRs present in real data
could be included in such a signature, even with the help of supplementary experiments.

Benchmarks based on permutation of labels in compared groups [18] usually utilize
an FPR metric. However, the FPR metric alone is not sufficient for a complete DM analysis
methods assessment; for a comprehensive evaluation, it must be applied along with other
criteria that estimate the number of true positives.

Concordance of the produced results can also serve as grounds for methods’ compar-
ison. The similarity of the methods can be estimated by the percentage of overlapping
DMCs between methods [13], the correlation between sets of p-values for each DMR [18],
or Kendall’s coefficient of concordance for each pair of methods [14]. Estimating the results’
consistency can reveal the pairwise similarity of the evaluated methods but does not show
the quality of the resulting signature of a particular method. The execution time and mem-
ory usage can be taken into consideration while comparing DM analysis methods [13,14,19].
Although comparing important user parameters, such methods do not evaluate the quality
of the results obtained.

Table 1. Classification of DM methods evaluation studies.

Strategy Criteria Studies Data

(1) Signature quality Recall [12–14,16,18] Simulated
[17] Real

True negative rate [13,18] Simulated
False discovery rate [12] Simulated
Precision [14] Simulated

[17] Real
ROC AUC [13,14,16,18,19] Simulated
False positive rate [13,16,18] Simulated

[14] Real
Empirical distribution of p-values under the null [13,16] Simulated
DMR overlapping fraction [16] Real

(2) Methods similarity Ratio of overlapping DMCs between a pair of tests [13] Simulated
Spearman correlation between p-values [18] Simulated, Real
Kendall’s coefficient of concordance [14] Simulated

(3) Methods performance Computation time [13,14,19] Simulated
Computation memory [14] Simulated

1.2. Hobotnica Approach

Existing approaches for methods’ evaluation either lack quantitative metrics or require
‘ground truth’ data that limit their applicability to simulated or partly experimentally
validated data and, therefore, significantly constrain their practical use. In addition, these
approaches do not take into account dataset heterogeneity, while the metrics computed
for a particular method may vary significantly across datasets. The label-permuting-
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based approach, although it can be applied for a particular real dataset, only allows for
FPR computation, which can have limited sensitivity. Moreover, new methods are being
developed constantly, making it critical to develop an approach that can evaluate the
quality of the signature for the available dataset in an effective manner.

To address these problems, we applied the Hobotnica metric (H-score) [20] that we
previously developed to assess the quality of molecular signatures obtained by the differen-
tial analysis of two or more groups of samples with different phenotypic characteristics and
validated for DGE and DM signatures. In this way, H-scores of different DM signatures
may be compared, allowing the direct evaluation of the models’ performance for a partic-
ular dataset by assessing the quality of phenotypes separation, delivered by a particular
signature [21]. No metric has previously been developed that evaluates the DM signature’s
quality in the context of a particular data set (e.g., inter- and intra-group samples distances)
without a list of gold-standard DMC. Hobotnica provides a novel, gold-standard free
approach for DM signature assessment.

1.3. Scopes and Objectives of the Study

In this study, with regard to DM models evaluation, we pursue the following tasks:

� To infer the influence of a data type (microarray vs. NGS derived) on the quality of
DM signatures;

� To evaluate the concordance of DM models within each data type;
� To qualify the impact of signature’s subsetting;
� To contrast the quality of DM signatures obtained on the simulated and real experi-

mental NGS data;
� To evaluate the relation and discordance between the H-score and existing quality

metrics.

2. Results
2.1. Microarray Data

We conducted DM analysis for 16 contrasts on microarray datasets between case and
control groups using limma, T-test, and dmpFinder with and without variance shrinkage.
The sizes of the obtained DM signatures ranged from 1 to 78,359. For four datasets, none
of the observed methods detected DM signatures. For one dataset, only a T-test returned
a non-empty signature. Within the same dataset, signature lengths were rather similar,
though they varied widely among datasets (Supplementary Figure S1). Non-empty DM
signatures obtained by all different methods had a large intersection of DMP (Figure 1A,
Supplementary Figure S2).

