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Abstract: In this study, we synthesized two conjugated microporous polymers (CMPs), An-Ph-
TPA and An-Ph-Py CMPs, using the Suzuki cross-coupling reaction. These CMPs are organic
polymers with p-conjugated skeletons and persistent micro-porosity and contain anthracene (An)
moieties linked to triphenylamine (TPA) and pyrene (Py) units. We characterized the chemical
structures, porosities, thermal stabilities, and morphologies of the newly synthesized An-CMPs
using spectroscopic, microscopic, and N2 adsorption/desorption isotherm techniques. Our results
from thermogravimetric analysis (TGA) showed that the An-Ph-TPA CMP displayed better ther-
mal stability with Td10 = 467 ◦C and char yield of 57 wt% compared to the An-Ph-Py CMP with
Td10 = 355 ◦C and char yield of 54 wt%. Furthermore, we evaluated the electrochemical performance
of the An-linked CMPs and found that the An-Ph-TPA CMP had a higher capacitance of 116 F g−1

and better capacitance stability of 97% over 5000 cycles at 10 A g−1. In addition, we assessed the
biocompatibility and cytotoxicity of An-linked CMPs using the MTT assay and a live/dead cell
viability assay and observed that they were non-toxic and biocompatible with high cell viability
values after 24 or 48 h of incubation. These findings suggest that the An-based CMPs synthesized in
this study have potential applications in electrochemical testing and the biological field.

Keywords: microporous organic polymers; triphenylamine; pyrene; Suzuki cross-coupling reaction;
electrochemical performance; MTT assay

1. Introduction

The combustion of large quantities of petroleum fuels has caused environmental prob-
lems such as excessive CO2 pollution and hazardous particulate emissions from vehicle
exhausts, leading to the pressing issue of climate change [1–5]. To address this issue, re-
searchers have been exploring new and effective methods of renewable energy storage.
One of the most practical approaches is the electrochemical energy storage system, which
includes various devices based on electrochemistry concepts, such as batteries, conven-
tional capacitors, and supercapacitors (SCs) [6–14]. Among these devices, SCs have gained
significant attention due to their desirable features, including rapid charge/discharge ki-
netics, safety, high cycle stability, reasonable capacity intensity, low cost, environmentally
friendly nature, outstanding lifespan, high power density, and high-rate efficiency [6–14].
Supercapacitors (SCs) have the potential to be used in a wide range of devices, including

Int. J. Mol. Sci. 2023, 24, 8966. https://doi.org/10.3390/ijms24108966 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms24108966
https://doi.org/10.3390/ijms24108966
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-9097-1377
https://orcid.org/0000-0002-7896-2424
https://orcid.org/0000-0002-4306-7171
https://orcid.org/0000-0003-0301-8372
https://doi.org/10.3390/ijms24108966
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms24108966?type=check_update&version=2


