Research Topics of the Bioinformatics of Gene Regulation
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Orlov, Y.L.; Baranova, A.V.; Hofestädt, R.; Kolchanov, N.A. Computational genomics at BGRS\SB-2016: Introductory note. BMC Genom. 2016, 17 (Suppl. 14), 996. [Google Scholar] [CrossRef] [PubMed]
- Orlov, Y.L.; Tatarinova, T.V.; Anashkina, A.A. Bioinformatics Applications to Reveal Molecular Mechanisms of Gene Expression Regulation in Model Organisms. Int. J. Mol. Sci. 2021, 22, 11973. [Google Scholar] [CrossRef] [PubMed]
- Orlov, Y.L.; Anashkina, A.A.; Klimontov, V.V.; Baranova, A.V. Medical Genetics, Genomics and Bioinformatics Aid in Understanding Molecular Mechanisms of Human Diseases. Int. J. Mol. Sci. 2021, 22, 9962. [Google Scholar] [CrossRef] [PubMed]
- Orlov, Y.L.; Chen, W.L.; Sekacheva, M.I.; Cai, G.; Li, H. Editorial: High-Throughput Sequencing-Based Investigation of Chronic Disease Markers and Mechanisms. Front. Genet. 2022, 13, 922206. [Google Scholar] [CrossRef]
- Anashkina, A.A.; Leberfarb, E.Y.; Orlov, Y.L. Recent Trends in Cancer Genomics and Bioinformatics Tools Development. Int. J. Mol. Sci. 2021, 22, 12146. [Google Scholar] [CrossRef]
- Voropaeva, E.N.; Pospelova, T.I.; Orlov, Y.L.; Churkina, M.I.; Berezina, O.V.; Gurazheva, A.A.; Ageeva, T.A.; Seregina, O.B.; Maksimov, V.N. The Methylation of the p53 Targets the Genes MIR-203, MIR-129-2, MIR-34A and MIR-34B/C in the Tumor Tissue of Diffuse Large B-Cell Lymphoma. Genes 2022, 13, 1401. [Google Scholar] [CrossRef]
- Orlov, Y.L.; Anashkina, A.A. Life: Computational Genomics Applications in Life Sciences. Life 2021, 11, 1211. [Google Scholar] [CrossRef]
- Ignatieva, E.V.; Matrosova, E.A. Disease-associated genetic variants in the regulatory regions of human genes: Mechanisms of action on transcription and genomic resources for dissecting these mechanisms. Vavilovskii Zhurnal Genet. Selektsii 2021, 25, 18–29. [Google Scholar] [CrossRef]
- Melikhova, A.; Anashkina, A.; Il’icheva, I. Evolutionary Invariant of the Structure of DNA Double Helix in RNAP II Core Promoters. Int. J. Mol. Sci. 2022, 23, 10873. [Google Scholar] [CrossRef]
- Tsukanov, A.V.; Levitsky, V.G.; Merkulova, T.I. Application of alternative de novo motif recognition models for analysis of structural heterogeneity of transcription factor binding sites: A case study of FOXA2 binding sites. Vavilovskii Zhurnal Genet. Selektsii 2021, 25, 7. [Google Scholar] [CrossRef]
- Rasskazov, D.; Chadaeva, I.; Sharypova, E.; Zolotareva, K.; Khandaev, B.; Ponomarenko, P.; Podkolodnyy, N.; Tverdokhleb, N.; Vishnevsky, O.; Bogomolov, A.; et al. Plant_SNP_TATA_Z-Tester: A Web Service That Unequivocally Estimates the Impact of Proximal Promoter Mutations on Plant Gene Expression. Int. J. Mol Sci. 2022, 23, 8684. [Google Scholar] [CrossRef] [PubMed]
- Vishnevsky, O.V.; Chadaeva, I.V.; Sharypova, E.B.; Khandaev, B.M.; Zolotareva, K.A.; Kazachek, A.V.; Ponomarenko, P.M.; Podkolodny, N.L.; Rasskazov, D.A.; Bogomolov, A.G.; et al. Promoters of genes encoding β-amylase, albumin and globulin in food plants have weaker affinity for TATA-binding protein as compared to non-food plants: In silico analysis. Vavilovskii Zhurnal Genet. Selektsii 2022, 26, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Hui, S.; Silverman, J.M.; Chen, S.S.; Erickson, D.W.; Basan, M.; Wang, J.; Hwa, T.; Williamson, J.R. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol. Syst. Biol. 2015, 11, 784. [Google Scholar] [CrossRef] [PubMed]
- Korenskaia, A.; Matushkin, Y.; Lashin, S.; Klimenko, A. Bioinformatic Assessment of Factors Affecting the Correlation between Protein Abundance and Elongation Efficiency in Prokaryotes. Int. J. Mol. Sci. 2022, 23, 11996. [Google Scholar] [CrossRef]
