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Abstract: The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into
a global pandemic, with an alarming infectivity and mortality rate. Studies have examined genetic
effects on SARS-CoV-2 disease susceptibility and severity within Eurasian populations. These studies
identified contrasting effects on the severity of disease between African populations. Genetic factors
can explain some of the diversity observed within SARS-CoV-2 disease susceptibility and severity.
Single nucleotide polymorphisms (SNPs) within the SARS-CoV-2 receptor genes have demonstrated
detrimental and protective effects across ethnic groups. For example, the TT genotype of rs2285666
(Angiotensin-converting enzyme 2 (ACE2)) is associated with the severity of SARS-CoV-2 disease,
which is found at higher frequency within Asian individuals compared to African and European
individuals. In this study, we examined four SARS-CoV-2 receptors, ACE2, Transmembrane serine
protease 2 (TMPRSS2), Neuropilin-1 (NRP1), and Basigin (CD147). A total of 42 SNPs located within
the four receptors were reviewed: ACE2 (12), TMPRSS2 (10), BSG (CD147) (5), and NRP1 (15).
These SNPs may be determining factors for the decreased disease severity observed within African
individuals. Furthermore, we highlight the absence of genetic studies within the African population
and emphasize the importance of further research. This review provides a comprehensive summary
of specific variants within the SARS-CoV-2 receptor genes, which can offer a better understanding of
the pathology of the SARS-CoV-2 pandemic and identify novel potential therapeutic targets.
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1. Introduction

The identification of therapeutic interventions against the COVID-19 pandemic is still
ongoing. Despite the lack of definitive treatment, several vaccines have been developed and
administered globally [1]. These have varying efficacies, with the highest at approximately
95.0% and the lowest at 66.0% [1]. Despite the relatively high efficacy, SARS-CoV-2 vaccines
present with a range of adverse side effects, one of which includes vaccine-induced immune
thrombotic thrombocytopenia (VITT), which is fatal [2]. In addition, there are significant
differences in disease severity observed across individuals with the same SARS-CoV-2
variants [3]. Consequently, it is crucial to gain more insight into SARS-CoV-2 and its
interaction with host cell surface molecules, as this approach may generate novel, unique,
and effective strategies for treatment.

The role of polymorphisms within receptors and co-receptors in infectious disease has
been previously demonstrated. Human immunodeficiency virus (HIV) infection represents
a good model for examining receptor-related mutations. Samson et al. (1996) showed that
a mutant allele within the chemokine receptor (CCR5) gene conferred significant resistance
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to HIV infection within Caucasian individuals [4]. The mutant allele (allele frequency of
0.092 in Caucasian populations), now referred to as the CCR5-∆32 HIV-resistance allele,
leads to the removal of 32 nucleotides from the CCR5 gene, resulting in a premature stop
codon. This forms a truncated CCR5 protein, which remains in the cytoplasm and does
not migrate to the cell surface, preventing the binding of HIV to CCR5 [5]. Interestingly,
the CCR5-∆32 mutation is found at a substantially lower frequency within African and
Asian populations [6]. Remarkably, bone marrow stem cells with the CCR5-∆32 mutation
were successful in curing Timothy Brown of HIV for more than ten years [7,8]. However, it
is difficult to reproduce this method. Gupta et al. (2020) recently reported that a London
patient who received allogeneic stem cell transplantation with CCR5 absent cells has been
in HIV remission for 30 days [9]. The group reported an undetectable viral load in patient
plasma. This evidence highlights the importance of determining the effect of genetic
variation in viral receptors and their effect on disease susceptibility.

The effect of host receptor polymorphisms can also be observed within the Hepati-
tis C virus (HCV). The rs5925 SNP of the low-density lipoprotein receptor (LDLR) gene
was associated with susceptibility in Han Chinese individuals [10]. However, the same
relationship was not observed for Japanese individuals [11]. The rs5925 SNP is character-
ized as a synonymous variant, located within the thirteenth exon of the LDLR gene. A
second SNP, rs11669576 (1171G>A, Ala391Thr), is a missense variant within exon eight
of the LDLR gene. Rs11669576 is significantly different in HCV-infected Egyptian indi-
viduals compared to healthy controls [12]. In addition, rs11669576 is more frequent in
non-responders to an interferon-based treatment as compared to responders (p < 0.001) [12].
Other evidence of significant SNPs that influence susceptibility to the disease includes
Hepatitis B virus (HBV) infection. Rs2296651 is characterized as a missense variant, re-
sulting in the substitution of serine for phenylalanine at position 267 [13]. Chuaypen et al.
(2019) showed that the rs2296651 polymorphism, in the host receptor (sodium taurocholate
co-transporting polypeptide (NTCP)) for HBV, influences infection [14]. This study showed
that the GA and AA genotypes were associated with decreased risk of HBV infection in
Thai individuals [14].

Host receptors and co-receptors are extremely important for viral entry. Disruption of
the protein function by SNPs plays a crucial role in disease susceptibility and severity, as
demonstrated by HIV, HCV, and HBV. SARS-CoV-2 is similar to these viruses stated above,
requiring host receptors and co-receptors for viral replication.

The four main host receptors demonstrated to play a significant role in SARS-CoV-2
infection are ACE2, TMPRSS2, NRP1, and CD147 (Figure 1). SARS-CoV-2 requires the
ACE2 receptor to be present on a cell for viral entry, in conjunction with the protein-priming
activity of TMPRSS2 [15]. The serine protease TMPRSS2 is key to priming the spike protein
of SARS-CoV-2 for interaction with ACE2, as detailed previously [15]. However, subsequent
studies have identified additional host cell receptors, facilitating the entry of SARS-CoV-2.
A study by Mayi et al. (2021) showed that in vitro viral entry is also dependent on NRP1,
a host co-receptor of SARS-CoV-2 [16]. Ke Wang et al. (2020) further showed that CD147
(BSG) is an additional co-receptor for the SARS-CoV-2 virus in hCD147 mice, CD4+ and
CD8+ T cells, and human bronchial epithelial cells [17]. In addition, heparan sulphate (HS)
glycans facilitate the recruitment of SARS-CoV-2 to the cell surface, increasing localized
concentration for effective ACE2 engagement [18]. The variability observed within these
genes has the potential to alter COVID-19 disease severity. Diversity in COVID-19 disease
severity has been observed across individuals, ethnicities, and even continents [19,20].

