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Abstract: Transfer RNA fragments (tRFs) have gene silencing effects similarly to miRNAs, can
be sorted into extracellular vesicles (EVs) and are emerging as potential circulating biomarkers
for cancer diagnoses. We aimed at analyzing the expression of tRFs in gastric cancer (GC) and
understanding their potential as biomarkers. We explored miRNA datasets from gastric tumors
and normal adjacent tissues (NATs) from TCGA repository, as well as proprietary 3D-cultured
GC cell lines and corresponding EVs, in order to identify differentially represented tRFs using
MINTmap and R/Bioconductor packages. Selected tRFs were validated in patient-derived EVs. We
found 613 Differentially Expressed (DE)-tRFs in the TCGA dataset, of which 19 were concomitantly
upregulated in TCGA gastric tumors and present in 3D cells and EVs, but barely expressed in NATs.
Moreover, 20 tRFs were expressed in 3D cells and EVs and downregulated in TCGA gastric tumors.
Of these 39 DE-tRFs, 9 tRFs were also detected in patient-derived EVs. Interestingly, the targets of
these 9 tRFs affect neutrophil activation and degranulation, cadherin binding, focal adhesion and the
cell–substrate junction, highlighting these pathways as major targets of EV-mediated crosstalk with
the tumor microenvironment. Furthermore, as they are present in four distinct GC datasets and can
be detected even in low quality patient-derived EV samples, they hold promise as GC biomarkers. By
repurposing already available NGS data, we could identify and cross-validate a set of tRFs holding
potential as GC diagnosis biomarkers.

Keywords: tRNA fragments; extracellular vesicles; gastric cancer; NGS data repurposing; cancer
biomarkers

1. Introduction

Over 1 million people were diagnosed with Gastric Cancer (GC) in 2020, making it the
fifth most commonly diagnosed type of cancer [1]. GC ranks fourth in mortality rates due
to a diagnosis at a late disease stage, where the median overall survival (OS) ranges from
4.6 to 13.1 months [1,2]. A GC diagnosis is usually invasive, resorting to endoscopy with
biopsy, as well as staging with endoscopic ultrasound and CT scans [3]. Therefore, there is
an increasing interest in less invasive molecular biology-based approaches both for a GC
diagnosis and prognosis [4].

Int. J. Mol. Sci. 2023, 24, 8961. https://doi.org/10.3390/ijms24108961 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24108961
https://doi.org/10.3390/ijms24108961
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-0800-4167
https://orcid.org/0000-0002-3680-8613
https://orcid.org/0000-0002-3663-4801
https://orcid.org/0000-0001-8340-2264
https://doi.org/10.3390/ijms24108961
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24108961?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 8961 2 of 17

The detection of GC biomarkers in body fluids, such as blood or urine, is already in
testing, with some studies showing promising results [5]. For instance, the detection of
miR-21 in serum or in human peripheral blood mononuclear cells (PBMCs) is claimed to
predict GC in 90% of the studied cases [6]. In another study, a panel of six upregulated
miRNAs was found both in serum and GC Extracellular Vesicles (GC-EVs), showing
that GC-EV cargo can be a useful diagnosis marker [7]. EVs are essential intercellular
communication mediators, carrying mostly non-coding RNAs (ncRNAs), mRNAs, DNAs,
lipids and proteins [8]. This cargo is highly affected by cellular architecture and culture
conditions, with EVs deriving from 3D-cultured cancer cells recapitulating better EVs
recovered from real cancer patients [9,10]. Studies using EV-ncRNAs are usually focused
on miRNAs; however, some studies report that up to 50% of their cargo is actually transfer
RNAs (tRNAs) and tRNA-derived fragments (tRFs) [9,11–14].

The interest in the role of tRNAs in cancer has risen in the past few years and, since
then, tRNA deregulation has been associated with tumor initiation, tumor growth, metasta-
sis and bad prognosis [15–18] (reviewed in [19]). There are two main species of non-coding
RNAs derived from tRNAs: tRFs and tRNA halves (tiRNAs) [20]. While tiRNAs result from
cleavage at the anticodon loop under stress [21,22], tRFs are 14–30 nucleotide fragments that
derive from mature or pre-tRNAs and can control gene expression similarly to miRNAs [23].
tRFs can be further subdivided into 3′-tRFs or 5′-tRFs if they include the terminal 3′ or 5′

portion of the original tRNA, or i-tRFs if they originate from an internal tRNA sequence.
Several tRFs have been implicated in many diseases, from cancer to neurodegenerative and
metabolic disorders [24–26]. Moreover, tRFs sorted into EVs are being evaluated for their
value as non-invasive cancer diagnostic biomarkers [27,28]. A recent study has identified
eight differentially expressed tRFs between GC tissues and adjacent tissues [29], with
tRF-24-V29K9UV3IU regulating the Wnt pathway to inhibit cell proliferation, migration
and invasion, while promoting cell apoptosis. Additionally, a downregulation of tRF-Glu-
TTC-027 was observed in GC patients, which acts as a tumor suppressor, inhibiting the
MAPK pathway and negatively influencing tumor progression [30]. On the other hand,
tRF-3017A was shown to silence the tumor suppressor NELL2, promoting cell migration
and invasion in vitro, and it is associated with a higher lymph node metastasis in GC
patients [31]. Moreover, expression levels of hsa_tsr016141 in serum could distinguish GC
patients from healthy donors and gastritis patients, with good sensitivity, specificity and
holding potential to be used for the dynamic monitoring of GC patients [32].