For the vast majority of non-empty DM signatures, the H-score value exceeded 0.7
(p-values < 0.05, Figure 1B,C, Supplementary Figure S5 and Table S1). In two cases, no
significant separation of groups was observed. For the GSE157341 dataset, only the T-
test method returned a non-empty but non-significant signature of seven DM sites. For
the GSE210301 dataset, two out of three comparisons received an H-score of 1 but with
non-significant p-values.

To run Hobotnica for the signatures of reduced size and compare H-scores of the
full signature and its smaller subsets, the top 100 DMP and top 10 DMP signatures were
tested. For several datasets, H-scores of the truncated signatures were higher than H-scores
of the full signature ((Figures 1D and 2, Supplementary Figure S5). The majority of the
top 100 DMP and top 10 DMP signatures had a non-zero intersection (Supplementary
Figures S3 and S4).
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Figure 1. Processing of GSE178216 dataset (microarray): oral squamous cell carcinoma (15 samples)
compared to control (7 samples). (A) Intersection of signatures return by limma, T-test, dmpFinder
and dmpFinder vs. (with variance shrinkage enabled). (B) The distances between the vectors of
methylation levels of limma signature sites. (C) H-score for the full signature returned by limma
method = 0.8197 (red), H-score distribution of random signatures of the same length as the result
(blue). (D) H-scores for the full, top 100 DMP and top 10 DMP signatures.

The H-scores for different methods within the same dataset were rather close to
one another (Figure 1D), which was to be expected since the signatures from different
methods overlapped significantly. At the same time, they highly varied across different
datasets (Supplementary Figure S5). Full signatures as well as a subset of the top 100
and top 10 DMPs demonstrated no significant differences between the H-scores for the
evaluated methods (Figure 2, Supplementary Tables S2 and S3, p-value > 0.05 Friedman
test, Supplementary Table S7).



Int. J. Mol. Sci. 2023, 24, 8591 5 of 17

Figure 2. H-scores and p-values for the signatures of each method for microarray data, full, top 100
and top 10 DMP signatures (including or excluding H-scores = 0).

2.2. Experimental NGS Data

For the three WGBS and three RRBS processed datasets, the DM signature lengths var-
ied both between different methods and across different datasets (Supplementary Figure S1).
The methylSig method obtained non-empty DM signatures only for the two datasets. The
methylKit with overdispersion correction returned only one DMC for the two datasets.

There were no DMCs detected by all the DM methods for all datasets, except GSE103886,
which had a consensus signature of 12 DMCs shared by all methods (Figure 3B, Supplemen-
tary Figure S7). Yet, for the methods based on beta-binomial distribution, a small fraction
of DMC was shared (Figure 3A, Supplementary Figure S6). Given this, it is no surprise
that, unlike H-scores for microarray data, for NGS data, H-scores varied dramatically
(Supplementary Figures S12 and S13, Supplementary Table S4). For dataset GSE150592,
H-scores ranged from 0.54 to 0.98 (Figure 3E) with all of them except for HMM-DM being
significant (p-value < 0.05, Supplementary Table S4). The highest H-score was obtained by
DSS without smoothing (Figure 3C,D). In contrast, for datasets GSE138598 and GSE103886,
all signatures received H-scores nearly equal to 1 with a small variance across methods.