Int. J. Mol. Sci. 2023, 24, 8966 2 of 16

biomedical defibrillators, wind turbines, and hybrid buses and trams. SCs offer two differ-
ent mechanisms for energy storage: non-faradaic methods, which involve the accumulation
of electrostatic ionic charges at the electrode/electrolyte interface; and faradaic processes,
which occur at the solid surface through reversible redox reactions [15–20]. The effective-
ness of SCs depends on various factors, including the electrode material, which has gained
significant attention in recent years due to its crucial role in SC performance [21–23]. There-
fore, the development and production of new materials for SC electrodes have become a
key research focus. Various types of materials have been used as electrodes for supercapac-
itors, including inorganic metal oxides, covalent triazine frameworks (CTFs), conjugated
polymers, hyper-crosslinked polymers, hydroxides, doped carbon, sulfides, and covalent
organic frameworks (COFs) [24–35]. However, inorganic materials have drawbacks such as
resource scarcity and environmental pollution, highlighting the need for more affordable
and environmentally friendly electrode materials [36]. Organic electroactive materials have
emerged as a promising alternative due to their sustainability, environmental friendliness,
flexibility, and resource availability. Among these, conjugated polymers (CPs) and conju-
gated microporous materials (CMPs) have been extensively studied as electrode materials
for supercapacitors. CMPs, a subclass of organic polymers, have demonstrated outstanding
electrochemical performance due to their physicochemical stability, facile preparation, pore
structure variation, delocalized conjugation, and structural tunability [9,37–41]. CMP mate-
rials can be synthesized using a variety of building blocks and reactions [42,43], including
oxidative polymerization, Schiff-base condensation reactions, and well-known coupling
reactions such as Sonogashira-Hagihara, Yamamoto, and Suzuki-Miyaura [44–52]. These
coupling processes typically result in high levels of polymerization and crosslinking and
allow for the insertion of various organic moieties, leading to a wide range of possible
CMP structures and characteristics. Aside from their various applications in energy and
environmental fields, such as photocatalysis, dye adsorption, organic photovoltaic, gas
adsorption, and metal ion sensing, conjugated microporous materials (CMPs) have also
been extensively researched in the biomedical field for applications such as drug deliv-
ery, biosensing, phototherapy, and bioimaging, thanks to their unique properties [53–66].
However, for CMPs to be used in biomedical applications, they must be biocompatible.
Therefore, we conducted an analysis of the in vitro cytotoxicity of the as-synthesized CMPs
on mouse L929 fibroblast cells using an MTT assay and a live/dead cell viability assay. This
study presents the synthesizing and characterizing of two new conjugated microporous
polymers (CMPs) using one-pot polycondensation reactions. The two CMPs, An-Ph-TPA
CMP and An-Ph-Py CMP, were based on TPA/Py and An units and were evaluated using
several techniques such as FTIR, solid-state 13C NMR, TGA, XPS, BET, TEM, and SEM
analyses. The results indicate that the CMPs are highly thermally stable and show promise
for use in electrochemical applications. Specifically, the An-Ph-TPA CMP demonstrated
higher electrochemical performance with an ultra-capacitance retention of up to 97% over
5000 cycles. Biocompatibility analysis using MTT assay and live/dead cell viability assay
also demonstrated the potential for the CMPs to be used in biomedical applications. Over-
all, the rational design of An-linked CMPs not only allows for their use in electrical energy
storage applications but also in biological fields due to their excellent biocompatibility.