Due to the mandatory deposition of sequencing data in online repositories, there
are numerous accessible datasets nowadays. These datasets can be explored to retrieve
different information from what is depicted in corresponding initial publications. This is
an interesting savings strategy, avoiding unnecessary experiments and costs. An example
might be the use of small-RNAseq datasets used to evaluate miRNA deregulation, but
containing information about other small RNAs such as tRFs, due to their similar RNA
length. In this manuscript, we used miRNA datasets from the TCGA database to evaluate
tRF modulation in GC patients. The deregulated tRFs were validated with another small-
RNAseq dataset from our own laboratory, previously used to assess miRNA deregulation.
We found tRFs with positive and negative correlations in TCGA tumors and normal coun-
terparts, as well as in EVs produced by 3D-cultured GC-cell lines. Nine tRFs recurrently
identified in the previous analysis were also detected in GC patient plasma-derived EVs.
Besides their biomarker potential, these differentially expressed (DE)-tRFs were predicted
to modulate the tumor microenvironment and affect cell–cell adhesion.
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2. Results
2.1. tRFs Are Highly Expressed in GC Tumors

To have a broad perception of the expression of tRFs in GC, we analyzed the miRNAseq
data of stomach adenocarcinomas (n = 436) and normal adjacent tissues (n = 41) deposited
in the TCGA database. Our first finding was that the TCGA miRNAseq dataset is devoid
of tRNA halves and enriched in 5′ and 3′ tRFs. The biotype distribution of tRFs is very
similar between tumors and normal adjacent tissues (NATs) (Figure 1A). The PCA analysis,
comparing tRF expression in all tumors against all NATs, hinted to a separation of tumors
from NATs (Figure 1B, left panel). This separation became more evident when tumors
and normal adjacent tissue coming from the same patient (paired NAT samples) were
analyzed (Figure 1B, right panel). To increase confidence in resulting data, a tRF expression
threshold of 5 Reads per Million (RPMs) in at least 20% of samples from a given condition
(tumor or NAT) was used. After application of this filter, we analyzed the total tRF reads
and observed that tumors have an overall increase in tRF expression, especially if paired
samples are considered (p < 0.01) (Figure 1C,D).

The differential expression (DE) analysis of tRFs considering |log2(fold-change)| > 1
and an adjusted p-value of <0.05 unveiled 613 DE-tRFs, from which 446 were upregulated
and 167 were downregulated in tumors vs. NATs (Figure 1E). While 5′- and 3′-tRFs were the
most abundant species among tRFs from tumors and NATs (Figure 1A), the most abundant
biotype among DE-tRFs was i-tRFs (58%), followed by 3′-tRFs (24%) and 5′-tRFs (18%)
(Figure 1F). These 613 DE-tRFs, when plotted into a heatmap, unveiled a batch effect that
has been previously described by other TCGA users [33] (Figure 1G). After batch effect
correction, gastric tumors and NAT samples clustered quite distinctly based on the 613
tRFs’ expression (Figure 1H). The top fifteen DE-tRFs encompassed eleven downregulated
tRFs (nine i-tRFs and two 3′-tRFs) and four upregulated tRFs (one i-tRF and three 3′-tRFs)
(Table 1).

Table 1. Table showing relevant information about the top 15 DE-tRFs in GC tumors when compared
to NAT in the TCGA dataset (ranked by p-value). Legend: UNIQUE—tRF derived from unique tRNA
isodecoder; MT—tRF derived from a mitochondrial tRNA; AMBIGUOUS—tRF may be derived from
>1 tRNA isodecoder.

