Effect of Genotype, Year, and Their Interaction on the Accumulation of Bioactive Compounds and the Antioxidant Activity in Industrial Hemp (Cannabis sativa L.) Inflorescences
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Phytochemical Profile and the Antioxidant Activity in the Inflorescences of the Six Hemp Genotypes Grown in Three Years
2.1.1. Analysis of Variance
2.1.2. Variability in the Phytochemical Profile Composition among Genotypes
2.1.3. Variation in the Phytochemical Content and the Antioxidant Activity Due to Genotype Effect
2.1.4. Variation in Phytochemical Content and Antioxidant Activity Due to Year Effect
2.2. Correlation between Phytochemicals and Antioxidant Activity
2.3. Multivariate Analysis
2.4. Phytochemical Profile Stability
3. Materials and Methods
3.1. Plant Material and Growing Conditions
3.2. Analysis of Phenolic Compounds
3.2.1. Spectrophotometric Determination of TPC and TFC
3.2.2. Determination of Phenolic Acids and Flavonoids by HPLC
3.3. Analysis of Non-Polar Secondary Metabolites by GC/MS
3.4. Determination of the Total Antioxidant Activity
3.4.1. ABTS Radical Scavenging Assay
3.4.2. DPPH Radical Scavenging Assay
3.5. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simiyu, D.C.; Jang, J.H.; Lee, O.R. Understanding Cannabis sativa L.: Current status of propagation, use, legalization, and haploid-inducer-mediated genetic engineering. Plants 2022, 11, 1236. [Google Scholar] [CrossRef] [PubMed]
- Ren, G.; Zhang, X.; Li, Y.; Ridout, K.; Serrano-Serrano, M.L.; Yang, Y.; Liu, A.; Ravikanth, G.; Nawaz, M.A.; Mumtaz, A.S.; et al. Large-scale whole-genome resequencing unravels the domestication history of Cannabis sativa. Sci. Adv. 2021, 7, eabg2286. [Google Scholar] [CrossRef] [PubMed]
- Small, E. Evolution and classification of Cannabis sativa (marijuana, hemp) in relation to human utilization. Bot. Rev. 2015, 81, 189–294. [Google Scholar] [CrossRef]
- Salentijn, E.M.; Petit, J.; Trindade, L.M. The complex interactions between flowering behavior and fiber quality in hemp. Front. Plant Sci. 2019, 10, 614. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Lata, H.; ElSohly, M.A. Cannabis sativa L.-Botany and Biotechnology; Springer International Publishing: Cham, Switzerland, 2017; pp. 1–474. [Google Scholar]
- Fournier, G.; Richez-Dumanois, C.; Duvezin, J.; Mathieu, J.-P.; Paris, M. Identification of a new chemotype in Cannabis sativa: Cannabigerol-dominant plants, biogenetic and agronomic prospects. Planta Med. 1987, 53, 277–280. [Google Scholar] [CrossRef]
- Mandolino, G.; Carboni, A. Potential of marker-assisted selection in hemp genetic improvement. Euphytica 2004, 140, 107–120. [Google Scholar] [CrossRef]
- Plant Variety Catalogues, Databases & Information Systems. Available online: https://food.ec.europa.eu/plants/plant-reproductive-material/plant-variety-catalogues-databases-information-systems_en#agri-veg (accessed on 15 March 2023).
- Regulation (EU) 2021/2115 of the European Parliament and of the Council of 2 December 2021 Establishing Rules on Support for Strategic Plans to Be Drawn up by Member States under the Common Agricultural Policy (CAP Strategic Plans) and Financed by the European Agricultural Guarantee Fund (EAGF) and by the European Agricultural Fund for Rural Development (EAFRD) and Repealing Regulations (EU) No 1305/2013 and (EU) No 1307/2013. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32021R2115 (accessed on 13 April 2023).
