Identification of Potential Biomarkers and Small Molecule Drugs for Bisphosphonate-Related Osteonecrosis of the Jaw (BRONJ): An Integrated Bioinformatics Study Using Big Data
Abstract
:1. Introduction
2. Results
2.1. Identification of DEGs in BRONJ
2.2. Functional and Network Analysis of DEGs
2.3. PPI Network and Hub Genes
2.4. Small Molecule Drug Screening
2.5. Verification by Molecular Docking
3. Discussion
4. Materials and Methods
4.1. Flowchart of Study
4.2. Differential Expression Analysis
4.3. Gene Ontology and Pathway Analysis
4.4. Protein–Protein Interaction (PPI) Network Analysis
4.5. Hub Gene Mapping
4.6. Identification of Small Molecule drug Candidates
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruggiero, S.L.; Dodson, T.B.; Aghaloo, T.; Carlson, E.R.; Ward, B.B.; Kademani, D. American Association of Oral and Maxillofacial Surgeons’ Position Paper on Medication-Related Osteonecrosis of the Jaws—2022 Update. J. Oral Maxillofac. Surg. 2022, 80, 920–943. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.R.; Burr, D.B. The Pathogenesis of Bisphosphonate-Related Osteonecrosis of the Jaw: So Many Hypotheses, So Few Data. J. Oral Maxillofac. Surg. 2009, 67, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Stains, J.P.; Watkins, M.P.; Grimston, S.K.; Hebert, C.; Civitelli, R. Molecular Mechanisms of Osteoblast/Osteocyte Regulation by Connexin43. Calcif. Tissue Int. 2013, 94, 55–67. [Google Scholar] [CrossRef]
- Katz, J.; Gong, Y.; Salmasinia, D.; Hou, W.; Burkley, B.; Ferreira, P.; Casanova, O.; Langaee, T.Y.; Moreb, J.S. Genetic Polymorphisms and Other Risk Factors Associated with Bisphosphonate Induced Osteonecrosis of the Jaw. Int. J. Oral Maxillofac. Surg. 2011, 40, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Wani, Y.; Rani, S.; Mir, M.R.; Sahaf, K.A.; Dar, K.A.; Ganie, N.A.; Mehraj, S.; Baqual, M.F. Advances and Applications of Bioinformatics in Various Fields of Life. Int. J. Fauna Biol. Stud. 2018, 5, 3–10. [Google Scholar]
- Fernald, G.H.; Capriotti, E.; Daneshjou, R.; Karczewski, K.J.; Altman, R.B. Bioinformatics Challenges for Personalized Medicine. Bioinformatics 2011, 27, 1741. [Google Scholar] [CrossRef]
- Kuznetsov, V.; Lee, H.K.; Maurer-Stroh, S.; Molnár, M.J.; Pongor, S.; Eisenhaber, B.; Eisenhaber, F. How Bioinformatics Influences Health Informatics: Usage of Biomolecular Sequences, Expression Profiles and Automated Microscopic Image Analyses for Clinical Needs and Public Health. Health Inf. Sci. Syst. 2013, 1, 2. [Google Scholar] [CrossRef]
- Sarhadi, V.K.; Armengol, G. Molecular Biomarkers in Cancer. Biomolecules 2022, 12, 1021. [Google Scholar] [CrossRef]
- Sokolenko, A.P.; Imyanitov, E.N. Molecular Diagnostics in Clinical Oncology. Front. Mol. Biosci. 2018, 5, 76. [Google Scholar] [CrossRef]
- Duboc, V.D.S.; Pratella, D.; Milanesio, M.; Boudjarane, J.; Descombes, S.D.S.; Paquis-Flucklinger, V.D.S.; Bottini, S. NiPTUNE: An Automated Pipeline for Noninvasive Prenatal Testing in an Accurate, Integrative and Flexible Framework. Brief. Bioinform. 2022, 23, bbab380. [Google Scholar] [CrossRef]
- Hassan, M.; Awan, F.M.; Naz, A.; Deandrés-Galiana, E.J.; Alvarez, O.; Cernea, A.; Fernández-Brillet, L.; Fernández-Martínez, J.L.; Kloczkowski, A. Innovations in Genomics and Big Data Analytics for Personalized Medicine and Health Care: A Review. Int. J. Mol. Sci. 2022, 23, 4645. [Google Scholar] [CrossRef]