In contrast to the H-scores obtained for microarray data, H-scores for NGS data did not
show consistent improvement for a shorter signature of the top 100 DMC and top 10 DMC
(Figures 3E and 4, Supplementary Tables S5 and S6). The top 100 and top 10 DMC signatures
both for methods based on the beta-binomial distribution (Supplementary Figures S8 and S10),
and all methods (Supplementary Figures S9 and S11) had zero intersection for the majority of
datasets. For several methods (methylKit, DSS, and BSmooth), the top 10 DMC signatures
returned a zero H-score. The DM methods’ results were significantly different based on
the resulting H-scores (p-value < 0.05, Friedman test) for all WGBS and RRBS datasets (all
methods except BSmooth were tested) (Supplementary Table S7, Figure 4).
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Figure 3. Processing of GSE150592 dataset (NGS): primary dermal fibroblasts from patients with
systemic sclerosis (15 samples) compared to control (15 samples). (A) Intersection of signatures
returned by beta-binomial model-based methods. (B) Intersection of the union of DMCs returned
by beta-binomial model-based methods (blue) and the signatures from the rest of the methods.
(C) Distances between vectors of methylation levels of DSS without smoothing signature sites. (D) H-
score for the full signature returned by DSS without smoothing method = 0.9785 (red), H-score
distribution of random signatures of the same length as the result (blue). (E) H-scores for the full, top
100 DMC and top 10 DMC signatures.
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Figure 4. Hobotnica metric values and p-values for each method for NGS data, full, top 100 and top
10 DMC signatures (including or excluding H-scores = 0).

2.3. Simulated NGS Data

For all simulated datasets, the length of the DM signatures increased in concordance
with the specified methylation difference (Supplementary Figure S14). methylKit produced
much shorter signatures than the other methods, while DSS with smoothing and RADMeth
produced the largest signatures for both groups of datasets.

In contrast to the results for experimental NGS data, DM signatures for simulated data
have large intersections not only for beta-binomial methods (Supplementary Figure S15)
but for all methods as well (Supplementary Figure S16). The signatures of the HMM-DM
method overlap almost completely with signatures from beta-binomial methods (Supple-
mentary Figure S16). The methylKit signatures have minimal overlap with other methods.
In most cases, there is no intersection between the shortened top 100 DMC or top 10 DMC
signatures (Supplementary Figures S17–S20).

For most methods, recall, precision, and accuracy improved with the increase in methy-
lation difference (Figure 5A–C, Supplementary Figure S21A–C). The DSS with smoothing
and RADMeth methods had the highest recall values relative to other methods. Except for
methylKit, all methods’ average precision values were higher than 0.75, with a greater vari-
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ation in precision for lower methylation differences. DSS with smoothing and RADMeth
had the highest precision, which slightly increased with an increase in the methylation
difference. Accuracy patterns for different methods were similar to precision.

Figure 5. Results for DM analysis on simulated data (group of datasets simulated with parameters
derived from real data: (A) recall, (B) precision, (C) accuracy for signatures produced from datasets
simulated with methylation differences. (D) Hobotnica for signatures produced from datasets
simulated with methylation differences. (E) False positive rate for signatures obtained after permuting
sample labels for each simulated dataset. (F) Dependence of the H-score on the proportion of true
positive DMC included in the signature. A signature had the same length as a ground truth signature
for each simulation with an average difference in methylation levels of 0.1.
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The H-scores for all methods except methylKit are close to 1, even for a methylation
difference of 0.1, and slightly increase with an increase in the difference in methylation
(Figure 5E), opposite of the results obtained for the experimental NGS data. Both precision
and recall metrics varied significantly for different methods, and the value of each metric
increased with the difference in methylation. Differently, the H-scores did not significantly
alter depending on the methylation difference values and were close to 1, with only
methylKit signatures being characterized by both low precision and recall and low H-
scores close to 0.5.

Since Hobotnica by design characterizes the ability of a signature to separate groups
of samples, we explored the connection of H-score patterns with regard to the precision
metric (Figure 5F, Supplementary Figure S21F). The H-score for such signatures correlates
with the precision, and H-score growth is more rapid for greater methylation difference
levels (Supplementary Figures S22 and S23).