- Kaur, N.; Sharma, L.K.; Kelly-Begazo, C.; Tancig, M.; Brym, Z. Uses of raw products obtained from hemp: Fiber, seed, and cannabinoids. UF/IFAS Ext. 2021, 2021, SS-AGR-458. [Google Scholar] [CrossRef]
- Ahmed, A.T.M.F.; Islam, M.Z.; Mahmud, M.S.; Sarker, M.E.; Islam, M.R. Hemp as a potential raw material toward a sustainable world: A review. Heliyon 2022, 8, e08753. [Google Scholar] [CrossRef]
- AL Ubeed, H.M.S.; Brennan, C.S.; Schanknecht, E.; Alsherbiny, M.A.; Saifullah, M.; Nguyen, K.; Vuong, Q.V. Potential applications of hemp (Cannabis sativa L.) extracts and their phytochemicals as functional ingredients in food and medicinal supplements: A narrative review. Int. J. Food Sci. Technol. 2022, 57, 7542–7555. [Google Scholar] [CrossRef]
- Frassinetti, S.; Moccia, E.; Caltavuturo, L.; Gabriele, M.; Longo, V.; Bellani, L.; Giorgi, G.; Giorgetti, L. Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts. Food Chem. 2018, 262, 56–66. [Google Scholar] [CrossRef]
- Calzolari, D.; Magagnini, G.; Lucini, L.; Grassi, G.; Appendino, G.B.; Amaducci, S. High added-value compounds from Cannabis threshing residues. Ind. Crops Prod. 2017, 108, 558–563. [Google Scholar] [CrossRef]
- Naeem, M.Y.; Corbo, F.; Crupi, P.; Clodoveo, M.L. Hemp: An alternative source for various industries and an emerging tool for functional food and pharmaceutical sectors. Processes 2023, 11, 718. [Google Scholar] [CrossRef]
- Aliferis, K.A.; Bernard-Perron, D. Cannabinomics: Application of metabolomics in Cannabis (Cannabis sativa L.) research and development. Front. Plant Sci. 2020, 11, 554. [Google Scholar] [CrossRef] [PubMed]
- Cerrato, A.; Citti, C.; Cannazza, G.; Capriotti, A.L.; Cavaliere, C.; Grassi, G.; Marini, F.; Montone, C.M.; Paris, R.; Piovesana, S.; et al. Phytocannabinomics: Untargeted metabolomics as a tool for cannabis chemovar differentiation. Talanta 2021, 230, 122313. [Google Scholar] [CrossRef]
- Radwan, M.M.; Chandra, S.; Gul, S.; ElSohly, M.A. Cannabinoids, phenolics, terpenes and alkaloids of Cannabis. Molecules 2021, 26, 2774. [Google Scholar] [CrossRef] [PubMed]
- Booth, J.K.; Bohlmann, J. Terpenes in Cannabis sativa–From plant genome to humans. Plant Sci. 2019, 284, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Russo, E.B.; Marcu, J. Chapter three: Cannabis pharmacology: The usual suspects and a few promising leads. Adv. Pharmacol. 2017, 80, 67–134. [Google Scholar] [PubMed]
- Peng, H.; Shahidi, F. Cannabis and Cannabis edibles: A review. J. Agric. Food Chem. 2021, 69, 1751–1774. [Google Scholar] [CrossRef]
- Smith, G.H.; Roberts, J.M.; Pope, T.W. Terpene based biopesticides as potential alternatives to synthetic insecticides for control of aphid pests on protected ornamentals. Crop. Prot. 2018, 110, 125–130. [Google Scholar] [CrossRef]
- Masyita, A.; Sari, R.M.; Astuti, A.D.; Yasir, B.; Rumata, N.R.; Emran, T.B.; Firzan Nainu, F.; Simal-Gandara, J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem. X 2022, 13, 100217. [Google Scholar] [CrossRef]
- Rahman, M.M.; Rahaman, M.S.; Islam, M.R.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Almikhlafi, M.A.; Alghamdi, S.Q.; Alruwaili, A.S.; Hossain, M.S.; et al. Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules 2021, 27, 233. [Google Scholar] [CrossRef] [PubMed]
- Bautista, J.L.; Yu, S.; Tian, L. Flavonoids in Cannabis sativa: Biosynthesis, bioactivities, and biotechnology. ACS Omega 2021, 6, 5119–5123. [Google Scholar] [CrossRef] [PubMed]
- André, A.; Leupin, M.; Kneubühl, M.; Pedan, V.; Chetschik, I. Evolution of the polyphenol and terpene content, antioxidant activity and plant morphology of eight different fiber-type cultivars of Cannabis sativa L. cultivated at three sowing densities. Plants 2020, 9, 1740. [Google Scholar] [CrossRef] [PubMed]
- Ingallina, C.; Sobolev, A.P.; Circi, S.; Spano, M.; Fraschetti, C.; Filippi, A.; Di Sotto, A.; Di Giacomo, S.; Mazzoccanti, G.; Gasparrini, F.; et al. Cannabis sativa L. inflorescences from monoecious cultivars grown in central Italy: An untargeted chemical characterization from early flowering to ripening. Molecules 2020, 25, 1908. [Google Scholar] [CrossRef]