- Wooller, S.K.; Benstead-Hume, G.; Chen, X.; Ali, Y.; Pearl, F.M.G. Bioinformatics in Translational Drug Discovery. Biosci. Rep. 2017, 37, 20160180. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Zhang, X.; Cha, I.H. Identifying a Combined Biomarker for Bisphosphonate-Related Osteonecrosis of the Jaw. Clin. Implant Dent. Relat. Res. 2018, 20, 191–198. [Google Scholar] [CrossRef]
- Zhuang, J.; Zu, J.; Zhou, C.; Sun, Y.; Kong, P.; Jing, Y. Bioinformatic Data Mining for Candidate Drugs Affecting Risk of Bisphosphonate-Related Osteonecrosis of the Jaw (BRONJ) in Cancer Patients. Dis. Markers 2022, 2022, 3348480. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. Limma Powers Differential Expression Analyses for RNA-Sequencing and Microarray Studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Leng, D.; Miao, R.; Huang, X.; Wang, Y. In Silico Analysis Identifies CRISP3 as a Potential Peripheral Blood Biomarker for Multiple Myeloma: From Data Modeling to Validation with RT-PCR. Oncol. Lett. 2018, 15, 5167–5174. [Google Scholar] [CrossRef]
- Sun, J.; Wen, X.; Jin, F.; Li, Y.; Hu, J.; Sun, Y. Bioinformatics Analyses of Differentially Expressed Genes Associated with Bisphosphonate-Related Osteonecrosis of the Jaw in Patients with Multiple Myeloma. Onco Targets Ther. 2015, 8, 2681–2688. [Google Scholar] [CrossRef]
- He, J.; Zhou, Q.; Jia, X.; Zhou, P.; Chen, L. Immune-Related Expression Profiles of Bisphosphonates-Related Osteonecrosis of the Jaw in Multiple Myeloma. Pharmazie 2021, 76, 159–164. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, W.; Shi, J. Differentially Expressed Genes Reveal the Biomarkers and Molecular Mechanism of Osteonecrosis. J. Healthc. Eng. 2022, 2022, 8684137. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Hu, L.; Shen, X.; Liu, C. Identification of Potential Genetic Biomarkers and Target Genes of Peri-Implantitis Using Bioinformatics Tools. Biomed Res. Int. 2021, 2021, 1759214. [Google Scholar] [CrossRef]
- Zhao, C.; Quan, X.; He, J.; Zhao, R.; Zhang, Y.; Li, X.; Sun, S.; Ma, R.; Zhang, Q. Identification of Significant Gene Biomarkers of Low Back Pain Caused by Changes in the Osmotic Pressure of Nucleus Pulposus Cells. Sci. Rep. 2020, 10, 3708. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Xia, Z.; Zhang, M.; Han, Q.; Hu, D.; Qi, S.; Xing, D.; Chen, Y.; Zhao, X. Integrated Bioinformatics-Based Identification of Potential Diagnostic Biomarkers Associated with Diabetic Foot Ulcer Development. J. Diabetes Res. 2021, 2021, 5445349. [Google Scholar] [CrossRef]
- Leek, J.T.; Scharpf, R.B.; Bravo, H.C.; Simcha, D.; Langmead, B.; Johnson, W.E.; Geman, D.; Baggerly, K.; Irizarry, R.A. Tackling the Widespread and Critical Impact of Batch Effects in High-Throughput Data. Nat. Rev. Genet. 2010, 11, 733–739. [Google Scholar] [CrossRef]
- Popovici, V.; Budinska, E.; Tejpar, S.; Weinrich, S.; Estrella, H.; Hodgson, G.; Van Cutsem, E.; Xie, T.; Bosman, F.T.; Roth, A.D.; et al. Identification of a Poor-Prognosis BRAF-Mutant-like Population of Patients with Colon Cancer. J. Clin. Oncol. 2012, 30, 1288–1295. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Cui, Y.; Diehn, M.; Li, R. Development and Validation of an Individualized Immune Prognostic Signature in Early-Stage Nonsquamous Non–Small Cell Lung Cancer. JAMA Oncol. 2017, 3, 1529. [Google Scholar] [CrossRef] [PubMed]