The African continent has received significant attention due to the lower SARS-CoV-2
numbers of infections and death reported compared to other continents. At the start of the
pandemic, it was predicted that low- and middle-income countries, such as those within the
African continent, would be severely affected by the COVID-19 pandemic, mainly due to the
poor healthcare infrastructure and the burden of other infectious diseases, such as TB and
HIV [21]. Despite the prediction, Africa proved quite the opposite, reporting lower active
cases and COVID-19 deaths [22]. In June 2020, the European Centre for Disease Prevention
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and Control (ECDC), for Africa, reported the lowest number of SARS-CoV-2 infections
and deaths (1,037,135 cases and 22,916 deaths) compared to America (10,615,855 cases and
389,793 deaths), Europe (3,061,264 cases and 207,215 deaths), and Asia (4,886,417 cases and
106,711 deaths) [23,24]. Recent studies have described this as the “African paradox” and
further identified key features to explain this observation [25,26]. These features include
the low median age of the African population, lower testing, the decreased prevalence
of co-morbidities, such as obesity and diabetes, the higher rate of helminth infection and
malaria incidence [25], demographic structure, lack of long-term care facilities, and public
health mitigation strategies [26]. However, these studies neglected to describe the effect
of genetic variability within the African population, specifically within the SARS-CoV-2
receptor genes.
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Figure 1. Polymorphisms within ACE2 (rs2285666), TMPRSS2 (rs12329760), NRP1 (rs10080), and
CD147 (rs8259) contribute to variability in SARS-CoV-2 viral load. (A) Specific alleles facilitate viral
entry and, thus, increased viral load, (B) while others disrupt protein function and reduce viral entry
into the cell, resulting in lower viral load.

In this review, we examine a measure of excess deaths across the world as one indicator
of disease severity for the COVID-19 pandemic to limit the bias attached to underreporting
across certain countries. From this perspective, we describe previously reported single
nucleotide polymorphisms (SNPs) within the SARS-CoV-2 receptor genes (ACE2, TMPRSS2,
NRP1, and CD147 (BSG)) to address this African paradox. Therefore, this review provides
an in-depth comparison of SNPs within the SARS-CoV-2 receptor and co-receptor genes
(ACE2, TMPRSS2, CD147, and NRP1) that have a variation in the minor allele frequency
higher than 10% between African and European populations.

1.1. Inclusion and Exclusion Criteria for Selected SNPs

Polymorphisms located within the SARS-CoV-2 receptors and co-receptors were iden-
tified from the National Centre for Biotechnology Information (NCBI) (https://www.
ncbi.nlm.nih.gov/ (accessed on 20 February 2023)). The SNP database was searched
using the search terms “ACE2”, “TMPRSS2”, “NRP1”, and “BSG” under the “genes” cat-
egory. This search identified multiple SNPs for each gene (ACE2, n = 25,429; TMPRSS2,
n = 20,979; NRP1, n = 67,332; and CD147, n = 8743; Figure 1). These SNPs were further
filtered for articles and publications listed on LitVar Annotated, PubMed, and PubMed
Linked, decreasing the number of relevant SNPs for each gene (ACE2, n = 39; TMPRSS2,
n = 26; NRP1, n = 33; and CD147, n = 8; Figure 1). SNPs were then ranked in order of
minor allele frequencies (MAFs), and SNPs characterized as being rare genetic variants
(MAF < 5%) were removed only when the SNP had MAFs less than 5% in both African and
European populations (ACE2, n = 25; TMPRSS2, n = 24; NRP1, n = 30; and CD147, n = 7;
Figure 1). Thereafter, the linkage disequilibrium correlation coefficient for each SNP was
calculated using the LDlinkR package. SNPs with a correlation coefficient of greater than
or equal to 0.8 were removed. Finally, SNPs with greater than 10% MAF difference between

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
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Africans and Europeans were selected. Based on these criteria, the following SNPs were
discussed for each gene (ACE2, n = 12; TMPRSS2, n = 10; NRP1, n = 15; and CD147, n = 5;
Figure 2 and Table 1).
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Figure 2. Inclusion and exclusion criteria used to select SNPs discussed in this review for SARS-CoV-2
receptors and co-receptors ACE2, TMPRSS2, NRP1, and BSG(CD147) genes.

Table 1. List of SARS-CoV-2 receptor and co-receptor SNP associations in other disease(s) and
proposed mechanism(s).

Variant ID Mutation Disease(s) Genetic Ancestry Proposed
Mechanism Citation MAF

ACE2

rs1978124 T>C Cardiovascular disease Uygurs—East Asian Intron variant [27]
AFR: 0.90
EUR: 0.53
SAS: 0.78
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Table 1. Cont.

Variant ID Mutation Disease(s) Genetic Ancestry Proposed
Mechanism Citation MAF

rs233575 G>A
Cardiovascular disease,

Hypertension
East Asian and

European Intron variant [27,28]
AFR: 0.99
EUR: 0.65
SAS: 0.82

rs1514282 T>C Blood pressure East Asian Intron variant [29]
AFR: 0.32
EUR: 0.00
SAS: 0.09

rs16997078 A>G No disease associations found Intron Variant
AFR: 0.24
EUR: 0.00
SAS: 0.09

rs2097723 T>C Blood pressure East Asian Intron Variant [30]
AFR: 0.07
EUR: 0.28
SAS: 0.22

rs879922 C>G
Hypertension, Cardiovascular

disease, blood pressure and T2D. East Asian Intron Variant [27,31]
AFR: 0.45
EUR: 0.65
SAS: 0.71

rs2106809 A>G Blood pressure European Intron Variant [32]
AFR: 0.09
EUR: 0.25
SAS: 0.48

rs2048683 T>G Cardiovascular disease East Asian Intron Variant [27]
AFR: 0.81
EUR: 0.65
SAS: 0.80

rs4646120 G>A

Shared haplotype between
South Asian and East Eurasians

for host susceptibility
to SARS-CoV-2.

South Asian Intron Variant [33]
AFR: 0.68
EUR: 0.53
SAS: 0.78

rs4646140 C>T Blood pressure East Asian Intron Variant [31]
AFR: 0.13
EUR: 0.00
SAS: 0.09

rs35697037 G>A
Significant correlation with
dizziness symptoms in mild

traumatic brain injury.
East Asian Intron Variant [34]

AFR: 0.27
EUR: 0.38
SAS: 0.24

rs714205 C>G Hypertension, and Retinopathy
in T2D

East Asian Intron Variant [29,35]
AFR: 0.10
EUR: 0.21
SAS: 0.47

TMPRSS2

rs463727 T>A
Susceptibility and severity of

respiratory disease
East Asian

And European

500 KB
downstream

variant
[36]

AFR: 0.08
EUR: 0.46
SAS: 0.34

rs35041537 C>T Infectivity and Progression of
SARS-CoV-2

South Asian Intron Variant [37]
AFR: 0.11
EUR: 0.46
SAS: 0.34

rs7275220 G>A Breast Cancer European Intron Variant [38]
AFR: 0.49
EUR: 0.75
SAS: 0.66

rs456298 T>A Associated with high risk of
SARS-CoV-2

Mexican -European 3 Prime UTR
Variant

[39]
AFR: 0.63
EUR: 0.83
SAS: 0.68

rs2070788 G>A Susceptibility to infectious
disease

East Asian Intron Variant [40]
AFR: 0.73
EUR: 0.54
SAS: 0.53
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Table 1. Cont.