- Milay, L.; Berman, P.; Shapira, A.; Guberman, O.; Meiri, D. Metabolic profiling of Cannabis secondary metabolites for evaluation of optimal postharvest storage conditions. Front. Plant Sci. 2020, 11, 583605. [Google Scholar] [CrossRef]
- Spano, M.; Di Matteo, G.; Ingallina, C.; Botta, B.; Quaglio, D.; Ghirga, F.; Balducci, S.; Cammarone, S.; Campiglia, E.; Giusti, A.M.; et al. A multimethodological characterization of Cannabis sativa L. inflorescences from seven dioecious cultivars grown in Italy: The effect of different harvesting stages. Molecules 2021, 26, 2912. [Google Scholar] [CrossRef]
- Spano, M.; Di Matteo, G.; Ingallina, C.; Sobolev, A.P.; Giusti, A.M.; Vinci, G.; Cammarone, S.; Tortora, C.; Lamelza, L.; Prencipe, S.A.; et al. Industrial hemp (Cannabis sativa L.) inflorescences as novel food: The effect of different agronomical practices on chemical profile. Foods 2022, 11, 3658. [Google Scholar] [CrossRef]
- Irakli, M.; Tsaliki, E.; Kalivas, A.; Kleisiaris, F.; Sarrou, E.; Cook, C.M. Effect οf genotype and growing year on the nutritional, phytochemical, and antioxidant properties of industrial hemp (Cannabis sativa L.) seeds. Antioxidants 2019, 8, 491. [Google Scholar] [CrossRef]
- Menga, V.; Garofalo, C.; Suriano, S.; Beleggia, R.; Colecchia, S.A.; Perrone, D.; Montanari, M.; Pecchioni, N.; Fares, C. Phenolic acid composition and antioxidant activity of whole and defatted seeds of Italian hemp cultivars: A two-year case study. Agriculture 2022, 12, 759. [Google Scholar] [CrossRef]
- Pieracci, Y.; Ascrizzi, R.; Terreni, V.; Pistelli, L.; Flamini, G.; Bassolino, L.; Fulvio, F.; Montanari, M.; Paris, R. Essential oil of Cannabis sativa L: Comparison of yield and chemical composition of 11 hemp genotypes. Molecules 2021, 26, 4080. [Google Scholar] [CrossRef]
- Ferrante, C.; Recinella, L.; Ronci, M.; Menghini, L.; Brunetti, L.; Chiavaroli, A.; Leone, S.; Di Iorio, L.; Carradori, S.; Tirillini, B.; et al. Multiple pharmacognostic characterization on hemp commercial cultivars: Focus on inflorescence water extract activity. Food Chem. Toxicol. 2019, 125, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Izzo, L.; Castaldo, L.; Narváez, A.; Graziani, G.; Gaspari, A.; Rodríguez-Carrasco, Y.; Ritieni, A. Analysis of phenolic compounds in commercial Cannabis sativa L. inflorescences using UHPLC-Q-Orbitrap HRMS. Molecules 2020, 25, 631. [Google Scholar] [CrossRef] [PubMed]
- Šeruga, M.; Novak, I.; Jakobek, L. Determination of polyphenols content and antioxidant activity of some red wines by differential pulse voltammetry, HPLC and spectrophotometric methods. Food Chem. 2011, 124, 1208–1216. [Google Scholar] [CrossRef]
- Petruccelli, R.; Ieri, F.; Ciaccheri, L.; Bonetti, A. Polyphenolic profiling and chemometric analysis of leaves from Italian Ficus carica L. varieties. Polyphenol compounds in common fig. Eur. J. Hortic. Sci. 2018, 83, 94–103. [Google Scholar] [CrossRef]
- Luaces, P.; Pascual, M.; Pérez, A.G.; Sanz, C. An easy-to-use procedure for the measurement of total phenolic compounds in olive fruit. Antioxidants 2021, 10, 1656. [Google Scholar] [CrossRef] [PubMed]
- Nissen, L.; Zatta, A.; Stefanini, I.; Grandi, S.; Sgorbati, B.; Biavati, B.; Monti, A. Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.). Fitoterapia 2010, 81, 413–419. [Google Scholar] [CrossRef]
- Barčauskaitė, K.; Bakšinskaitė, A.; Szumny, A.; Tilvikienė, V. Variation of secondary metabolites in Cannabis sativa L. inflorescences under applied agrotechnological measures. Ind. Crops Prod. 2022, 188, 115570. [Google Scholar] [CrossRef]
- Pieracci, Y.; Fulvio, F.; Isca, V.; Pistelli, L.; Bassolino, L.; Montanari, M.; Moschella, A.; Flamini, G.; Paris, R. The phenological stage of hemp inflorescences affects essential oil yield and its chemical composition. Ind. Crops Prod. 2023, 197, 116605. [Google Scholar] [CrossRef]
- Pacifico, D.; Miselli, F.; Carboni, A.; Moschella, A.; Mandolino, G. Time course of cannabinoid accumulation and chemotype development during the growth of Cannabis sativa L. Euphytica 2008, 160, 231–240. [Google Scholar] [CrossRef]