2. Results and Discussion
2.1. Synthesis and Molecular Characterization of An-Linked CMPs
(An-Ph-TPA and An-Ph-Py CMPs)

Anthracene (An) and its derivatives are highly researched as conductive organic
molecules due to their planar structure, which enables favorable long-range face-to-face
arrangements through π-π interactions in resulting organic crystals [67–70]. This property
makes them desirable for use in electronic applications. In addition to their conductive
properties, anthracene and its derivatives have proven to be exceptional materials for
organic electroluminescence [69,70]. Anthracene (An) was subjected to a bromination
reaction in the presence of iron in CH2Cl2 to yield An-Br6 as a gray solid (Scheme S1).
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TPA-Br3 was synthesized as a white solid by reacting TPA with NBS in DMF (Scheme S2),
while Py-Br4 was obtained as a green powder by refluxing Py with Br2 in the presence of
nitrobenzene (Scheme S3). An-Br6, TPA-Br3, and Py-Br4 monomers were used as building
blocks to synthesize two different CMPs. The reaction of An-Br6 with PhB(OH)2 and
TPA-Br3 produced the An-Ph-TPA CMP, obtained as a green powder (Figure 1a). Similarly,
the reaction of An-Br6 with PhB(OH)2 and Py-Br4 resulted in the An-Ph-Py CMP, which
was also obtained as a green powder (Figure 1b). Both CMPs, which contained anthracene
units, were found to be insoluble in all solvents, including THF, MeOH, H2O, CHCl3, DMF,
EtOH, and acetone, indicating that they possessed highly cross-linked networks due to their
high level of polymerization. FTIR measurements were conducted on the An-Br6, TPA-Br3,
and Py-Br4 monomers. The FTIR spectra displayed peaks in the range of 3077–3054 and
1617–1527 cm−1, which corresponded to the stretching vibrations of aryl C-H bonds and
C=C bonds. All spectroscopic data for An-Br6, TPA-Br3, and Py-Br4 monomers are pre-
sented in the supporting information (Figures S1–S6). The molecular structure, porosity
properties, and thermal stability of An-Ph-TPA CMP and An-Ph-Py CMP were examined
using various analytical techniques such as FTIR spectroscopy, solid-state 13C NMR, TGA,
XPS, and BET. The FTIR spectra of An-Ph-TPA CMP and An-Ph-Py CMP (Figure 2a) showed
absorption bands in the range of 3024–3034 and 1589 cm−1, corresponding to C-H aromatic
and C=C bonds, which are characteristic of these materials. Solid-state 13C NMR analysis
(Figure 2b) revealed carbon signals in the range of 147–114 ppm for both An-Ph-TPA CMP
and An-Ph-Py CMP, assigned to the phenyl groups, along with a signal at 165.6 ppm
corresponding to C-N bonds in An-Ph-Py CMP. TGA analyses (Figure 2c) showed that the
An-Ph-TPA and An-Ph-Py CMPs exhibited weight losses of 10% under N2 atmospheres
at temperatures of 467 and 355 ◦C, respectively. The char yields at 800 ◦C for An-Ph-TPA
and An-Ph-Py CMPs were 57 and 54 wt%, respectively. XPS analysis (Figure 2d) confirmed
the presence of C and N elements in An-Ph-TPA CMP and C elements in both An-Ph-TPA
and An-Ph-Py CMPs. Overall, these results provide a comprehensive characterization
of the molecular structure, porosity, and thermal stability properties of An-Ph-TPA CMP
and An-Ph-Py CMP.

To assess the porosity of An-Ph-TPA CMP and An-Ph-Py CMP, we investigated their
N2 sorption behavior at 77 K. The adsorption-desorption profiles of both An-CMPs showed
type I and IV characteristics (Figure 3a,b), with rapid N2 absorption in the low-pressure
region, indicating that they are microporous materials. N2 adsorption increased at relative
pressures between 0.1 and 0.8, and both isotherms showed constant nitrogen uptakes at
P/P0 up to 0.8, suggesting the presence of mesopores and macropores in the two CMP
structures. The BET surface areas and pore volume of An-Ph-TPA CMP were 33 m2 g–1

and 0.11 cm3 g−1, respectively, while those of An-Ph-Py CMP were 43.3 m2 g−1 and
0.15 cm3 g−1, respectively. The pore size distributions of An-Ph-TPA CMP and An-Ph-Py
CMP (Figure 3c,d) were determined using nonlocal density functional theory (NLDFT) and
showed main peaks at 1.94 and 1.92 nm, respectively, with additional peaks in the range of
2.65–9.34 nm for An-Ph-TPA CMP and 3.89–9.36 nm for An-Ph-Py CMP. Based on these
results, both An-Ph-TPA CMP and An-Ph-Py CMP possess microporous and mesoporous
architectures. Overall, these findings provide valuable insights into the porosity properties
of An-Ph-TPA CMP and An-Ph-Py CMP.