Name tRF_Type Sequence Exclusivity Anticodon logFC logCPM LR Pvalue FDR

tRF-23-YJE76INB0J i-tRF TTAGCACTCTGGACTCTG
AATCC UNIQUE GlnCTG −3.47878163 10.6598912 118.981005 1.06 × 10−27 1.04 × 10−24

tRF-22-91PJB7MNK i-tRF TGGCCGCAGCAACCTCG
GTTCG UNIQUE HisGTG −4.01790481 9.10726781 118.346426 1.46 × 10−27 1.04 × 10−24

tRF-22-WB8US5652 3′ -tRF
TCGAATCCGAGTCACGG

CACCA UNIQUE HisGTG −2.19175055 8.94123967 116.35393 3.98 × 10−27 1.90 × 10−24

tRF-21-91PJB7MND i-tRF TGGCCGCAGCAACCTC
GGTTC UNIQUE HisGTG −3.54575799 7.36208523 100.300282 1.31 × 10−23 4.69 × 10−21

tRF-22-VF4YO9XEJ i-tRF TAGCACTCTGGACTCTG
AATCC UNIQUE GlnCTG −3.21016875 10.1858067 99.1946855 2.29 × 10−23 6.55 × 10−21

tRF-24-SWRYVMMVHX i-tRF GTCGTGGTTGTAGTCCGT
GCGAGA MT GluTTC 6.01156036 10.0232838 93.2423782 4.63 × 10−22 1.10 × 10−19

tRF-21-WB8US565D 3′ -tRF
TCGAATCCGAGTCACG

GCACC UNIQUE HisGTG −2.15755385 7.62862441 87.2918519 9.36 × 10−21 1.92 × 10−18

tRF-23-91PJB7MNDL i-tRF TGGCCGCAGCAACCTCG
GTTCGA UNIQUE HisGTG −4.27131139 7.79586266 82.6891628 9.60 × 10−20 1.72 × 10−17

tRF-23-VF4YO9XED2 i-tRF TAGCACTCTGGACTCTGA
ATCCA UNIQUE GlnCTG −2.77409913 9.43587704 77.8958834 1.09 × 10−18 1.73 × 10−16

tRF-21-EXEY0VWUD 3′ -tRF
ACTTAACTTGACCGCT

CTGAC MT ValTAC 3.47697974 12.9374387 76.9701494 1.74 × 10−18 2.49 × 10−16

tRF-24-8DYDZDL9JR 3′ -tRF
TCAACTTAACTTGACCGC

TCTGAC MT ValTAC 3.34575605 9.93002784 74.5263922 5.98 × 10−18 7.79 × 10−16

tRF-22-8B8SOUPR2 3′ -tRF
TCAAATCCCGGACGAGC

CCCCA AMBIGUOUS ProAGG −1.86693881 9.09960168 73.4251504 1.05 × 10−17 1.25 × 10−15

tRF-20-NONU3IND 3′ -tRF
CTTAACTTGACCGCT

CTGAC MT ValTAC 3.10311975 10.6738238 73.1309279 1.21 × 10−17 1.34 × 10−15

tRF-18-INVDRID1 i-tRF ATGTTTAGACGGG
CTCAC MT PheGAA −2.7987848 8.31865382 72.1257612 2.02 × 10−17 2.07 × 10−15

tRF-23-ZVELXKKSDZ i-tRF TTTGCACGTATGAGGCCC
CGGGT UNIQUE AlaTGC −2.02023747 6.92621223 70.3849902 4.88 × 10−17 4.66 × 10−15
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Figure 1. tRFs are mostly upregulated in TCGA GC tumors. (A) tRF biotype distribution is similar 
in GC tumors and NAT. (B) PCA analysis showing tumor and NAT distinction according to tRF 
expression in all TCGA GC datasets (left panel) and in paired samples (right panel). Ellipse 
confidence interval = 68%. (C) tRFs have a tendency to be more abundant in GC tumors than in NAT 
(full TCGA dataset). (D) tRFs are more abundant in GC tumors than in NAT (paired samples) (** p 
< 0.01). (E) Volcano plot showing the distribution of differentially expressed (DE)-tRFs. In GC 
tumors, 613 tRFs were differentially expressed, from which 446 were upregulated and 167 were 
downregulated in tumors vs. NATs (|log2FC| > 1 and an adj.p-val < 0.05). (F) Pie chart showing the 
biotype distribution of the DE-tRFs. (G) Heatmap before batch correction showing the differential 
expression of tRFs in each GC tumor and NAT sample analyzed in the TCGA dataset. (H) Heatmap 
after batch correction, showing a better discrimination of GC tumors and NAT based on DE-tRF 
profiles. 

  

Figure 1. tRFs are mostly upregulated in TCGA GC tumors. (A) tRF biotype distribution is sim-
ilar in GC tumors and NAT. (B) PCA analysis showing tumor and NAT distinction according to
tRF expression in all TCGA GC datasets (left panel) and in paired samples (right panel). Ellipse
confidence interval = 68%. (C) tRFs have a tendency to be more abundant in GC tumors than in
NAT (full TCGA dataset). (D) tRFs are more abundant in GC tumors than in NAT (paired samples)
(** p < 0.01). (E) Volcano plot showing the distribution of differentially expressed (DE)-tRFs. In GC
tumors, 613 tRFs were differentially expressed, from which 446 were upregulated and 167 were down-
regulated in tumors vs. NATs (|log2FC| > 1 and an adj.p-val < 0.05). (F) Pie chart showing the biotype
distribution of the DE-tRFs. (G) Heatmap before batch correction showing the differential expression
of tRFs in each GC tumor and NAT sample analyzed in the TCGA dataset. (H) Heatmap after batch
correction, showing a better discrimination of GC tumors and NAT based on DE-tRF profiles.