- Sokolov, V.; Zuraev, B.; Lashin, S.; Matushkin, Y. Web application for automatic prediction of gene translation elongation efficiency. J. Integr. Bioinform. 2015, 12, 256. [Google Scholar] [CrossRef]
- Greenberg, M.V.C.; Bourc’his, D. The diverse roles of DNA methylation in mammalian development and disease. Nat. Rev. Mol. Cell Biol. 2019, 20, 590–607. [Google Scholar] [CrossRef]
- Nurislamov, A.; Lagunov, T.; Gridina, M.; Krasikova, A.; Fishman, V. Single-Cell DNA Methylation Analysis of Chicken Lampbrush Chromosomes. Int. J. Mol. Sci. 2022, 23, 12601. [Google Scholar] [CrossRef]
- Belokopytova, P.; Fishman, V. Predicting Genome Architecture: Challenges and Solutions. Front Genet. 2021, 11, 617202. [Google Scholar] [CrossRef]
- Kabirova, E.; Nurislamov, A.; Shadskiy, A.; Smirnov, A.; Popov, A.; Salnikov, P.; Battulin, N.; Fishman, V. Function and Evolution of the Loop Extrusion Machinery in Animals. Int. J. Mol. Sci. 2023, 24, 5017. [Google Scholar] [CrossRef]
- Fudenberg, G.; Imakaev, M.; Lu, C.; Goloborodko, A.; Abdennur, N.; Mirny, L.A. Formation of Chromosomal Domains by Loop Extrusion. Cell Rep. 2016, 15, 2038–2049. [Google Scholar] [CrossRef]
- Solodneva, E.; Svishcheva, G.; Smolnikov, R.; Bazhenov, S.; Konorov, E.; Mukhina, V.; Stolpovsky, Y. Genetic Structure Analysis of 155 Transboundary and Local Populations of Cattle (Bos taurus, Bos indicus and Bos grunniens) Based on STR Markers. Int. J. Mol. Sci. 2023, 24, 5061. [Google Scholar] [CrossRef] [PubMed]
- Svishcheva, G.; Babayan, O.; Lkhasaranov, B.; Tsendsuren, A.; Abdurasulov, A.; Stolpovsky, Y. Microsatellite Diversity and Phylogenetic Relationships among East Eurasian Bos taurus Breeds with an Emphasis on Rare and Ancient Local Cattle. Animals 2020, 10, 1493. [Google Scholar] [CrossRef] [PubMed]
- Levitsky, V.; Mukhin, A.; Oshchepkov, D.; Zemlyanskaya, E.; Lashin, S. Web-MCOT Server for Motif Co-Occurrence Search in ChIP-Seq Data. Int. J. Mol. Sci. 2022, 23, 8981. [Google Scholar] [CrossRef] [PubMed]
- Euskirchen, G.M.; Rozowsky, J.S.; Wei, C.L.; Lee, W.H.; Zhang, Z.D.; Hartman, S.; Emanuelsson, O.; Stolc, V.; Weissman, S.; Gerstein, M.B.; et al. Mapping of transcription factor binding regions in mammalian cells by ChIP: Comparison of array- and sequencing-based technologies. Genome Res. 2007, 17, 898–909. [Google Scholar] [CrossRef]
- Levitsky, V.; Oshchepkov, D.; Zemlyanskaya, E.; Merkulova, T. Asymmetric Conservation within Pairs of Co-Occurred Motifs Mediates Weak Direct Binding of Transcription Factors in ChIP-Seq Data. Int. J. Mol. Sci. 2020, 21, 6023. [Google Scholar] [CrossRef]
- Dergilev, A.I.; Orlova, N.G.; Dobrovolskaya, O.B.; Orlov, Y.L. Statistical estimates of multiple transcription factors binding in the model plant genomes based on ChIP-seq data. J. Integr. Bioinform. 2022, 19, 20200036. [Google Scholar] [CrossRef]
- Goh, W.S.; Orlov, Y.; Li, J.; Clarke, N.D. Blurring of High-Resolution Data Shows that the Effect of Intrinsic Nucleosome Occupancy on Transcription Factor Binding is Mostly Regional, Not Local. PLoS Comput. Biol. 2010, 6, e1000649. [Google Scholar] [CrossRef]
- Lähnemann, D.; Köster, J.; Szczurek, E.; McCarthy, D.J.; Hicks, S.C.; Robinson, M.D.; Vallejos, C.A.; Campbell, K.R.; Beerenwinkel, N.; Mahfouz, A.; et al. Eleven grand challenges in single-cell data science. Genome Biol. 2020, 21, 31. [Google Scholar] [CrossRef]
- Raevskiy, M.; Yanvarev, V.; Jung, S.; Del Sol, A.; Medvedeva, Y.A. Epi-Impute: Single-Cell RNA-seq Imputation via Integration with Single-Cell ATAC-seq. Int. J. Mol. Sci. 2023, 24, 6229. [Google Scholar] [CrossRef]