The morphology of the An-CMPs synthesized in this study was analyzed using high-
resolution scanning electron microscopy (SEM) and transmission electron microscopy
(TEM). The SEM images of An-Ph-TPA CMP showed an aggregated rod-like structure,
while An-Ph-Py CMP displayed an aggregated tube-like structure (Figure 4a–d). The
tubular morphology of An-Ph-Py CMP is attributed to the greater planarity of Py units,
which promote their assembly in this form. TEM images of An-Ph-TPA CMP indicated
the appearance of alternating light and dark regions, suggesting the existence of porous
networks (Figure 4e). Similarly, the TEM image of An-Ph-Py CMP revealed a tube-like
structure (Figure 4f).
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Figure 2. (a) FTIR spectra, (b) solid-state 13C NMR spectra, (c) TGA, and (d) XPS plots of An-Ph-TPA 
CMP and An-Ph-Py CMP. * is the side band of solid-state nuclear magnetic resonance spectroscopy 
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SEM-Elemental mapping (SEM-EDS) of An-Ph-TPA CMP (Figure 5a) provided evi-
dence for the homogeneous distribution of carbon (Figure 5b), nitrogen (Figure 5c), and Br
(Figure 5d) atoms in the An-Ph-TPA CMP skeleton. SEM-elemental mapping results exhibit
the homogeneous distribution of carbon (Figure 5e) and Br (Figure 5f) atoms in the An-Ph-
Py CMP framework. To gain a deeper understanding of the photophysical properties of
the synthesized An-CMPs, we conducted photoluminescence (PL) and UV-visible measure-
ments. The An-Ph-TPA CMP and An-Ph-Py CMP displayed UV-visible absorption peaks at
250 and 263 nm (Figure S7a), respectively, which can be attributed to specific electron tran-
sitions. The PL results indicated that the maximum PL fluorescence for An-Ph-TPA CMP
and An-Ph-Py CMP was observed at 439 nm and 471 nm, respectively, when dispersed in
absolute ethanol, as shown in Figure S7b. Additionally, An-Ph-TPA CMP and An-Ph-Py
CMP displayed UV-visible absorption peaks at 250 and 263 nm, respectively, which can be
attributed to specific electron transitions. These remarkable photophysical features suggest
that An-CMPs can be used in photophysical-based applications, such as bioimaging.
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2.2. Electrochemical Performance of An-Ph-TPA CMP and An-Ph-Py CMP