2.2. tRF Expression in GC Cell Lines and Derived EVs

To assess a potential role for tRFs as biomarkers, we next assessed their expression
in a small-RNAseq dataset from EVs produced by two different 3D-cultured GC cell lines
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(MKN74 and MKN45). We chose to focus our analysis on GC cell lines and EVs grown in 3D
cultures, as they resemble more of the context of tumors growing in patients and often their
expression patterns are closer to the in vivo context. We detected a distinct landscape of tRF
species from what we observed in TCGA, possibly because these datasets were sequenced
on different platforms (TCGA—Illumina; in-house datasets—Ion Torrent). Besides this
difference, the TCGA method only allows for the detection of fragments below 30 bp, as
this was the read length chosen for sequencing. tRNA halves are usually longer than 30 bp,
therefore they are not represented in the TCGA dataset. The Ion Torrent sequencing method
used in our datasets had a higher read length (<100 bp), so we could evaluate the presence
of tRNA halves.

In 3D cells, the most abundant tRF species was 3′-tRFs, followed by 5′-halves, i-tRFs, 5′-
tRFs and 3′-halves (Figure 2A). In cell line-derived EVs, 5′-halves were the most abundant
species, followed by 5′-tRFs, 3′-tRFs, i-tRFs and 3′-halves (Figure 2B). These differences
may reflect an asymmetric and orchestrated tRF packaging into EVs, in order to modulate
the surrounding microenvironment, as it has been reported in T-cells [34].
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MKN45 and MKN74 grown in 3D shows overall enrichment of 3′-tRFs. (B) tRF biotype distribution in
EVs derived from MKN45 and MKN74 grown in 3D shows overall enrichment of 5′-halves. (C) Venn
diagram showing that from the 167 tRFs downregulated in TCGA tumors vs. NAT, 20 are also present
in EVs derived from 3D-GC cell lines. (D) Venn diagram showing that from the 447 tRFs upregulated
in TCGA tumors vs. NAT, 19 are also present in 3D-GC cell lines and their derived EVs. (E) Graphics
depict the number of Reads per Million (RPMs) of the 19 tRFs found to be upregulated in TCGA GC
tumors vs. NAT and present in 3D-GC cell lines and their derived EVs in NAT, tumors, 3D-grown
GC cell lines and their derived EVs.

As RNA packaging into EVs does not seem to be random, we aimed at identifying
tRFs that can be clinically useful to diagnose or stratify GC patients. For that, we used two
strategies to find potentially relevant tRFs. First, we searched EVs from 3D-GC cells for
the 167 downregulated tRFs in TCGA tumors compared to NATs, assuming the hypothesis
of tRF active exclusion by tumor cells. In a second approach, we searched in 3D-GC cells
and their respective EVs for the 446 upregulated tRFs in TCGA tumors compared to NATs,
assuming the hypothesis of an active load of tRFs in cancer-derived EVs.

We found 20 tRFs in 3D-GC EVs for which expression has a negative correlation
between NATs and TCGA tumors, being hypothetically packed into EVs to avoid a potential
negative impact on the tumor cell fitness (Figure 2C). Additionally, we found 19 tRFs that
were concomitantly upregulated in TCGA tumors and present in 3D cells and respective
EVs (Figure 2D). These tRFs were barely expressed in normal adjacent tissue from TCGA
(NATs) and for most cases their expression levels have similar levels to those in 3D-GC
cells and their derived EVs (Figure 2E). Interestingly, no correlation was found between the
expression levels of tRFs in 3D cells and respective EVs (Supplementary Table S1).

2.3. DE-tRFs Are Predicted to Modulate Immune Response and Cell Adhesion

Since these 39 DE-tRFs have all been found within EVs from 3D-GC cells, we proceeded
to predict their targets in recipient cells using the tRFTar tool. The predicted targets were
then used to perform a GO term analysis using the ClusterProfiler R package to assess their
impact in cellular biology (Figure 3).

Regarding biological processes, DE-tRFs were found to affect neutrophils and their
degranulation (Figure 3A). Interestingly, these tRFs also seem to affect cell adhesion proper-
ties, as they target genes that are involved in ameboidal-type cell migration (Figure 3A)
and cadherin, β-catenin and integrin binding (Figure 3B), among other adhesion-related
categories, such as focal adhesion and the cell–substrate junction (Figure 3C). We also sepa-
rately analyzed the GO terms affected by the targets of up- and downregulated tRFs. The
results are very similar in both datasets since these tRF target genes have similar functions
and their interaction network is redundant (Supplementary Figure S1).