Variant ID Mutation Disease(s) Genetic Ancestry Proposed
Mechanism Citation MAF

rs8127290 G>A OAS variant associated with
rubella

European None [41]
AFR: 0.35
EUR: 0.16
SAS: 0.22

rs383510 T>C Susceptibility to infectious
disease

East Asian Intron Variant [40]
AFR: 0.67
EUR: 0.51
SAS: 0.55

rs11910678 T>C Susceptibility to SARS-CoV-2 None 3 Prime UTR
Variant

[42]
AFR: 0.14
EUR: 0.00
SAS: 0.003

rs1557372 C>T Alzheimer’s disease East Asian None [43]
AFR: 0.50
EUR: 0.37
SAS: 0.32

rs75603675 C>A
Associated with SARS-CoV-2

disease susceptibility and
severity

Eastern European Missense
Variant

[44]
AFR: 0.30
EUR: 0.40
SAS: 0.22

NRP1

rs2804495 G>T
Neovascular age-related

macular degeneration
European Intron variant [45]

AFR: 0.24
EUR: 0.71
SAS: 0.57

rs927099 T>C Late-onset Alzheimer disease. European Intron Variant [46]
AFR: 0.88
EUR: 0.50
SAS: 0.55

rs1048804 A>G Type 1 diabetes European Synonymous
Variant

[47]
AFR: 0.57
EUR: 0.25
SAS: 0.37

rs10080 G>A Risk of tetralogy of Fallot East Asian
Non-Coding

Transcript
Variant

[48]
AFR: 0.70
EUR: 0.43
SAS: 0.50

rs1319013 T>G Late-onset Alzheimer disease European Intron variant [49]
AFR: 0.37
EUR: 0.53
SAS: 0.52

rs1571781 A>G Late-onset Alzheimer disease European Intron variant [46]
AFR: 0.78
EUR: 0.62
SAS: 0.51

rs2070296 C>T

Associated with worse response
to ranibizumab treatment in

neovascular age-related macular
degeneration

European Synonymous
Variant

[45]
AFR: 0.32
EUR: 0.16
SAS: 0.23

rs2506144 C>T No disease associations European
Non-Coding

Transcript
Variant

AFR: 0.33
EUR: 0.18
SAS: 0.09

rs1888686 T>C Late-onset Alzheimer disease European Intron Variant [46]
AFR: 0.34
EUR: 0.21
SAS: 0.26

rs12573218 C>T Osteonecrosis of the femoral
head

East Asian Intron Variant [50]
AFR: 0.02
EUR: 0.15
SAS: 0.10

rs1010826 G>A Type 1 diabetes European Intron Variant [47]
AFR: 0.35
EUR: 0.23
SAS: 0.41



Int. J. Mol. Sci. 2023, 24, 8711 7 of 24

Table 1. Cont.

Variant ID Mutation Disease(s) Genetic Ancestry Proposed
Mechanism Citation MAF

rs1331326 C>T Late-onset Alzheimer disease European Intron Variant [46]
AFR: 0.53
EUR: 0.65
SAS: 0.65

rs1888685 C>T Late-onset Alzheimer disease European Intron Variant [46]
AFR: 0.01
EUR: 0.13
SAS: 0.23

rs12358370 C>G Osteonecrosis of the
femoral head

East Asian Intron Variant [50]
AFR: 0.03
EUR: 0.15
SAS: 0.12

rs2228638 C>T Risk of tetralogy of Fallot East Asian Missense
Variant

[48]
AFR: 0.01
EUR: 0.11
SAS: 0.13

CD147

rs8637 A>G Coronary Heart Disease East Asian 3 Prime UTR
Variant

[51]
AFR: 0.97
EUR: 0.47
SAS: 0.83

rs8259 T>A

Coronary Heart Disease, A
miRNA-492 binding-site

polymorphism in BSG (basigin)
confers risk to psoriasis in

central south
Chinese population.

East Asian 3 Prime UTR
Variant

[51,52]
AFR: 0.56
EUR: 0.30
SAS: 0.63

rs4919862 T>C Carotid Plaque Risk in Acute
Cerebral Infarction

East Asian Intron Variant [53]
AFR: 0.98
EUR: 0.75
SAS: 0.92

rs4919859 G>C Coronary Heart Disease East Asian
Intron Variant,
2 KB Upstream

Variant
[51]

AFR: 0.51
EUR: 0.35
SAS: 0.50

rs6758 G>A

Coronary Heart Disease,
Hyperpolarization-activated

cyclic nucleotide-gated channels
and its relationship with

neuroticism, cognition, and risk
of depression

East Asian and
European

3 Prime UTR
Variant

[51,54]
AFR: 0.21
EUR: 0.09
SAS: 0.25

1.2. Excess Deaths Reported between January 2020 and December 2021 of the COVID-19
Pandemic Support the Theory of the “African Paradox”

The African continent possesses the largest genetic diversity compared to the
rest of the world [55]. Yu et al. (2002) showed that the average nucleotide diversity is
0.061% ± 0.010% among Asians and 0.064% ± 0.011% within Europeans, with Africans
having the largest diversity, 0.115% ± 0.016% [56]. Within African populations, there are
higher levels of genetic diversity, large population structure, and lower LD within loci
when compared to other populations out of Africa [55]. This genetic diversity within
Africa is supported by the magnitude of cultural and linguistic diversity, with over
2000 ethno-linguistic groups throughout Africa [57]. A recent analysis of African
(n = 426) genomes uncovered an excess of 3 million novel variants and 63 unreported
loci within genes responsible for viral immunity, DNA repair, and metabolic function [58].
It has been postulated that variable COVID-19 disease severity can be explained by the ge-
netic diversity in African populations [26]. Recent studies determining the excess mortality
associated with the COVID-19 pandemic show marginal differences in excess death when
comparing Europe, Asia, and Africa [59–61]. Wang et al., 2022 reported on the number of
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excess deaths due to the COVID-19 pandemic, between 2020 and 2021 [61]. The group col-
lected data for 74 countries and 266 subnational locations and used six models to estimate
expected mortality. The study estimated that 18.2 million people died globally compared to
the reported 5.94 million [61]. Interestingly, the largest excess deaths due to the COVID-19
pandemic were observed in Asia, North Africa, and Europe [61]. However, Msemburi et al.
(2023) estimated 14.83 million excess deaths for the same period. The group reported that
America (22%), South East Asia (22%), and Europe (17%) have higher p-scores compared
to Africa (8%) [60]. With respect to the top 25 countries with the highest total estimated
excess deaths (between 2020 and 2021), European and Asian regions contribute 36 and
24 percent, respectively, compared to American and African regions, which both contribute
20 percent [60].