The label permutation-based FPR was quite low and comparable across most methods,
with RADMeth having the highest rate, and remained consistent regardless of the changes
in methylation difference for most methods except RADMeth and HMM-DM (Figure 5E,
Supplementary Figure S21E). Most H-scores for label permutation were equal to zero due
to the short signature length or close to 0.5 (Supplementary Figure S24A,B).

In a few cases, signatures consisting of false positives received high H-scores with a
significant separation. Even though there was no visible difference between the absolute
values of intragroup and intergroup distances (Supplementary Figure S24C), ranking the
distances made the variation noticeable (Supplementary Figure S24D).

3. Discussion

Selecting a suitable method for DM analysis is challenging due to the large and
increasing number of available models. Model assessment can be an issue due to the lack
of gold standard data. Existing evaluation approaches are indirect or use simulated data
that constrain their efficiency and applicability. In this study, we present an evaluation
strategy for microarray and NGS datasets based on the previously developed Hobotnica
approach. We demonstrate that the DM signatures based on the microarray data are
of good quality and highly convergent: the signatures produced by the methods in all
datasets have comparable lengths and a significant overlap, which is reflected in highly
significant and very similar H-scores. On the other hand, DM analysis based on NGS
data is inconsistent across methods. Different methods return signatures of significantly
different lengths and content for the same dataset, which is reflected in variable and often
non-significant H-scores.

Results obtained for the simulated NGS data differ significantly from those obtained
for experimental NGS data. The content of DM signatures for simulated data shows higher
convergence, and corresponding H-scores have higher values with less variability. This
illustrates that existing simulation tools do not fully reflect the complexity of real data.
Therefore, the results of the evaluation based on simulated data should be considered with
caution. Thus, having in mind that simulated NGS data cannot be considered a “gold
standard”, the direct strategy of the evaluation, such as the Hobotnica approach, is critical
for the DM quality estimation.

Although hundreds or thousands of statistically significant DMC can be detected,
evaluating the effective length of a signature can assist with most practical applications.
However, it is often not clear whether a subset signature of top DMC incorporates ample
relevant information. Despite the fact that, in some cases, extra-short signatures of 10 DMC
were substantial for data stratification (especially for microarray data), in other cases, short
signatures delivered lower H-scores and worse data separation (or even no separation
for the shortest subsets, which resulted in a zero H-score in some cases), compared to
full-length signatures (notably for NGS data). Thus, the length of a subset signature should
be chosen not only considering pragmatic reasons (necessary for the interpretation or
sufficient for diagnostics) but needs to be explicitly tested in regard to its quality.
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Detecting and assessing an approach’s limitations is as important as its design or
validation. In this work, we limited the Hobotnica applicability to DMC only, while
the DMR format for methylation signatures is often more widely used and more easily
interpreted. The DMR format, however, poses severe problems for signatures comparison
since setting a formal criterion, whether two intersecting yet differing regions should be
treated as the same entity or not, is a challenging task. In addition, each region can be
characterized not only by the mean level of methylation but also by the length of the region,
as well as the density of sites in it.

In our study, we detected other scenarios that may constrain Hobotnica under specific
conditions. The Hobotnica approach may lose sensitivity when applied for extra-short
signatures. During pairwise distances computation, two samples may not have shared
DMC, covered in both samples. The Euclidean distance between samples in such a scenario
cannot be calculated. This can be addressed by increasing the tested signature’s length.
In other cases, Hobotnica may be oversensitive and deliver high scores for false-positive
signatures with the existing, albeit negligible, stratification effect. Practically, these cases,
although found to be quite rare, can easily be distinguished by assessing not-ranked sample
distances, which is a part of the Hobotnica analysis workflow. For the rest of the cases,
Hobotnica was shown to provide a meaningful, sensitive, and robust evaluation of DM
signatures for all platforms.