Therefore, besides their potential role as biomarkers for GC diagnoses, these DE-tRFs
may also affect central pathways involved in gastric carcinogenesis and progression.
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the 39 DE-tRFs were predicted and GO term analysis was performed using ClusterProfiler R pack-
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Figure 3. DE-tRFs can modulate immune response and cell adhesion. Using tRFTar, the targets of the
39 DE-tRFs were predicted and GO term analysis was performed using ClusterProfiler R package.
The GO terms predicted to be affected by these tRFs are depicted in circular plots. (A) The top two
categories in biological processes predicted to be deregulated are related to neutrophil activation and
degranulation, showing these tRFs can impact local immune response. (B) The molecular function
predicted to be more impacted by these tRFs was cadherin binding. (C) Focal adhesion and the
cell-substrate junction are the top deregulated categories in cellular component GO terms.

2.4. Nine DE-tRFs Are Also Present in Patient-Derived EVs

We explored whether any of the 39 tRFs, which were found to be differentially ex-
pressed in TCGA tumors vs. NAT and present in GC-EVs, could be found in a small-
RNAseq dataset from plasma EVs obtained from four GC patients, prior to their GC
surgery. Despite the low number of patients and low input material, we could validate the
presence of nine DE-tRFs in patient-derived EVs. Six of these DE-tRFs were downregulated
in TCGA tumors vs. NAT, but present in EVs from 3D-GC cells; three DE-tRFs were upreg-
ulated in TCGA tumors vs. NAT and present in both 3D-GC cells and respective 3D-EVs.
The tRF ID, sequence and type are described in Table 2. This validates our strategy to
find relevant biomarkers from previously available data. We predicted the targets of these
9 tRFs using the same strategy we used to predict the targets of the 39 tRFs. These targets
were then used to perform a GO term analysis. Interestingly, the targets of these nine tRFs
also affect neutrophil activation and degranulation, cadherin binding, focal adhesion and
the cell-substrate junction, highlighting these pathways as probable targets of EV-mediated
crosstalk with the tumor microenvironment (TME) (Figure 4A–C).
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Table 2. tRFs present across all datasets. Table showing relevant information about the nine DE-tRFs
present in patient-derived EVs.

tRF_ID tRF_Type tRF_Sequence Exclusive Anticodon Tumor vs. NAT
(TCGA)

tRF-16-RPM830D 5′-tRF GGTAGCGTGGCCGAGC AMBIGUOUS LeuAAG Downregulated
tRF-17-8R1546J 3′-tRF TCCCCAGTACCTCCACC UNIQUE AlaAGC Upregulated

tRF-18-69M8LO04 5′-tRF GGCTCCGTGGCGCAATGG UNIQUE ArgTCT Upregulated
tRF-18-8R1546D2 3′-tRF TCCCCAGTACCTCCACCA UNIQUE AlaAGC Upregulated

tRF-18-
YRRHQFD2 3′-tRF TTCCCGGGCGGCGCACCA UNIQUE GlyCCC Downregulated

tRF-22-8EKSP1852 3′-tRF TCAATCCCCGGCACCTCCACCA UNIQUE AlaAGC Downregulated
tRF-22-

WD8S746D2 3′-tRF TCGACTCCCGGTGTGGGAACCA UNIQUE GluTTC Downregulated

tRF-22-
WE8RO86J2 3′-tRF TCGATTCCCCGACGGGGAGCCA UNIQUE AspGTC Downregulated

tRF-22-
WEKSPM852 3′-tRF TCGATCCCCGGCATCTCCACCA AMBIGUOUS AlaTGC Downregulated
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To understand how DE-tRFs and their targets are interacting to affect these biological
processes, we generated interaction networks in Cytoscape and observed that almost
all nine DE-tRFs can target genes that affect the top GO terms in each group (Figure 5).
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These interaction networks are very complex, with each DE-tRF being able to target more
than one gene, and several genes having seed sequences where distinct DE-tRFs can bind
(Figure 5). The top biological process affected is neutrophil activation (GO:0042119) with
eight DE-tRFs being predicted to affect 110 genes in this process (Figure 5A). Cadherin
binding (GO:0045296) is the most affected molecular function, with all the DE-tRFs affecting
100 genes. Interestingly, CDH1, the gene coding for E-cadherin, is a central node of this
network, being predicted to be targeted by five out of nine DE-tRFs (Figure 5B). It is also
remarkable that one of the central nodes of the “Focal Adhesion” network (GO:0005925) is
PDIA3, a molecular chaperone reported to influence antigen presentation in gastric cancer,
and thus likely to influence the therapeutic response (Figure 5C). In fact, low levels of this
protein often correlate with immune evasion and the worst overall survival [35].
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In summary, we identified nine DE-tRFs across five different GC-related datasets,
including patient-derived EVs, and with neglectable expression in normal gastric tissue,
that may work both as diagnosis biomarkers and as modulators of GC behavior and the
related microenvironment.