This wealth of evidence suggests that the COVID-19 pandemic was less severe in
Africa compared to Europe and Asia. Wachira et al. (2022) and Wamai et al. (2021) recently
reviewed the reasons for the lower severity of COVID-19 in Africa [62,63]. These studies
explored the low COVID-19 pandemic burden in Africa and suggested that it may be
explained by the demographic pyramid, the existence of pre-existing conditions, trained
immunity, socio-economic factors, and genetics. To explore the genetic arm, one has to
consider the “out-of-Africa” hypothesis. This hypothesis provides an evolutionary theory
to suggest that modern-day populations from outside Africa are all primary descendants
of a population that left Africa approximately 100,000 years ago [64].

1.3. SARS-CoV-2 Receptors, Physiological Significance, and Significant Regulatory SNPs
1.3.1. ACE2

ACE2 is a homologue of ACE and counteracts the negative effect of the renin–angiotensin
system (RAS) in a variety of diseases [65–67]. ACE2 is physiologically important in vascular
regulation. ACE2 functions by reducing the generation of angiotensin (Ang) II by catalyzing
the conversion of Ang I to Ang 1–9 and enabling the hydrolysis of Ang II to Ang I-VII.
Ang II is the key effector peptide of RAS that causes vasoconstriction. Thus, it is highly
expressed in a range of human organs and tissues, such as the heart, kidney, bladder,
and intestine. Although the lungs are the primary target of SARS-CoV-2 [68,69], the high
expression of ACE2 in other tissues may be one of the factors contributing to multiple organ
injury in critical SARS-CoV-2 infections [70,71].

ACE2 expression is regulated in different cell types and tissues, via epigenetic mecha-
nisms and polymorphisms, as reported previously [72]. To fully characterize the influence
of polymorphisms in the ACE2 gene, it is worth noting evidence from metabolic diseases,
such as hypertension, cardiovascular disease, and diabetes. All of these are associated
with COVID-19 comorbidities and linked to exacerbated severity of the disease. Increased
ACE2 expression is indicative of protection against increased blood pressure, while the
opposite is also true, where decreased ACE2 results in hypertension. Patel et al. (2014)
found increased ACE2 plasma activity in patients with cardiovascular disease (CVD), as
compared to healthy individuals [73].

The ACE2 receptor is used by both SARS-CoV-2 and its predecessor SARS-CoV to enter
and infect human cells. Several studies have reviewed the function of the ACE2 receptor
and its mechanism of action as a primary receptor for SARS-CoV-2 infection [74–76]. Briefly,
to infect the human cell, the spike (S) protein found on the envelope of the SARS-CoV-2
virus is cleaved into the S1 and S2 subunits [76]. The S2 subunit has no interaction with
the ACE2 receptor; however, S1 contains the receptor binding domain (RBD), which binds
directly to the peptidase domain (PD) on ACE2 to infect the human cell [77–79]. This
interaction is dependent on the proteolytic cleavage of S1 at the C-terminus of the protein,
which is achieved by proteases, such as cathepsins and TMPRSS2 [15].

It is, therefore, no surprise that sequence analysis of SARS-CoV-2 and SARS-CoV
showed that SARS-CoV-2 clusters with SARS-CoV-related viruses [15]. Zhou (2020) and
colleagues showed that the presence of the ACE2 protein is required for viral entry, and
cells that do not have this protein remain uninfected [80]. Furthermore, cells that possess
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other coronavirus receptors, such as aminopeptidase N (APN) and dipeptidyl peptidase
4 (DPP4), are not infected with SARS-CoV-2. Hoffman et al. (2020) also showed that the
receptor binding domain (RBD) of the spike protein was conserved between SARS-S and
SARS-2-S, which further validates the findings of Zhou and colleagues [15,81].

Due to the role of ACE2 in SARS-CoV-2 infection, studies have investigated whether
ACE2 expression and function is affected by polymorphisms. Li et al. (2005) showed that
changes in the ACE2 protein are key for the binding of SARS-CoV [82]. Thus, genetic
variability within the ACE2 gene may contribute to the ability of SARS-CoV-2 binding to
ACE2, providing an explanation for the variability in COVID-19 susceptibility and disease
severity across different ethnic groups.

Before the COVID-19 pandemic, studies identified associations between malaria and
increased blood pressure. Further investigation into the association revealed that specific
polymorphisms found in malaria-endemic regions provided a protective effect towards
malaria severity. The first study to investigate the association of ACE insertion/deletion
(I/D) within intron 16 with malaria found that the ACE I/D polymorphism, responsible
for increased Ang II production, was significantly associated with mild malaria in India
(p < 0.0001). The study showed that the D-allele, in both the homozygous (DD) and
heterozygous (DI) form, was significantly associated with mild malaria, suggesting that
the D-allele has a protective effect against susceptibility to severe malaria [83]. Rigat et al.
(1990) found that the presence of the D-allele was associated with increased ACE enzymatic
activity compared to the I-allele [84]. Dhangadamajhi et al. (2010) also investigated the
association of ACE2 C>T polymorphism located in intron 1. The found that individuals
with at least one T-allele (i.e., TT or CT) were more likely to be protected against malaria
in women. The gender-specific effect showed that the T-allele was associated with lower
expression of ACE2 [83].

Protection against severe malaria has been associated with polymorphisms in genes
that regulate Ang II. Higher levels of Ang II are a major characteristic of hypertension,
as observed in African and South Asian populations, which present with elevated blood
pressure [85,86]. ACE2 cleaved Ang I, forming the Ang II vasopressor, consequently
increasing blood pressure [87]. Therefore, even though higher levels of Ang II are associated
with hypertension and mild malaria, this suggests that lower levels of ACE2 are present in
African and South Asian populations [88]. Interestingly, rs1514282 (T>C) (Table 1) has been
associated (p < 0.006) with mean arterial pressure during high-sodium interventions within
East Asian individuals [29]. Recent in silico analysis suggested that the wild-type allele
of rs1514282 results in binding of the elav-type RNA binding protein (ETR-3), which may
induce exon inclusion within ACE2 [89].

This can be further extrapolated to account for the lower severity of the COVID-19
pandemic observed in Africa. Therefore, the hypothesis that links malaria–hypertension–
COVID-19 is rational, further warranting the need to identify ACE2 polymorphisms, such
as rs2106809 (A>G), rs2285666 (C>T), and others, which control the expression of ACE2 [90].
Since the COVID-19 pandemic, various studies have outlined the relationship between
malaria–ACE2 and COVID-19 severity and susceptibility [90–93].