The double-layer capacitive nature of the An-Ph-TPA and An-Ph-Py CMP samples
was evaluated for their supercapacitive energy storage performance using a three-electrode
supercapacitor system with 1 M KOH as the electrolyte. The cyclic voltammetry (CV)
curves of the An-Ph-TPA and An-Ph-Py CMPs were recorded at different scan rates
(5 to 200 mV s−1) between −1 and 0 V and exhibited a typical quasi-rectangular shape
with good symmetry as depicted by Figure 6a,b. This finding suggests that the samples
possess good double-layer capacitive characteristics. An investigation was conducted to
assess the electrochemical capabilities of An-Ph-TPA and An-Ph-Py CMPs through GCD
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measurements. The results, displayed in Figure 6c,d, demonstrate that the GCD curves
of the electrodes for both An-Ph-TPA and An-Ph-Py CMP display symmetrical triangular
shapes with almost linear slopes, indicative of ideal electrochemical double-layer capaci-
tors. These findings are consistent with the CV curves and provide further evidence of the
double-layer capacitive nature of the An-Ph-TPA and An-Ph-Py CMPs framework.
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The specific capacitance, energy density, and power density of An-Ph-TPA CMP and
An-Ph-Py CMP were calculated using the Equations (S1)–(S3). The An-Ph-TPA CMP
showed specific capacitance values of 116, 61, 49, 42, 37, 34, 32, and 31 F g−1 at current
densities of 1, 2, 3, 5, 7, 10, 15, and 20 A g−1, respectively. In comparison, the An-Ph-
Py CMP showed specific capacitance values of 83, 49, 42, 35, 31, 29, 26, and 25 F g−1 at
the same corresponding current densities (Figure 7a). Therefore, the An-Ph-TPA CMP
demonstrated higher capacitance values than the An-Ph-Py CMP at all measured current
densities. The improved electrochemical performance of the An-Ph-TPA CMP framework
can be attributed to the existence of a more extensive conjugated system and the incor-
poration of TPA units. The capacitive retention of both An-Ph-TPA and An-Ph-Py CMP
frameworks was determined through GCD measurements, with values of 97% and 95%,
respectively Figure 7b. These values indicate that the An-Ph-TPA CMP framework has
slightly higher capacitive retention than the An-Ph-Py CMP framework. Furthermore,
specific capacitances of An-Ph-TPA CMP (116 F g−1) and An-Ph-Py CMP (83 F g−1) are
higher than TPA-Bz CMP (55.1 F g−1) [71], Pyra-BP-HPP (94 F g−1) [71], Py-BSU CMP
(38 F g−1) [72], TBN-BSU CMP (70 F g−1) [72], TBN-TPE-CMP (18.45 F g−1) [73], TBN-Car-
CMP (18.90 F g−1) [73], TBN-Py-CMP (31 F g−1) [73], and CoPc-CMP(13.7 F g−1) [36]. The
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Ragone plot comparison between An-Ph-TPA and An-Ph-Py CMP frameworks reveals that
the former exhibits a maximum energy density of 16 W h kg−1, which is twice as high as
that of the latter, which is only 12 W h kg−1 when the power density is 500 kW kg−1, as
shown in Figure 7c. The notable enhancement in specific capacitance and energy density
observed in An-Ph-TPA CMP can be attributed to the superior electron transportation
ability and higher ion diffusion rate facilitated by the TPA moiety present in the An-Ph-TPA
CMP sample. Electrochemical Impedance Spectroscopy (EIS) is a technique that is widely
used to investigate the electrochemical characteristics of materials, including supercapaci-
tors. EIS data provide information about the system’s impedance at different frequencies,
as well as other electrochemical parameters like capacitance and resistance. The EIS data
show that the ohmic resistance of An-Ph-Py CMP and An-Ph-TPA-CMP were 3.259 ohms
and 1.729 ohms, respectively, as depicted in Figure 7d. A higher ohmic resistance indicates
that the flow of current through the system is more difficult, which can result in lower su-
percapacitor performance. Therefore, An-Ph-TPA CMP exhibited superior electrochemical
performance compared to its counterpart, An-Ph-Py CMP.
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2.3. Cytotoxicity Assessment of An-Ph-TPA CMP and An-Ph-Py CMP

In order to determine the potential cytotoxicity of An-Ph-TPA CMP and An-Ph-Py
CMP, L929 mouse fibroblasts were used as test cells. However, since An-linked CMPs are
insoluble, their cytotoxicity was assessed using the ISO 10993-5 standard screening method.
The An-CMPs were immersed in a cell culture medium for 24 h. The viability of L929 cells
was then evaluated using an MTT test after 24 and 48 h of incubation with the CMP. The
results showed that cell survival parameters were over 90% for all concentrations of extract
medium, indicating that An-linked CMPs had extremely low hazard toxicity to L929 cells,
as depicted in Figure 8. To further confirm these findings, a live/dead cell viability assay
was performed, which showed a significant increase in the growth of L929 mouse cells.
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Therefore, An-linked CMPs are highly biocompatible and nontoxic, making them safe for
use in biomedical and biological applications. Figure 8a,b shows the cell compatibility
of An-Ph-TPA CMP and An-Ph-Py CMP with L929 cells at different concentrations after
24 and 48 h of culture. According to the experimental results, the cell survival rate of An-
Ph-TPA CMP and An-Ph-Py CMP at concentrations of 5, 10, and 20 mg/mL is over 80%.
Furthermore, after 48 h of culture, An-Ph-TPA CMP can promote L929 cell proliferation
(cell compatibility over 100%), indicating that this material can promote fibroblast prolifer-
ation. However, the cell compatibility of An-Ph-Py CMP is over 70%, and, according to
ISO 10993-5, both An-Ph-TPA CMP and An-Ph-Py CMP show no cell toxicity. These MTT
results suggest that An-Ph-TPA CMP and An-Ph-Py CMP are non-toxic to L929 fibroblasts
and can be considered highly biologically safe and compatible biomaterials. In addition to
confirming negligible cell toxicity, this study used Calcein-AM to stain L929 cells and ob-
serve cell survival using fluorescence microscopy. Figure 8c shows optical microscopy (OM)
and fluorescence microscopy images of An-Ph-TPA CMP and An-Ph-Py CMP co-cultured
with L929 cells for 48 h. The OM results show that L929 cells display a good spreading
morphology and a large number of cells. Furthermore, the fluorescence microscopy image
shows that green fluorescence represents live cells, and based on the fluorescence intensity,
it can be inferred that a large number of L929 cells have successfully proliferated.
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3. Experimental Part
3.1. Materials