Our study provides the following practical recommendations for DM analysis. Micro-
array-based approaches due to high convergence and performance should be favored when
the study design allows, for specific applications, demanding increased robustness and
recruiting known methylation sites as most transnational and clinical applications. NGS-
based datasets, due to the high variability of the results obtained by different methods,
should be processed with several different DM methods, and the resulting signatures
should be validated either with limited experimental data or with Hobotnica, which allows
for valid quality estimation of DM analysis performance for a newly generated dataset
in the absence of gold standard data. The evaluation of newly developed methods for
DM analysis should not be performed only on simulated data due to a significant bias in
the results. This bias should be at least partially compensated for with tests on ’ground
truth’ data, no matter how limited, as well as experimental datasets for evaluating which
Hobotnica provides means.

4. Materials and Methods
4.1. Microarray Datasets
4.1.1. Data

Microarray DM methods were evaluated on 14 datasets (450k Human Methylation
Array and EPIC datasets, Table 2). Each dataset contains a case group representing a disease
or a perturbation exposure and a control group. A dataset GSE210301 contains three case
and one control group, resulting in three pairwise comparisons. Across tested datasets, the
number of samples per group varied from 4 to 345 (Supplementary Figure S25A).

4.1.2. Microarray Data Preprocessing

All datasets were preprocessed in a uniform way (Supplementary Figure S26A). The
methylation data were loaded from IDAT intensity files. Each dataset was processed using
the ChAMP package [22]. The intensity data were filtered based on detection p-values and
bead count with default thresholds and imputation disabled. Next, the data were normal-
ized using beta-mixture quantile (BMIQ) normalization. The result β-value matrix was
used as an input for differential methylation analysis methods and Hobotnica calculation.
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Table 2. Datasets for differential methylation analysis methods evaluation.

GEO Code Reference Cell Type Description Protocol # Control # Case

GSE210301 [23] IMR90 cells Cortisol exposure compared to
vehicle EPIC 6 6

GSE210301 [23] IMR90 cells Relacorilant exposure compared to
vehicle EPIC 6 6

GSE210301 [23] IMR90 cells Cortisol and Relacorilant exposure
compared to vehicle EPIC 6 6

GSE175458 [24] lung tissue Idiopathic pulmonary fibrosis
compared to non-diseased control EPIC 202 345

GSE175399 [25] adipose/connective
tissue

Thyroid-associated
ophthalmopathy compared to
control

EPIC 4 4

GSE210484 [26] cultured primary
fibroblast

Arboleda–Tham syndrome
compared to control EPIC 13 12

GSE196007 [27] classical monocyte Systemic sclerosis compared to
control EPIC 12 12

GSE156994 [28] whole blood Sporadic Creutzfeldt–Jakob
disease compared to control 450K 105 114

GSE157341 [29] liver tissue Control compared to
hepatocellular carcinoma 450K 35 228

GSE101764 [30] mucosa tissue Adjacent non-tumor compared to
colorectal cancer 450K 149 112

GSE85845 [31] lung tissue Adjacent non-tumor compared to
lung adenocarcinoma 450K 8 8

GSE156669 [32] normal buccal
mucosa

Oral submucous fibrosis compared
to control 450K 5 7

GSE178218 [33] LSCC and adjacent
tissue

Laryngeal squamous cell
carcinoma compared to control 450K 11 20

GSE178216 [33] OSCC and adjacent
tissue

Oral squamous cell carcinoma
compared to control 450K 7 15

GSE178212 [33] ESCC and adjacent
tissue

Esophageal squamous cell
carcinoma compared to control 450K 16 24

GSE157272 [34] prostate tissue Agressive prostate cancer
compared to benign prostate tissue 450K 10 8

GSE149608 [35] esophagus and
ESCC tissue

Normal and esophageal squamous
cell carcinoma tumor samples WGBS 10 10

GSE138598 [36] spermatozoa Type 2 diabetes mellitus compared
to control WGBS 9 8

GSE119980 [37] human cortex
brodmann area 9

Rett syndrome compared to
control WGBS 6 6

GSE150592 [38] primary dermal
fibroblasts

Systemic sclerosis compared to
control RRBS 15 15

GSE148060 [39] sural nerve
Comparing patients with the
highest HbA1c levels to those with
the lowest (control)