- Xu, J.; Cui, L.; Zhuang, J.; Meng, Y.; Bing, P.; He, B.; Tian, G.; Pui, C.K.; Wu, T.; Wang, B.; et al. Evaluating the performance of dropout imputation and clustering methods for single-cell RNA sequencing data. Comput. Biol. Med. 2022, 146, 105697. [Google Scholar] [CrossRef]
- Shevtsov, A.; Raevskiy, M.; Stupnikov, A.; Medvedeva, Y. In Silico Drug Repurposing in Multiple Sclerosis Using scRNA-Seq Data. Int. J. Mol. Sci. 2023, 24, 985. [Google Scholar] [CrossRef] [PubMed]
- Ivanisenko, T.; Demenkov, P.; Kolchanov, N.; Ivanisenko, V. The New Version of the ANDDigest Tool with Improved AI-Based Short Names Recognition. Int. J. Mol. Sci. 2022, 23, 14934. [Google Scholar] [CrossRef] [PubMed]
- Ivanisenko, T.V.; Saik, O.V.; Demenkov, P.S.; Ivanisenko, N.V.; Savostianov, A.N.; Ivanisenko, V.A. ANDDigest: A new web-based module of ANDSystem for the search of knowledge in the scientific literature. BMC Bioinform. 2020, 21 (Suppl. 11), 228. [Google Scholar] [CrossRef] [PubMed]
- Ivanisenko, V.A.; Saik, O.V.; Ivanisenko, N.V.; Tiys, E.S.; Ivanisenko, T.V.; Demenkov, P.S.; Kolchanov, N.A. ANDSystem: An Associative Network Discovery System for automated literature mining in the field of biology. BMC Syst. Biol. 2015, 9 (Suppl. 2), S2. [Google Scholar] [CrossRef] [PubMed]
- Saik, O.V.; Klimontov, V.V. Gene Networks of Hyperglycemia, Diabetic Complications, and Human Proteins Targeted by SARS-CoV-2: What Is the Molecular Basis for Comorbidity? Int. J. Mol. Sci. 2022, 23, 7247. [Google Scholar] [CrossRef]
- Demenkov, P.S.; Oshchepkova, E.A.; Demenkov, P.S.; Ivanisenko, T.V.; Ivanisenko, V.A. Prioritization of biological processes based on the reconstruction and analysis of associative gene networks describing the response of plants to adverse environmental factors. Vavilovskii Zhurnal Genet. Selektsii 2021, 25, 80–592. [Google Scholar] [CrossRef]
- Veljković, A.N.; Orlov, Y.L.; Mitić, N.S. BioGraph: Data Model for Linking and Querying Diverse Biological Metadata. Int. J. Mol. Sci. 2023, 24, 6954. [Google Scholar] [CrossRef]
- Cai, Z.; Zhao, X.; Zhou, C.; Fang, T.; Liu, G.; Luo, J. Genome-Wide Mining of the Tandem Duplicated Type III Polyketide Synthases and Their Expression, Structure Analysis of Senna tora. Int. J. Mol. Sci. 2023, 24, 4837. [Google Scholar] [CrossRef]
- Kang, S.H.; Lee, W.H.; Lee, C.M.; Sim, J.S.; Won, S.Y.; Han, S.R.; Kwon, S.J.; Kim, J.S.; Kim, C.K.; Oh, T.J. De novo transcriptome sequence of Senna tora provides insights into anthraquinone biosynthesis. PLoS ONE 2020, 15, e0225564. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orlov, Y.L.; Anashkina, A.A.; Kumeiko, V.V.; Chen, M.; Kolchanov, N.A. Research Topics of the Bioinformatics of Gene Regulation. Int. J. Mol. Sci. 2023, 24, 8774. https://doi.org/10.3390/ijms24108774
Orlov YL, Anashkina AA, Kumeiko VV, Chen M, Kolchanov NA. Research Topics of the Bioinformatics of Gene Regulation. International Journal of Molecular Sciences. 2023; 24(10):8774. https://doi.org/10.3390/ijms24108774
Chicago/Turabian StyleOrlov, Yuriy L., Anastasia A. Anashkina, Vadim V. Kumeiko, Ming Chen, and Nikolay A. Kolchanov. 2023. "Research Topics of the Bioinformatics of Gene Regulation" International Journal of Molecular Sciences 24, no. 10: 8774. https://doi.org/10.3390/ijms24108774
APA StyleOrlov, Y. L., Anashkina, A. A., Kumeiko, V. V., Chen, M., & Kolchanov, N. A. (2023). Research Topics of the Bioinformatics of Gene Regulation. International Journal of Molecular Sciences, 24(10), 8774. https://doi.org/10.3390/ijms24108774