The most characterized ACE2 SNP, the splice variant rs2285666 (C>T) in intron 3, has
been previously associated with COVID-19 comorbidities [94]. The A-allele is associated
with increased serum levels of ACE2 in individuals with diabetes and cerebral stroke [95].
Despite the wealth of evidence of increased plasma and serum levels of ACE2, it is unknown
whether these levels correlate with membrane expression of the ACE2 receptor. If plasma
and serum levels of ACE2 share a positive correlation, this could be used as a method to
predict the susceptibility and severity of SARS-CoV-2. However, this needs to be further
evaluated. Studies investigating the roles of rs2285666 and rs2106809 in SARS-CoV-2
infection and disease severity have identified contradictory results [96–98].

Molina et al. (2022) showed that rs2285666 was significantly associated with COVID-19
disease severity in Spanish individuals [96]. Furthermore, rs2285666 was associated with an
increased risk of hospitalization (OR = 6.65, p = 0.048) in females from a Spanish cohort [96].
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However, analysis of a Turkish cohort found no association between this SNP and the
severity of COVID-19 [98]. Despite this, recent data showed that the T-allele of rs2285666
had an increased frequency in mild and severe SARS-CoV-2-infected individuals, further
highlighting its effect on COVID-19 disease severity [99]. In addition, Alimoradi et al.
(2022) concluded that the GG genotype of rs2285666 was not associated with COVID-19
severity but with infection instead [97]. This conclusion is highly speculative, owing to the
difficulty in defining a SARS-CoV-2 true negative. Despite qPCR being the gold standard
for SARS-CoV-2 testing, there is no way of determining if an individual has had significant
exposure for infection to occur.

In silico analysis identified rs2106809 as a causal SNP for the creation of an intronic-
exonic splicing enhancer site in individuals with a CC or CT genotype having higher
circulating levels of ACE2 [98]. These data support the association of rs2106809 with
disease severity in Spanish individuals and the increased risk of hospitalization (OR = 2.12,
p = 0.039) [96]. However, Karakaş Çelik et al. (2021) reported no association with COVID-19
disease severity within a Turkish cohort [98]. The contrasting results of these studies can be
explained by the smaller sample size and differences in cohort demographics.

Rs1978124 (T>C) is an intron variant with a higher frequency in African compared
to European individuals (0.90 and 0.53, respectively). The A-allele has been previously
associated with lower systolic function in Caucasian men with Type-2 diabetes (T2D) and
cardiovascular disease [100]. This was further validated to be significantly associated with
cardiovascular disease in T2D Uygurs (Asian) [27]. In addition, the T-allele of rs1978124
(p = 0.009) and rs233575 (p = 0.018) was associated with dyslipidemia in an Asian popula-
tion [101]. In addition to rs233575 (G>A) being previously associated with dyslipidemia, it
has recently been associated with hypertension in French-Canadian obese males, suggest-
ing a risk of severe COVID-19 [102]. Rs1978124 has been associated with contrasting effects
on COVID-19 disease severity. Molina et al. (2022) showed that rs1978124 was significantly
associated with disease severity in Spanish individuals [96], while Faridzadeh et al. (2022)
reported that the TT and CT genotype had a significantly positive role in SARS-CoV-2
susceptibility and a protective effect on disease severity in Iranian females [103].

Rs35697037 has been characterized as being significantly associated with dizziness [34].
Wang et al. (2014) showed that the AA and AG genotypes were associated with increased
incidence of dizziness (p = 0.0122) within Asian individuals [34]. In conjunction with
medical conditions, such as blood pressure and cardiovascular diseases, dizziness has been
described for COVID-19 neurotropism [104,105]. Jafari et al. (2021) found the occurrence
rate of dizziness was at 12.20% in SARS-CoV-2-infected individuals [106]. The evidence
of dizziness in SARS-CoV-2-infected individuals has only been reported in a few case
reports [107–109]. It is possible that rs35697037 (G>A) may be prevalent in COVID-19-
positive individuals who experienced dizziness as a symptom; however, this assumption
requires further investigation.

A recent study found that COVID-19 is associated with an increased risk of acquiring
diabetes in American individuals (OR 2.56) [110]. The incidence of diabetes 120 days
after infection was higher in Black (OR 1.61) individuals compared to Europeans (OR
1.09) [110]. Liu et al. (2018) identified an association of rs879922 (C>G) with T2D (p < 0.05)
among East Asians, suggesting the SNP may be a common marker for susceptibility to
T2D [27]. Rs879922 is found at a lower frequency in African (45%) individuals compared
to Europeans (65%). Jalaleddine et al. (2022) showed that rs879922 was associated with
COVID-19 in obese compared to lean individuals (p = 0.06), which may increase COVID-19
disease severity [111]. In addition, rs2048683 (T>G) was associated with T2D in East
Asians [111] and blood pressure in European individuals (2020). Elbadri et al. (2022)
reported that the GG genotype (OR 5.852) is a potential marker for the risk of severe
SARS-CoV-2 infection within Egyptian individuals [112]. Furthermore, this study reported
a significant association between the TT and GT genotypes (p < 0.001) of rs2048683 with
T2D [112]. Together, these SNPs may be used as potential markers for T2D and risk of
severe SARS-CoV-2.
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The CC genotype of rs714205 (C>G) has been shown to be associated with diabetic
retinopathy (p < 0.05) in Asian individuals [35], while the GG genotype was associated
with an increased risk of hypertension [113].

In a recent study, population-specific SNPs were identified, which found significant
differences in African individuals [114]. The same group identified 13 ACE2 variants
that facilitated better interaction between ACE2 and viral S1. These include rs142984500
(H378R) and rs7363825 (S19P), which were identified as being specific to European
(p < 0.0449; frequency: 0.00014) and African populations (p < 0.0000; frequency: 0.0033) [114].
In addition, the study identified 18 SNPs that were characterized as interaction-inhibitory
variants. Interestingly, the African population had the highest difference in MAF frequency
of these SNPs compared to other ethnic groups. For instance, rs766996587 (M82I) is an
African-specific variant (p < 0.0345; frequency: 0.00016) [114].

In addition to these SNPs, rs2097723 (T>C) is found at lower frequency in Africans
(7%) compared to East Asian (42%), European (28%), and Asian (22%) individuals. Notably,
the C-allele is proposed to increase ACE2 expression in the brain tissue, and it may be a
driving factor for COVID-19 disease severity within East Asians [115].

Collectively, these studies highlight the genetic similarity between Asians and Euro-
peans. Phylogenetic analysis by Srivastava et al. (2020) identified a rs4646120 (G>A) and
rs2285666 haplotype unique to South Asians and East Eurasians, which may contribute to
similarities in COVID-19 susceptibility [33]. In addition, ACE1 and ACE2 haplotypes have
been identified and attributed to the disproportionate effect of the COVID-19 pandemic on
Europeans and Asians [116]. Gemmati et al. (2020) suggested that rs2285666, rs1978124,
and rs714205 may be predictive markers for COVID-19 disease severity [116]. However, the
use of these SNPs as molecular markers for disease severity requires further investigation
due to the differences observed across different ethnic groups.