RRBS 32 21

GSE103886 [40] liver tissue STAT5a//STAT5b knockout mice
compared to control RRBS 11 12
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4.1.3. Differential Methylation Analysis

DM analysis was performed using four methods: limma with M-values input, two-
sided Welch T-test using the β-values, and dmpFinder function from minfi package with
and without variance shrinkage option enabled using the β-values. T-test and limma
functions were executed with the RnBeads package [41]. For limma and T-test, a list of
differentially methylated CpG sites was obtained using the FDR [42] threshold of 0.05.
For dmpFinder, a q-value [43] threshold of 0.05 was applied. Only CpG sites with a
mean methylation difference between groups ≥ 0.15 were used as the chosen signature for
each method.

4.2. NGS Datasets
4.2.1. Real Data

Six NGS datasets (WGBS and RRBS) were used for differential methylation analy-
sis (Table 2). The number of samples per group ranged from 6 to 32 (Supplementary
Figure S27A).

4.2.2. NGS Data Preprocessing

Both WGBS and RRBS datasets were preprocessed in a similar manner, except for a
deduplication step additionally performed for WGBS data only (Supplementary Figure S26B).
Reads from each sample were trimmed using Trim Galore (version 0.6.6) [44] to filter out
low-quality reads and cut adapters. Two base pairs were removed from the 3’ end of read 1
and the 5’ end of read 2 of the adapter-trimmed sequences for RRBS data.

The reads were mapped to human reference genome hg38 for GSE149608, GSE148060,
GSE150592, GSE138598, and GSE119980 datasets, and to mm39 for GSE103886 dataset
using Bismark (version 0.22.3) [45]. WGBS dataset reads were deduplicated using Bismark.
For each CpG site, the methylation level was obtained using the Bismark methylation
extractor. Only the CpG sites with coverage greater than five reads were held for further
analysis. Sites with no coverage in at least two samples of each group were discarded.

4.2.3. Differential Methylation Analysis

Six software packages were applied to each dataset for DMC identification between
two groups: methylKit [46], BSmooth [47], DSS [48–50], MethylSig [51], RADMeth [52],
and HMM-DM [53]. DSS was used with and without prior methylation level smoothing.
methylKit was applied with and without overdispersion correction. Other methods were
used with the default parameters.

DMCs with a default p-value adjustment lower than 0.05 were included in a signature
for the MethylSig, methylKit, DSS, and RADMeth methods. Signatures were sorted based
on the adjusted p-value.

The BSmooth smoothing procedure was applied to methylation level values before
low-coverage filtering. After smoothing, only the sites with a methylation ratio defined for
all samples were selected for further DMC identification. The tested CpG sites were sorted
based on the corresponding absolute t-statistics value. Sites that had t-statistics between the
5% and 95% quantiles were included in the resulting signature. BSmooth was not applied
to the RRBS datasets.

HMM-DM was applied to each chromosome separately with default parameters.
DMCs in hypomethylated and hypermethylated states with posterior probabilities greater
than 0.95 were added to the resulting signature. The posterior probability value was used
to sort the sites in the final HMM-DM signature.

DMCs with absolute methylation differences lower than 0.15 were excluded from the
signature for all the methods.

4.2.4. Simulated RRBS Data

Two groups of ten RRBS paired-end simulated datasets were generated using the
RRBSSim simulator [54]. The first group of datasets was prepared with default settings. For
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each dataset, 32 samples (16 case and 16 control samples) were generated. Chr22 (hg38) was
used for simulations. For the second group, the mean CpG methylation level, sequencing
depth, read length, and probability matrix of quality value counts were taken from the
real dataset (GSE103886). For every individual simulated sample, all these parameters,
except for the read length, were derived from a specific sample of the real dataset. For each
dataset, 11 case and 12 control samples were simulated as in the real dataset. Chr19 (mm39)
was used for simulation.