3. Discussion

Our work demonstrated that it is possible to draw a new and relevant hypothesis with
the sole use of an in silico de novo data analysis. Using data available in public repositories
and previously sequenced data in our lab, we could confirm that nine DE-tRFs with a
negative or positive correlation between tumors and GC cell line-derived EVs are also
present in patient-derived EVs (Figure 4A).

We started by using TCGA data to assess DE-tRFs between tumors and normal adjacent
tissues. This analysis unveiled that GC tumors express more tRFs than NAT (Figure 1C,D),
in agreement with previous reports [36]. Interestingly, a report showed that angiogenin, one
of the enzymes responsible for cleaving tRNAs into tRFs, is more active in GC tumors than
in NAT [37]. In fact, we observed most DE-tRFs were overexpressed in tumors (Figure 1E),
likely reflecting greater angiogenin activity. When plotting the DE-tRFs into a heatmap,
we noticed a batch effect in our samples related to the center where the samples were
sequenced (Figure 1G), as previously reported [33]. Therefore, we included cancer status
and batch in our linear model prior to the differential expression analysis to exclude bias.
After bias exclusion, we observed that the 613 DE-tRFs could discriminate GC samples
from normal tissue fairly well (Figure 1H).

As we were set to find tRFs with biomarker values, we validated the 613 DE-tRFs from
TCGA with small-RNAseq data from two different GC cell lines cultured in 3D and their
respective EVs. Patient EVs can be obtained from liquid biopsies, an increasingly popular
non-invasive method to monitor patients and people with an increased risk to develop
disease [38]. We decided to use 3D-GC cell lines as a proxy, since EVs derived from 3D
cell cultures better resemble the content of patient-derived EVs than 2D cultures [9,39,40].
We found 20 tRFs that were downregulated in TCGA tumors but present in EVs from
3D-GC cells, and 19 tRFs that were upregulated in TCGA tumors and present in both
3D-GC cells and in corresponding EVs (Figure 2C,D). RNA packaging into EVs is not
completely random, depending on cell type and physiological conditions [41]. Although
the mechanisms for active RNA loading into EVs still need clarification, EXOmotifs were
described in miRNAs that are enriched in neuron-derived EVs [42]. Nevertheless, it is still
controversial as to which proportion of EV content is selected for and which portion of
their content is sampled by the nature of the EV biogenesis process [43]. In addition, the
annotation and databases of tRFs still need to be improved. tRF reads can sometimes map
to several distinct tRFs, since they have very similar (or identical) sequences, which make
it difficult to differentiate between them. Interestingly, the tRFs that we found to have
a positive or negative expression correlation between GC-EVs and TCGA tumors seem
to have the potential to modulate the tumor microenvironment (Figure 3). The crosstalk
between tumor cells and the stromal cells in the TME mediated by EVs produces important
functional changes that favor tumor development and progression [44–46]. Indeed, we
observed that the targets affected by these tRFs interfere with neutrophil activation, cell–
substrate adhesion, focal adhesion, extracellular matrix organization and cadherin binding
(Figure 3), which are relevant in gastric cancer biology [47–51]. Even if we consider only
the nine tRFs, which are also present in patient EVs, their targets modulate the exact same
pathways (Figure 4A–C), suggesting a highly selected biological process.



Int. J. Mol. Sci. 2023, 24, 8961 11 of 17

This work repurposing public and previously obtained data in our lab allowed the
identification of a set of tRFs conserved across GC datasets that may work as GC diagnosis
biomarkers (Figure 6). Remarkably, nine tRFs alone were representative of the largest
tRF set correlating tumors, 3D-GC cells and patient-derived EV data, and were shown
to target the same gene set responsible for TME modulation. Although this work needs
experimental data validation regarding the effect of these vesicles in TME, the fact that this
is predicted in four independent datasets strengthens the validity of this analysis. Future
studies following similar workflows and validating results obtained with repurposed data
can represent a cost-effective approach to novel research questions.
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arrows: downregulated tRFs.

4. Materials and Methods
4.1. tRF Sequencing Data Collection and Pre-Processing
4.1.1. TCGA

miRNA-aligned reads (bam files) released by TCGA were obtained from the GDC
data portal (https://portal.gdc.cancer.gov/ (accessed on 13 November 2020)), filtering by
TCGA–STAD project name. In total, 491 bam files were downloaded and converted to
sequencing reads (fastq files) using biobambam2 [52]. Illumina Small RNA v1.5 adapter
sequences were checked and clipped from all reads using cutadapt (version 2.8, with
settings of “-a ATCTCGTATGCCGTCTTCTGCTTGT-q 20-m 16”) [53]. Low quality bases
were trimmed from the 3′ end of the reads. After this quality control, all sequence reads
shorter than 16 bases were discarded.