Within the ACE2 gene, rs1978124, rs233575, rs1514282, rs16997078, rs2048683, rs4646120,
and rs4646140 are found to at higher frequency in African individuals (Table 1), while
rs2097723, rs879922, rs2106809, rs35697037, and rs714205 have a higher frequency in Eu-
ropean individuals. Interestingly, rs1514282, rs16997078 (A>G), and rs4646140 (C>T) are
unique to African individuals compared to Europeans. Studies within an Asian population
have shown the influence of the intronic SNPs (rs4646140 and rs35697037) on hypertension.
Despite the higher frequency of these polymorphisms in African individuals, research
on these polymorphisms within Africa is lacking [31,35]. A recent in silico analysis of
ACE2 revealed that 15 intronic and 2 missense SNPs (rs147311723 and rs149039346) were
different in African individuals compared to other populations [117]. Several other stud-
ies have highlighted these SNPs as being involved in COVID-19 severity and genetic
susceptibility [94,115,118,119].

1.3.2. TMPRSS2

TMPRSS2, a cell surface trypsin-like protease, has been identified as a key mediator of
viral infection. On the plasma membrane, TMPRSS2 proteolytically cleaves and activates
viral S glycoproteins, enabling the entry of viral particles [120]. As such, TMPRSS2 has
been implicated in the spread and pathogenesis of influenza A virus, human corona virus
229E, human coronavirus EMC, Sendia virus, human metapneumovirus, and human
parainfluenza [120–123]. Thus, it is not surprising that TMPRSS2 is an essential co-receptor
for the pathogenesis of SARS-CoV-2 [124]. The primary role of TMPRSS2 in SARS-CoV-2
infection has been described as proteolytic cleavage of the S2 subunit, thus triggering the
fusion of the viral envelope with the cell membrane [15,125,126].

Apart from its well-described microbial activity, the normal physiological function of
TMPRSS2 remains unknown. It is, however, highly expressed in the prostate compared to
other human tissue and facilitates prostate cancer cell metastasis [127,128]. Lubieniecka et al.
(2004) showed that the GG genotype of rs1232970 and a family history of prostate cancer
increased the risk of prostate cancer acquisition [129]. Therefore, it is worth investigating
the effect of SNPs on COVID-19 disease susceptibility and severity.
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The assessment of SNPs within TMPRSS2 showed that rs2070788, rs8127290, rs383510,
rs11910678, and rs1557372 are found at higher frequency in African individuals, while
rs463727, rs35041537, rs7275220, rs456298, and rs75603675 are found at higher frequency in
European individuals (Table 1). Wang et al. (2020) investigated single-nucleus-accessible
chromatin profiles to determine susceptibility to SARS-CoV-2 infection and compared
common variants with infection and respiratory function [130]. The study showed that
rs8127290 (G>A) (p = 1.4× 10−3) and rs1557372 (C>T) (p = 2.9× 10−3) were associated with
asthma and chronic obstructive pulmonary disorder, respectively, which may influence
COVID-19 susceptibility and severity [130].

Based on eQTL data, Asselta et al. (2020) showed that rs463727 (T>A) signifi-
cantly changed TMPRSS2 expression between European and East Asian individuals
(p < 2.2 × 10−16) [131]. Rs463727 and rs35041537 (C>T) are found at a lower frequency
within an Asian cohort, which may explain the low rate of SARS-CoV-2 infectivity within
an Indian cohort [37].

Rs11910678 (T>C) has a higher frequency in African individuals compared to European
individuals (Table 1). A study within an Asian cohort found that rs11910678 influenced
TMPRSS2 expression [42]. This same effect has not been explored within an African setting.

In males, rs8134378 (A>T), rs383510 (T>C), and rs2070788 (G>A) have been shown to
increase the expression of TMPRSS2, favoring the fusion of H1N1 and H7N9 viral mem-
branes [40]. In summary, TMPRSS2 expression is influenced by the G-allele of rs2070788
and the T-allele of rs383510, which are collectively associated with elevated TMPRSS2
expression in lung tissue [132]. Rs2070788 and rs383510 have been further identified as
causal SNPs of COVID-19 disease severity [133]. Panday et al. (2022) showed that the
G-allele of rs2070788 was significantly correlated with the case fatality rate of the Indian
population (n = 393; p = 0.029) [134]. However, Schönfelder et al. (2021) did not correlate
rs2070788 with increased risk or disease severity of SARS-CoV-2 infection within a German
cohort (239 positives and 253 negatives) [135]. Interestingly, the G-allele of rs2070788 is the
same in both Asians and Europeans; thus, the differences in results can be attributed to
different study designs. Pandey et al. (2022) considered next-generation sequencing data
against the COVID-19 case fatality rate across India [134], while Schönfelder et al. (2021)
compared 239 SARS-CoV-2-positive individuals and 253 SARS-CoV-2-negative individuals
who had typical symptoms for COVID-19 but did not test positive via RT-PCR [135].

Despite the relatively higher frequencies of rs2070788 and rs383510 in Africa, the im-
pact of these SNPs has not been explored. In addition, rs2070788, rs9974589, and rs7364083
have been predicted to be associated with higher TMPRSS2 expression in European in-
dividuals [131]. Investigating these SNPs in an African population would discern their
association with severe COVID-19.

Among the various SNPs that have been associated with COVID-19, rs12329760 has
been identified to exhibit both a deleterious and protective effect, specifically within young
males and older females [136]. The SNP is characterized as a missense variant with the
substitution of valine with methionine at position 160 (c.478G>A, p.V160M). Wulandari et al.
(2021) identified a weak correlation between rs12329760 and viral load within individuals
of Indonesian descent, indicative of an association with SARS-CoV-2 infectivity and disease
severity [137]. In addition, Abdelsattar et al. (2022) showed that the T-allele of rs12329760
is significantly increased in a severe COVID-19 Egyptian group [99], while these studies
have identified strong correlations of rs12329760 with increased COVID-19 disease severity.
Ravikanth et al. (2021) demonstrated that rs12329760 was associated with decreased
disease severity [138]. In addition, a 2.5-fold increase in mRNA and protein expression
was observed in individuals with the variant, and a 2.4-fold decrease in spike protein
cleavage was observed in individuals with the variant [138]. Recent data from the UK
further highlight the protective effect of the T-allele [139]. A group showed significant
data for individuals of European and East Asian ancestry (p = 0.01; OR = 0.87 and p = 0.03;
OR = 0.64, respectively); however, no significant data were obtained for African and South
Asian ancestries due to low sample numbers [139]. Despite the pronounced protective
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effect of rs12329760 within European individuals, Schönfelder et al. (2021) did not report a
correlation between rs12329760 and COVID-19 [135].