- Castelletti, F.; Donadelli, R.; Banterla, F.; Hildebrandt, F.; Zipfel, P.F.; Bresin, E.; Otto, E.; Skerka, C.; Renieri, A.; Todeschini, M.; et al. Mutations in FN1 Cause Glomerulopathy with Fibronectin Deposits. Proc. Natl. Acad. Sci. USA 2008, 105, 2538–2543. [Google Scholar] [CrossRef] [PubMed]
- Cadoff, E.B.; Sheffer, R.; Wientroub, S.; Ovadia, D.; Meiner, V.; Schwarzbauer, J.E. Mechanistic Insights into the Cellular Effects of a Novel FN1 Variant Associated with a Spondylometaphyseal Dysplasia. Clin. Genet. 2018, 94, 429. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, X.; Xue, P.; Ma, X.; Li, J.; Zhang, J. FN1 Promotes Chondrocyte Differentiation and Collagen Production via TGF-β/PI3K/Akt Pathway in Mice with Femoral Fracture. Gene 2021, 769, 145253. [Google Scholar] [CrossRef]
- Osta, B.; Benedetti, G.; Miossec, P. Classical and Paradoxical Effects of TNF-α on Bone Homeostasis. Front. Immunol. 2014, 5, 48. [Google Scholar] [CrossRef]
- Zhao, B. TNF and Bone Remodeling. Curr. Osteoporos. Rep. 2017, 15, 126. [Google Scholar] [CrossRef]
- Lerbs, T.; Cui, L.; Muscat, C.; Saleem, A.; van Neste, C.; Domizi, P.; Chan, C.; Wernig, G. Expansion of Bone Precursors through Jun as a Novel Treatment for Osteoporosis-Associated Fractures. Stem Cell Rep. 2020, 14, 603–613. [Google Scholar] [CrossRef] [PubMed]
- Sanghani-Kerai, A.; McCreary, D.; Lancashire, H.; Osagie, L.; Coathup, M.; Blunn, G. Stem Cell Interventions for Bone Healing: Fractures and Osteoporosis. Curr. Stem Cell Res. Ther. 2018, 13, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Haraguchi, R.; Kitazawa, R.; Imai, Y.; Kitazawa, S. Growth Plate-Derived Hedgehog-Signal-Responsive Cells Provide Skeletal Tissue Components in Growing Bone. Histochem. Cell Biol. 2018, 149, 365–373. [Google Scholar] [CrossRef] [PubMed]
- de Lima, C.A.D.; de Lima, S.C.; Barbosa, A.D.; Sandrin-Garcia, P.; de Barros Pita, W.; de Azevêdo Silva, J.; Crovella, S. Postmenopausal Osteoporosis Reference Genes for QPCR Expression Assays. Sci. Rep. 2019, 9, 16533. [Google Scholar] [CrossRef] [PubMed]
- Colell, A.; Green, D.R.; Ricci, J.E. Novel Roles for GAPDH in Cell Death and Carcinogenesis. Cell Death Differ. 2009, 16, 1573–1581. [Google Scholar] [CrossRef]
- Valenti, M.T.; Bertoldo, F.; Dalle Carbonare, L.; Azzarello, G.; Zenari, S.; Zanatta, M.; Balducci, E.; Vinante, O.; Lo Cascio, V. The Effect of Bisphosphonates on Gene Expression: GAPDH as a Housekeeping or a New Target Gene? BMC Cancer 2006, 6, 49. [Google Scholar] [CrossRef]
- Al Barashdi, M.A.; Ali, A.; McMullin, M.F.; Mills, K. Protein Tyrosine Phosphatase Receptor Type C (PTPRC or CD45). J. Clin. Pathol. 2021, 74, 548. [Google Scholar] [CrossRef]
- He, L.; Sun, X.; Liu, Z.; Qiu, Y.; Niu, Y. Pathogenesis and Multidisciplinary Management of Medication-Related Osteonecrosis of the Jaw. Int. J. Oral Sci. 2020, 12, 30. [Google Scholar] [CrossRef]