Anthracene (An), bromine (Br2), iron powder, dichloromethane (CH2Cl2), tetrakis
(triphenylphosphine) palladium (Pd(PPh3)4), nitrobenzene (C6H5NO2), Pyrene (Py), brine,
ethanol (EtOH), benzene-boronic acid [PhB(OH)2], anhydrous magnesium sulfate (MgSO4,
99.5%), tetrahydrofuran (THF), sodium thiosulfate (Na2S2O3), N-bromosuccinimide (NBS,
99%), dimethylformamide (DMF), triphenylamine (TPA), methanol (MeOH), and potassium
carbonate (K2CO3, 99.9%) were ordered from Sigma Aldrich and Alfa Aesar.

3.2. Synthesis of 2,3,6,7,9,10-Hexabromoanthracene (An-Br6)

To prepare An-Br6, a mixture of 795 mg (4.5 mmol) of anthracene, 1.64 g (30 mmol) of
bromine, and 1.68 g (30 mmol) of iron powder was combined with 30 mL of dry CH2Cl2 in
a round-bottom flask and stirred under argon at room temperature for 6 h. The resulting
mixture was then quenched with 10% Na2S2O3 and extracted twice with 75 mL of CH2Cl2.
The obtained organic extracts were then washed with brine, water, and MeOH, and the
obtained powder was dried in an oven. This process yielded a gray solid weighing
2.04 g (71% yield based on Scheme S1). FTIR (Figure S1): 3077, 1527, and 588 cm−1. The 1H and
13C NMR data of An-Br6 cannot provide because of its poor solubility in all organic solvents.

3.3. Synthesis of Tris(4-bromophenyl)amine (TPA-Br3)

In a round-bottom flask, 3 g (17.25 mmol) of NBS was added to a solution of 1.37 g
(5.69 mmol) of TPA in 45 mL of DMF. The resulting mixture was stirred for 24 h at 0 ◦C, then
extracted with CH2Cl2 and H2O, and the DMF was evaporated. The organic layer obtained
was dried over MgSO4, filtered, and washed multiple times with MeOH to obtain TPA-Br3
as a white powder, with a yield of 2.81 g (90%) based on Scheme S2. M.p.: 142 ◦C (Figure
S2). FTIR (Figure S3): 3078, 1618 (C=C stretching). 1H NMR (Figure S4): 6.94–7.35 (12H).
13C NMR (Figure S5): 146.80–116.40.

3.4. Synthesis of 1,3,6,8-Tetrabromopyrene (Py-Br4)

To prepare Py-Br4, a solution of Br2 (3.45 mL, 66 mmol) was added to 30 mL of
C6H5NO2, and the resulting solution was added to a flask containing a solution of pyrene
(3.00 g, 15 mmol) in 30 mL of nitrobenzene. The mixture was then refluxed for four hours
at 120 ◦C until a green solid was formed. The resulting solid was washed with ethanol,
filtered, and dried, yielding Py-Br4 (Scheme S3) with a yield of 90% (6.6 g). The FTIR
spectrum (Figure S6) of Py-Br4 showed peaks at 3054 cm−1, corresponding to aromatic
C-H stretching, and 681 cm−1, corresponding to C-Br stretching. The 1H and 13C NMR of
Py-Br4 don’t provide because of its poor solubility in all organic solvents.