4.1.2. S. Rocha et al.

On the other hand, 16 fastq files were generated corresponding to the small RNA
sequencing reads from gastric cancer cell lines and EVs derived from them (methods
reported in [9]). Ion Torrent adapter sequences were checked from all reads using cutadapt
(version 2.8, with settings of “-b ATCACCGACTGCCCATAGAGAGG-q 20-m 16” [53]. Low
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quality bases were trimmed from the 3′ end of the reads. After this quality control, all reads
shorter than 16 bases were discarded.

4.1.3. GC Patients

In addition, we used 2 plasma samples of EVs from gastric cancer patients before
undergoing surgery.

Blood Sample Collection from Gastric Cancer (GC) Patients

The 4 patients with Gastric Cancer (GC) enrolled in this study were admitted at
Instituto Português de Oncologia Francisco Gentil (Coimbra, Portugal). This study was
approved by the hospital’s ethics committee, and written informed consent was obtained
from all patients before sample collection.

Peripheral blood samples (5 mL) were collected between April 2015 and May 2017
in K2 EDTA plasma preparation tubes (BD Vacutainer® PPT) and processed into plasma
within 30 min following the manufacturer’s instructions. Plasma samples were stored at
−80 ◦C until further processing.

EV Isolation and Characterization from Plasma of GC Patients

Thawed plasma samples (volume 1.5–3 mL) were diluted with 0.9% NaCl (pH 7.4) to
a final volume of 15 mL and filtered through a 0.22 µm filter. Filtered supernatants were
centrifuged in an SW32 rotor (Beckman Coulter, Fullerton, CA, USA) at 100,000× g, for
14 h at 4 ◦C, to pellet EVs. EV pellets were washed in 0.9% NaCl (pH 7.4), centrifuged at
100,000× g for 2 h at 4 ◦C and resuspended in a volume of 0.9% NaCl. EVs were stored
at 4 ◦C. EV size and concentration were further determined by Nanoparticle Tracking
Analysis (NTA) using the NanoSight NS300 instrument (Malvern, Worcestershire, UK)
with the scientific CMOS sensor. Briefly, EVs were diluted (1:500) in 0.9% NaCl. Three
technical measurements were recorded under a controlled fluid flow with a pump speed set
to 40 and a camera focus level adjusted between 10 and 16. The three videos were further
analyzed using the NTA 3.1 Build 3.1.54 software to calculate the concentration, mode and
mean size of EVs.

RNA Extraction from Human Plasma EVs (GC)

Prior to RNA isolation, EVs were incubated with RNAse A at 37 ◦C for 10 min (final
concentration 0.4 mg/mL; NZYTech, Lisbon, Portugal). RNAse A was inhibited with
the RNasin ribonuclease inhibitor (final concentration 1 U/µL; Promega, Madison, WI,
USA). Next, EVs were treated with proteinase K at 37 ◦C for 10 min (final concentration
0.05 mg/mL; Qiagen, Hilden, Germany), which was inactivated at 75 ◦C for 10 min. Small
RNA was isolated from RNAse A/proteinase K-treated EVs with the mirCURY RNA
isolation kit—Biofluids (Exiqon, Vedbaek, Denmark), according to the manufacturer’s
instructions. The concentration and quality of sRNA, including miRNA, were measured
using the Agilent 2100 Bioanalyzer with the small RNA kit (Agilent, Santa Clara, CA, USA).
Purified EV-RNA was kept at −80 ◦C until the further analysis.

Small RNA Library Preparation and Sequencing from Human Plasma EV-sRNA (GC)

Isolated sRNA was used for the small RNA library preparation using the Ion To-
tal RNA-Seq Kit v2 (Thermo Fisher Scientific, Waltham, MA, USA), according to the
manufacturer’s instructions. Briefly, 3′ and 5′ adapters were attached directionally, and
simultaneously, to 3 µL of sRNA input (0.94–5.23 ng). Hybridized and ligated RNA was
reversed transcribed using the Ion RT primer v2 and SuperScript III Enzyme mix. Each
cDNA sample was amplified and barcoded using Platinum PCR SuperMix High Fidelity,
the Ion Xpress RNA 3′ Barcode Primer, and a unique Ion Xpress RNA-Seq Barcode BC
Primer, which allows sample identification and tracking. The size distribution of amplified
cDNA was measured using the Agilent 2100 Bioanalyzer with the Agilent DNA 1000 Kit
(Agilent, Santa Clara, CA, USA). Due to the high amount of adapter dimers, an adapted
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protocol was implemented with the aim of reducing the quantity of adapter dimers and en-
riching the library of interest. Library selection and a sequencing test run were performed.
The first approach consisted of size selection with E-Gel® SizeSelect™ 2% Agarose Gel
(Thermo Fisher Scientific), which decreased the proportion of adapter dimers. For less
concentrated libraries, size selection of the library was performed by using 4% Agarose Gel;
cutting and purification of the band corresponding to ≈110 bp sequences was performed
with illustra GFX PCR DNA and the Gel Band Purification Kit (GE Healthcare, New York,
NY, USA). Agilent 2200 TapeStation (S/N 3-PM-1173NA)—HS D1000 Screen Tape (P/N
5067-5584) was used for size distribution control. An equal volume (3 µL) of each library
was used to prepare the final pool. Pooled libraries were processed on Ion Chef System
(S/N CHEF00657) using the Ion 540 Kit-Chef (P/N A27759) and the resulting 540 chip
(P/N A27766) was sequenced on the Ion S5 XL System (S/N 245717100156). Fastq files
were generated using the Torrent Suit plugin FileExporter v5.0.