- Barupal, D.K.; Fiehn, O. Generating the Blood Exposome Database Using a Comprehensive Text Mining and Database Fusion Approach. Environ. Health Perspect. 2019, 127, 097008. [Google Scholar] [CrossRef]
- Raje, N.; Woo, S.B.; Hande, K.; Yap, J.T.; Richardson, P.G.; Vallet, S.; Treister, N.; Hideshima, T.; Sheehy, N.; Chhetri, S.; et al. Clinical, Radiographic, and Biochemical Characterization of Multiple Myeloma Patients with Osteonecrosis of the Jaw. Clin. Cancer Res. 2008, 14, 2387–2395. [Google Scholar] [CrossRef]
Study | Study Area | Study Objectives | Normalization | Screening of Small Drug | Molecular Docking | Reference |
---|---|---|---|---|---|---|
Kim et al., 2017 | BRONJ | To identify combined biomarkers associated with BRONJ | No preprocessing of data | NO | NO | [13] |
Dong Leng et al., 2018 | Multiple Myeloma (MM) | To investigate transcriptional changes of CRISP3 for MM marker | CONOR_1.0.1 | NO | NO | [16] |
Jiangnan Sun et al., 2015 | BRONJ | To explore molecular mechanisms associated with BRONJ in patients with MM | RMA | NO | NO | [17] |
Juncheng et al., 2020 | Immune Responses in BRONJ | To investigate the immune cellular and genomic profiles of BRONJ and excavate potential small molecule drug | Not Mentioned but screened only immune related genes | CMap | NO | [18] |
Huanzhi Ma et al., 2021 | Osteonecrosis | To investigate the DEGs of normal vs. osteonecrosis patients (GSE74089, GSE7116, GSE123568) | lmFit and eBayes | NO | NO | [19] |
Jinpeng Zhuang et al., 2022 | BRONJ | To identify drugs that potentially modulate the risk of BRONJ in cancer | GEO2R | DGIdb | NO | [14] |
Our Present Study | BRONJ | To identify biomarkers and small drug molecules related to BRONJ | RMA | CMap | YES |
Reference | GEO Number | Platform | BRONJ (n) | Control (n) | Region | Reference |
---|---|---|---|---|---|---|
Raje et al. (2008) | GSE7116 | GPL570 | 11 | 10 | USA | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balachandran, K.; Ramli, R.; Karsani, S.A.; Abdul Rahman, M. Identification of Potential Biomarkers and Small Molecule Drugs for Bisphosphonate-Related Osteonecrosis of the Jaw (BRONJ): An Integrated Bioinformatics Study Using Big Data. Int. J. Mol. Sci. 2023, 24, 8635. https://doi.org/10.3390/ijms24108635
Balachandran K, Ramli R, Karsani SA, Abdul Rahman M. Identification of Potential Biomarkers and Small Molecule Drugs for Bisphosphonate-Related Osteonecrosis of the Jaw (BRONJ): An Integrated Bioinformatics Study Using Big Data. International Journal of Molecular Sciences. 2023; 24(10):8635. https://doi.org/10.3390/ijms24108635
Chicago/Turabian StyleBalachandran, Kumarendran, Roszalina Ramli, Saiful Anuar Karsani, and Mariati Abdul Rahman. 2023. "Identification of Potential Biomarkers and Small Molecule Drugs for Bisphosphonate-Related Osteonecrosis of the Jaw (BRONJ): An Integrated Bioinformatics Study Using Big Data" International Journal of Molecular Sciences 24, no. 10: 8635. https://doi.org/10.3390/ijms24108635
APA StyleBalachandran, K., Ramli, R., Karsani, S. A., & Abdul Rahman, M. (2023). Identification of Potential Biomarkers and Small Molecule Drugs for Bisphosphonate-Related Osteonecrosis of the Jaw (BRONJ): An Integrated Bioinformatics Study Using Big Data. International Journal of Molecular Sciences, 24(10), 8635. https://doi.org/10.3390/ijms24108635