3.5. Preparation of An-Ph-TPA and An-Ph-Py CMPs

To synthesize An-Ph-TPA and An-Ph-Py CMPs, a solution of An-Br6 (0.3 g, 0.46 mmol),
PhB(OH)2 (0.23 g, 1.38 mmol), either TPA-Br3 (0.119 g, 0.25 mmol) or Py-Br4 (0.119 g,
0.23 mmol), k2CO3 (0.51 g, 3.69 mmol), and Pd(PPh3)4 (0.05 g, 0.04 mmol) in 20 mL of
DMF was refluxed at 90 ◦C for three days. The resulting green powder of An-Ph-TPA
and green solid of An-Ph-Py CMPs were filtered and repeatedly washed with THF, water,
methanol, and acetone. The obtained green powders of An-Ph-TPA and An-Ph-Py CMPs
were then dried overnight at 100 ◦C. The syntheses of these compounds are displayed
in Figure 1, respectively.

3.6. Cell Viability via an MTT Assay

Determining the cytotoxicity of compounds is crucial in investigating their potential
antimicrobial applications. In this study, L929 fibroblast cells obtained from ATTCC (CCL-1)
were selected as the research cells to evaluate the cytotoxicity of An-CMPs samples. The
L929 cell line was cultured in DMEM/F-12 supplemented with 10% fetal bovine serum and
1% penicillin-streptomycin. To extract the An-CMPs, they were incubated in DMEM/F-12
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at 37 ◦C for 24 h, and the resulting extract medium was utilized as a cultured medium for
L929 cells. The cells were seeded in a 96-well plate with a cell population of 6 x 106 cells per
well and cultured at 37 ◦C with 5% CO2 for 24 h. After seeding and cultivation, the extract
medium was added to each well and cultured for 24 and 48 h. Subsequently, the extract
medium was removed, and the cells were washed with PBS solution at a pH of 7.4. Then,
10 µL of MTT solution (1 mg/1 mL in DMEM/F-12) was added to each well, and the plate
was incubated for 4 h at 37◦C with 5% CO2. The medium in each well was then removed,
and 100 µL of dimethyl sulfoxide (DMSO) was added to decompose the formed formazan
reaction products. The plate was shaken gently for 15 min to ensure complete dissolution
in DMSO. The optical density of the solution in each well was measured at 450 nm using a
microplate reader (800TS/BioTek), with 630 nm serving as the reference wavelength.

4. Conclusions

In this study, we successfully synthesized two types of CMPs, An-Ph-TPA CMP and
An-Ph-Py CMP, containing An moieties through the Suzuki cross-coupling reaction, which
were fully characterized by various analytical techniques such as FTIR, BET, solid-state
13C NMR spectroscopy, TEM, and SEM. Both CMPs demonstrated high thermal stability
with Td10 up to 467 ◦C and char yield up to 57 wt% at 800 ◦C as evaluated by TGA.
Importantly, electrochemical measurements revealed that the An-Ph-TPA CMP exhibited
a higher specific capacitance of up to 116 F g−1, with ultra-capacitance retention of up
to 97% over 5000 cycles, compared to another porous polymer. The incorporation of
triphenylamine (TPA) units into the An-Ph-TPA CMP, compared to the pyridine-based
moiety of An-Ph-Py CMP, was suggested to be responsible for the higher capacitance of
the former. In addition, we assessed the biocompatibility and cytotoxicity of the An-linked
CMPs towards mouse L929 fibroblasts cells using MTT assay and live/dead cell viability
assay, which revealed that the viability of L929 cells was higher than 90%, indicating
that the An-linked CMPs were non-toxic and extremely biocompatible. This study not
only provides new CMPs with high capacitances but also highlights the potential of
using anthanthrene-based materials in energy storage and biological applications through
molecular engineering.
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