While the role of rs75603675 (C>A) within infectious diseases is largely unknown,
Torre-Fuentes et al. (2021) found that the SNP was more frequent among SARS-CoV-2-
infected Spanish individuals; however, the data were not significant, owing to the small
sample size of 138 individuals [140]. On the contrary, Iranian data suggest that the AA
genotype of rs75603675 decreased the risk of severe COVID-19 (p = 0.027) [141]. Further-
more, Villapalos-Garcia et al. (2022) identified rs75603675 as a possible predictor for severe
disease from 817 participants of Eurasian descent (OR = 2.140) [142]. The lower frequency
of this SNP in African individuals may be a concerning predictor for disease severity.

In a recent study, Posadas-Sanchez et al. (2022) investigated SNPs within TMPRSS2
within a Mexican cohort [39]. Their study of rs2298659 (G>A), rs456298 (T>A), rs462574
(A>G), and rs12329760 (C>T) resulted in two high-risk haplotypes (ATGC and GAAC) and,
interestingly, a further two protective haplotypes (GAGC and GAGT). The results of this
study point to the probability of the same SNPs being high-risk alleles and low-risk alleles.
Based on this observation, it is worth noting that, irrespective of an SNP being a marker
for a high risk of COVID-19 in one population, the same SNP may be highly protective in
another population.

Collectively, these studies highlight the protective and detrimental effects of the
TMPRSS2 polymorphisms within various ethnic groups. However, this has not been
proven for individuals of African ancestry. We suggest that the same protective effect
may be present in African populations, owing to the relatively higher frequency of the
rs12329760 T-allele compared to European populations. However, this needs to be further
investigated within an African setting.

1.3.3. NRP1

NRP1 is a cell surface receptor involved in angiogenesis, vascular permeability, and
the development of the nervous system. NRP1 is a receptor for vascular endothelial growth
factor (VEGF) that controls the binding of VEGF to kinase insert domain receptor (KDR),
thus regulating VEGF-induced angiogenesis [143,144]. In addition, NRP1 is a mediator
of chemorepellents by interacting with Collapsin-1/Semaphorin III/D [145]. The most
significant function of the NRP1 receptor is its ability to recognize and bind to C-end
Rule (CendR) peptides, which facilitates the entry and transport of peptides through
tissues [146].

This characteristic has been shown to enable the recognition and binding of the CendR
motif RRAR on the Spike 1 protein of SARS-CoV-2 [147,148]. Ackermann et al. (2020)
showed that the expression of NRP1 was increased in SARS-CoV-2-infected patients [149];
thus, polymorphisms that influence NRP1 expression may play a regulatory role in the
further uptake of viral particles. Interestingly, it has been suggested that NRP1 may interact
with S1 in the absence of ACE2; however, this requires further investigation [150].

Rs2228638 (C>T) and rs10080 (G>A) have both been identified as polymorphisms
that may impact the clinical outcomes of SARS-CoV-2 infection [151] (Table 1). Fan et al.
(2018) demonstrated that rs2228638 is associated with an increased risk of tetralogy of
Fallot (TOF) in a Chinese population (p = 0.002) [48]. Tetralogy of Fallot is a severe form of
cyanotic congenital heart disease, where the T-allele has been associated with increased
risk in European and Chinese populations [48]. In addition, rs10080 is also associated
with susceptibility of TOF (p = 0.001). The association of these SNPs with severe clinical
outcomes of COVID-19 is, thus, justified, owing to the association of cardiovascular disease
with severe COVID-19 disease.

A major symptom of SARS-CoV-2 infection is headaches [152]. Interestingly, an NRP1
SNP, rs2506142, is associated with migraine susceptibility and significantly associated with
menstrual migraine (p = 0.003) [153,154]. Although this SNP does not associate with disease
susceptibility, it is worth noting the effect this SNP may have on clinical manifestations and
severity of COVID-19 disease.
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Within NRP1, rs927099, rs1048804, rs10080, rs1571781, rs2070296, rs2506144, rs1888686,
and rs1010826 have a higher frequency in African individuals. Studies of these polymor-
phisms within other ethnic groups are lacking. On the contrary, rs2804495, rs1319013,
rs12573218, rs1331326, rs1888685, rs12358370, and rs2228638 have a higher frequency in
European individuals.

1.3.4. BSG (CD147)

CD147, more commonly known as Basigin, is a transmembrane glycoprotein within
the immunoglobulin superfamily [155]. CD147 has well-characterized associations with
tumor development, Plasmodium invasion, and bacterial and viral infections [156–159].
Chen et al. (2005) proved the functional role of CD147 in cellular invasion of SARS-CoV
and HIV-1 [160]. The evidence from this previous work highlighted the role of CD147 in
SARS-CoV-2 infection. Wang et al. (2020) discovered CD147 as a new receptor for the
SARS-CoV-2 virus [17]. Interestingly, the group found that ACE2-deficient T cells (BHK-21
cells) could be infected with the SARS-CoV-2 pseudo virus. The overexpression of CD147
facilitates viral infection but also alters viral tropism.

Despite this evidence, Shilts et al. (2021) were unable to validate the role of CD147 in
SARS-CoV-2 infection in HEK293 cells [161]. The group did not detect any biochemical
binding or cell-based assay interaction with CD147 and the SARS-CoV-2 spike protein [161].
Shilts et al. (2021) further explored the functional role of CD147 in lung epithelial cells
(CaLu-3), where CD147 had no significant effect on COVID-19 infectivity, despite ACE2
receptor knock-out using CRISPR-Cas9. These contrasting results are attributed to the
different in vitro models employed. This highlights the cell-specific nature of the gene.

Considering these conflicting reports, Fenizia et al. (2021) sought to further test the
hypothesis that CD147 may be involved in SARS-CoV-2 infection through interaction
with cyclophilin A (CyPA) [162]. CyPA is a member of the immunophilin family, which
promotes viral infection [156,160] and has known interactions with CD147 [160]. Contra-
dictory to the report by Shilts et al. (2021), Fenizia et al. (2021) found that knock down
of CD147 via transient siRNA transfection significantly decreased pulmonary cell viral
load but also decreased the availability of the ACE2 protein [161,162]. The results sup-
port the initial discovery by Wang et al. (2020); however, they also suggest that CD147
may influence SARS-CoV-2 infection, either directly or indirectly, due to ACE2 regulation.
Fenizia et al. (2021) further showed that CD147 silencing decreased ACE2 protein levels
(82.3 ± 7.0 percent) but did not affect RNA expression [162].

Thus, the role of CD147 in SARS-CoV-2 infection has since been controversial. We
suggest that the use of different cellular models, in vivo, as well as molecular knock out
techniques, can account for the conflicting data. However, recent data support the role of
CD147 in SARS-CoV-2 infection [163].