Pre-Processing of Human Plasma EV-sRNA Sequencing Data (GC)

For the aim of this paper, we obtained 12 fastq files. FastQC (version 0.11.5) [54] was
used to perform quality control checks on sequencing data. Remaining Ion Torrent sRNA
adapter sequences were checked and clipped from all reads using cutadapt (version 2.8,
with settings of “-b ATCACCGACTGCCCATAGAGAGGAAAGCGG—error-rate 0.2-times
1-m 15-q 20”) [53]. Low quality bases (q < 20) were trimmed from the 3′ end of the reads.
Finally, all sequence reads shorter than 15 bases were removed.

4.2. tRF Expression Estimation

The processed reads were aligned to the human reference genome by MINTmap
(default genome assembly GRCh37), specifically designed for tRF analyses [55]. MINTmap
considers in the alignment the complex representation of the tRNA-derived sequences
in the genome (i.e., regions shared between tRNA isodecoders, sequences that resemble
mitochondrially encoded tRNAs in the nuclear genome, etc.) and, consequently, maps
reads more exactly (no mismatches, insertions or deletions are allowed), deterministically
(read matches are not based on probabilistic approaches), exhaustively (enumerates all
possible alignments in the genome) and specifically (labels a tRF sequence as exclusive or
ambiguous depending, respectively, on whether the tRF only belongs to a tRNA gene/s or it
is also present in other positions in the genome (i.e., partial tRNA sequences or non-tRNAs),
thus informing about the possibility that the tRF may be a false positive [56]. Only exclusive
tRFs were considered in this study. The alignment of tRFs with MINTmap included a
classification of tRFs according to five structural types (5′-tRFs, i-tRFs, 3′-tRFs, 5′-tRNA
halves (5′-tRHs) and 3′-tRNA halves (3′-tRHs)) [55].

4.2.1. TCGA

tRF expression levels of 446 gastric primary tumor samples and 41 NAT were calcu-
lated by MINTmap [55]. In total, 10 replicates from 446 primary tumors were removed,
leaving those ones with a higher coverage, reaching a total of 436 tumors and 41 normal
samples. Expression levels were tested for significant differential expression between the
libraries of tumors and normal samples using the edgeR package (version 3.32.0) [57] in
R (version 4.0.3) [58]. Data were normalized using the TMM method (weighted trimmed
mean of M-values) [59]. Expression data from selected genes were used for heatmap
construction depicting log2(cpm) values scaled to the z-score with supervised hierarchi-
cal clustering for dendrogram construction applying calculated Euclidean distances by R
package “gplots” [60]. Venn diagrams were constructed by the jvenn tool [61].

A generalized linear model was fit after estimating the common, trended and tagwise
dispersion. We noticed 22 groups of samples related to the center where the samples were
sequenced; therefore, we included cancer status and batch as fixed effects in the model. The
likelihood ratio test was used to evaluate differential expression between allergic and non-
allergic donors. Differences in expression between conditions with |log2(fold-change)| > 1
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and an adjusted p-value of <0.05 were considered to be significant. p-values were adjusted
for the false discovery rate with the Benjamini–Hochberg method [62].

4.2.2. GC Study

tRF expression levels of 4 gastric cancer cell and 4 EV samples were calculated by
MINTmap [55]. For cells, we considered those tRFs with >10 reads globally, and for EVs,
those with >1 read were considered.

4.2.3. GC Patient EVs

tRF expression levels of 12 gastric cancer EV samples from blood were calculated by
MINTmap [55]. We considered those tRFs with >1 read in samples collected before surgery
from 2 patients, which had an acceptable sequencing quality.

4.3. Target Prediction

We used the tRFTar [63] database to predict the targets of the tRF of interest. The
ClusterProfiler R package was used for the assessment of significantly enriched GO terms
and pathways (padj < 5.00× 10−2). tRF–target gene interaction (TGI) networks were created
by the R package igraph (version 1.2.6) [64]. Cytoscape (version 3.8.0) [65] was used to
depict the networks.
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