The resulting FASTQ files were processed in the same way as real NGS datasets. In
a group of case samples, the difference in the CpG methylation levels was introduced
similarly to that described in [14]. For each dataset, reads from 300 randomly selected
CpG islands (CGI) provided by UCSC Genome Browser [55] were simulated with methy-
lation differences of 0.1, 0.15, 0.2, and 0.3. Of all selected CGI, 150 regions were set as
hypomethylated, and 150 regions were set as hypermethylated.

In each experiment, all DM methods applicable to RRBS data were tested: MethylSig,
DSS with and without smoothing, methylKit with and without overdispersion correction,
RADMeth, and HMM-DM. Precision, recall, accuracy, and H-score metrics were calculated
for the obtained signatures. To calculate the false positive rates, we permuted the sample
labels once for each simulation. All obtained DMCs were considered false positives, and
the rest of the covered CpG were considered true negatives. To investigate the relationship
between the H-score patterns and the precision metric, the dependence of the H-score on
the precision value was calculated for a set of synthetic signatures of the same length as a
ground truth signature with a different proportion of the true positive DMCs.

4.3. Hobotnica

Hobotnica [20] evaluates signatures based on the distance values between samples,
which is inferred as the distance between vectors from the molecular signature subset of
molecular features (CpG site positions). For differential methylation analysis, each vector
contains methylation level values. Following that, the distances between samples are
ranked, as ranking makes the metric more robust to the distance selection and helps to
mitigate the impacts of outliers. The statistical significance of the H-score can be assessed
by calculating an empirical permutation p-value from a distribution of H-scores of random
signatures with the same length.

The H-score was calculated for each signature and its smaller subset (top 100 and
10 DMCs from the signature sorted by adjusted p-value). Hobotnica was applied to beta
values (microarrays) and methylation ratio values (NGS) with Euclidean distance. The
H-score was set to zero if a distance matrix contained at least one NA entry or a method
did not return any DMCs. H-scores were defined only for signatures of length greater than
or equal to two sites. Whether an empty signature should be dismissed from the evaluation
(since no false result was returned by the method) or needs to be set to the minimum, i.e., 0
(given no possible stratification to groups can be performed for samples), is a precarious
question. We evaluated both scenarios and assessed the results separately.

To calculate the p-value for each signature, we sampled 5000 random signatures of the
same length with replacement from the corresponding dataset and calculated the H-score
for each of them. H-scores equal to zero were not included in the final distribution. If the
number of sampled H-scores was less than 5000, the resulting p-value was not defined. The
p-value was computed by incorporating a pseudo-count.

4.4. Statistical Inference

H-score distributions of the observed DM methods were compared to detect differ-
ences between the methods. First, the H-scores distributions from microarray and NGS
results were tested for normality using the Shapiro–Wilk normality test. The Friedman
test [56] was applied because the H-scores distributions did not meet the ANOVA test
assumption of the independent observations and the normality assumption. H-scores
equal to zero were included in the test. The Friedman test statistics were calculated for
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the WGBS and RRBS datasets values separately and for all datasets, not including the
BSmooth method, as it cannot be applied to RRBS data. The benchmark is available at
https://github.com/lab-medvedeva/Hobotnica-DiffMeth-comparison (accessed on 28
April 2023).

5. Conclusions

In this study, we performed a benchmark for DM methods on multiple NGS and
microarray datasets based on the resulting DM signature’s quality. We applied the rank
statistic approach Hobotnica to assess models’ performance in the absence of gold standard
data. The observed heterogeneity of signatures’ quality across experimental platforms,
DM models, and biological datasets confirmed the necessity for the signatures’ quality
assessment in newly conducted analyses. Hobotnica provides provide robust, sensitive,
and informative estimation for DM signature quality, solving a long-existing problem in
DM analysis.
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