The most studied SNP within CD147 is rs8259 (T>A), which is associated with suscep-
tibility of psoriasis [52] (Table 1). Wu et al. (2011) showed that rs8259 was in the seed region
of miR-492, resulting in the selective binding of miR-492 [52]. The A-allele was associated
with no effect of binding miR-492, while the T-allele facilitated miR-492 binding. The group
reported that miR-492 may have the potential to bind to and inhibit the expression of CD147
within individuals expressing the TT-genotype (p = 0.027) [52]. Furthermore, rs8359 is
associated with acute coronary syndrome [164]. Congruent with previous reports, Mao et al.
(2014) showed that the AA-genotype increased mRNA and protein expression of CD147
in plasma [164]. The group did not explore the effect of miR-492; however, it is worth
noting that the miRNA may be implicated in controlling the expression of CD147. Other
studies have associated rs8592 with the risk of chronic heart failure [165] and multiple
myeloma. The TT-genotype was found to confer a decreased risk of chronic heart failure
in Chinese individuals (p = 0.010) with hypertension and chronic heart disease [165]. This
SNP has been extensively explored within the Chinese Han population; studies in African
and European populations are undefined.
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A recent study by Latini et al. (2020) identified three SNPs of interest with the CD147
gene, which may be involved in SARS-CoV-2 entry into cells [166]. The SNPs include
rs201850688, rs11551906, and rs144824657, which do not reflect differences in the MAF
between ethnic groups. Crosnier et al. (2011) identified key SNPs that modulate NRP1
interaction with Plasmodium falciparum [167]. Interestingly, rs104894669 resulted in a 2-
fold reduction in parasite up-take, while rs55911144 resulted in a loss of interaction be-
tween NRP1 and the parasite. However, these SNPs have no variation in MAF between
ethnic groups.

Furthermore, studies have identified causal SNPs within CD147, which have been
associated with coronary heart disease and acute myeloid leukemia [51,53]. These include
rs8637, rs8259, rs4919862, rs4919859, and rs6758, which have been previously identified for
possible impact on COVID-19 severity [151]. However, despite the array of knowledge on
cancers and other infectious diseases, the role of CD147 polymorphisms with SARS-CoV-2
infection is largely unknown [151,168].

SNPs in NRP1 and CD147 may be potential therapeutic targets. Studies suggest
that the use of NRP1 and CD147 inhibitors may be an alternative COVID-19 therapeutic
strategy [162,169].

Despite the high frequency of rs2804495 (G>T) in Europeans, Lores-Motta et al. (2016)
did not report an association with treatment response to neovascular age-related vascular
degeneration [45]. Studies to investigate the role of rs2804495 in COVID-19 have not
been considered.

1.4. Addressing the African Paradox

The COVID-19 pandemic has demonstrated variable effects in different countries
around the world. Several studies have characterized and explained the African para-
dox through socio-economics effects and low mean age. However, the genetic effects of
COVID-19 disease susceptibility and severity are not yet fully understood within an African
setting. This review highlights the lack of studies within Africa regarding the COVID-19
pandemic, which will contribute to the understanding of the African paradox. Africa has
made a lower contribution to the COVID-19 Host Genetics Initiative as compared to Europe
and America [170]. Furthermore, the African genome is widely understudied in compari-
son to European and Asian populations. Thus, intense studying of the African genome will
reveal genetic factors that contribute to protection from infectious diseases. Understanding
genetic variation within African populations may help curb the disparity of SARS-CoV-2
infection by providing critical pieces of information that can be used for the develop-
ment of potential therapeutic markers, also highlighting the importance of personalized
treatment strategies.

This review highlights several differences in the association of genetic variants within
the SARS-CoV-2 receptor genes and COVID-19 outcomes across ethnic groups. How-
ever, a limitation of this approach is the variability in sample sizes in case–controls and
research methodologies across studies. This is exemplified by the results obtained by
Schönfelder et al. (2021), who reported contrasting results for both rs2070788 and rs12329760
compared to other studies.

1.5. SARS-CoV-2 Receptor-Based Therapy and Clinical Significance

Several therapeutic strategies for COVID-19 have been suggested, which primarily
target S1-ACE2 interaction. Mostafa-Hedeab, 2020, suggested the use of an ACE2 ligand
or antibody to block the receptor binding domain of ACE2 to prevent SARS-CoV-2 infec-
tion [171]. Recently, the administration of recombinant soluble human ACE2 (rhACE2)
in combination with remdesivir has been shown to block the entry of SARS-CoV-2 into
cells, acting as a “decoy” for the ACE2 receptor [172]. Currently, rhACE2 APN01 is in
phase two of clinical trials (NCT04335136). In addition to ACE2, NRP1 inhibitors have
been suggested as possible therapies [169]. In silico screening of possible NRP1 inhibitors
showed that Nafamostat, Y96, Selinexor, Ebastine, and UGS are possible drugs, which
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may inhibit S1-NRP1 interactions [173]. Yamamoto et al. (2020) showed that Nafamostat
inhibits SARS-CoV-2 entry in human lung cells [174]. Furthermore, Selinexor is currently
being used in two phase two clinical trials (NCT04349098 and NCT04355676); however,
cancer patients receiving Selinexor therapy in clinical trials developed infections during
the trial [175]. The need for alternative therapeutic targets and strategies spurs on further
research and understanding of the SARS-CoV-2 receptors.

This study further highlights the potential role of variants with similar MAFs for the
use of biomarkers for COVID-19. Yagin et al. (2023) recently developed artificial intelligence
model (extreme gradient boosting) gene expression profiles, capable of successfully predict-
ing COVID-19 [176]. Similarly, SNPs should be studied for their potential use as predictive
biomarkers for COVID-19 severity. This provides clinicians with an advanced tool for the
prediction of higher or lower COVID-19-risk individuals, thus targeting vaccination role
out and rapid therapeutic interventions at higher-risk individuals.

2. Conclusions

This review highlights the effect of host genetics within SARS-CoV-2 receptors that
play a role in the pathogenesis of disease. We reviewed 42 SNPs within ACE2 (12), TMPRSS2
(10), CD147 (5), and NRP1 (15), and we discussed their role in other infectious diseases
and non-communicable diseases. Furthermore, we highlighted the importance of genetic
polymorphisms within these receptors, which may influence disease susceptibility and
severity across different ethnicities. We highlighted the need for in-depth study of African
genetic diversity across infectious diseases. When revieing the literature, we found that
studies within European and Asian cohorts outweigh studies from an African perspective.
Research has relied heavily on 1000s of genomes to determine the frequency of these
polymorphisms in African populations, but without further studies, we do not know the
relevance of these SNPs within Africans and their impact on disease. We also noted major
differences in the frequency of SNPs within African vs. European and Asian individuals,
which may explain the disparity of COVID-19 across ethnic groups. This review supports
the theory of the “African Paradox”, due to the major differences of SNPs within the
SARS-CoV-2 receptor genes and the relative difference in excess deaths observed across
different ethnic groups.
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