- Floegel, A.; Kim, D.-O.; Chung, S.-J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compost. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Bettaieb, I.; Zakhama, N.; Aidi Wannes, W.; Kchouk, M.E.; Marzouk, B. Water deficit effects on Salvia officinalis fatty acids and essential oils composition. Sci. Hortic. 2009, 120, 271–275. [Google Scholar] [CrossRef]
- Savoi, S.; Wong, D.C.; Arapitsas, P.; Miculan, M.; Bucchetti, B.; Peterlunger, E.; Fait, A.; Mattivi, F.; Castellarin, S.D. Transcriptome and metabolite profiling reveals that prolonged drought modulates the phenylpropanoid and terpenoid pathway in white grapes (Vitis vinifera L.). BMC Plant Biol. 2016, 16, 67. [Google Scholar]
- Caplan, D.; Dixon, M.; Zheng, Y. Increasing inflorescence dry weight and cannabinoid content in medical cannabis using controlled drought stress. Hort. Sci. 2019, 54, 964–969. [Google Scholar] [CrossRef]
- Campbell, B.J.; Berrada, A.F.; Hudalla, C.; Amaducci, S.; McKay, J.K. Genotype × environment interactions of industrial hemp cultivars highlight diverse responses to environmental factors. Agrosyst. Geosci. Environ. 2019, 2, 1–11. [Google Scholar] [CrossRef]
- Kopustinskiene, D.M.; Masteikova, R.; Lazauskas, R.; Bernatoniene, J. Cannabis sativa L. bioactive compounds and their protective role in oxidative stress and inflammation. Antioxidants 2022, 11, 660. [Google Scholar] [CrossRef]
- Hanuš, L.O.; Hod, Y. Terpenes/terpenoids in Cannabis: Are they important? Med. Cannabis Cannabinoids 2020, 3, 25–60. [Google Scholar] [CrossRef]
- Malherbe, C.J.; De Beer, D.; Joubert, E. Development of on-line high performance liquid chromatography (HPLC)-biochemical detection methods as tools in the identification of bioactives. Int. J. Mol. Sci. 2012, 13, 3101–3133. [Google Scholar] [CrossRef]
- Mishchenko, S.; Mokher, J.; Laiko, I.; Burbulis, N.; Kyrychenko, H.; Dudukova, S. Phenological growth stages of hemp (Cannabis sativa L.): Codification and description according to the BBCH scale. Žemės Ūkio Moksl. 2017, 24, 31–36. [Google Scholar] [CrossRef]
- Quitadamo, F.; De Simone, V.; Beleggia, R.; Trono, D. Chitosan-induced activation of the antioxidant defense system counteracts the adverse effects of salinity in durum wheat. Plants 2021, 10, 1365. [Google Scholar] [CrossRef]
- Fares, C.; Menga, V. Effects of toasting on the carbohydrate profile and antioxidant properties of chickpea (Cicer arietinum L.) flour added to durum wheat pasta. Food Chem. 2012, 131, 1140–1148. [Google Scholar] [CrossRef]
- Benthin, B.; Danz, H.; Hamburger, M. Pressurized liquid extraction of medicinal plants. J. Chromatogr. A 1999, 837, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007; pp. 104–728. [Google Scholar]
- Linstorm, P. NIST Chemistry WebBook, NIST Standard Reference Database Number 69. J. Phys. Chem. Ref. Data, Monograph 1998, 9, 1–1951. [Google Scholar] [CrossRef]
- Iannucci, A.; Suriano, S.; Cancellaro, S.; Trono, D. Anthocyanin profile and main antioxidants in pigmented wheat grains and related millstream fractions. Cereal Chem. 2022, 99, 1282–1295. [Google Scholar] [CrossRef]
- Hossain, M.K.; Jena, K.K.; Bhuiyan, M.A.; Wickneswari, R. Association between QTLs and morphological traits toward sheath blight resistance in rice (Oryza sativa L.). Breed. Sci. 2016, 66, 613–626. [Google Scholar] [CrossRef]
- Peng, J.; Fan, M.; An, C.; Ni, F.; Huang, W.; Luo, J. A narrative review of molecular mechanism and therapeutic effect of cannabidiol (CBD). Basic Clin. Pharmacol. Toxicol. 2022, 130, 439–456. [Google Scholar] [CrossRef]
- Fernandes, E.S.; Passos, G.; Medeiros, R.; Da Cunha, F.; Ferreira, J.; Campos, M.; Pianowski, L.; Calixto, J. Anti-inflammatory effects of compounds alpha-humulene and (-)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur. J. Pharmacol. 2007, 569, 228–236. [Google Scholar] [CrossRef]
- Bahi, A.; Al Mansouri, S.; Al Memari, E.; Al Ameri, M.; Nurulain, S.M.; Ojha, S. b-Caryophyllene, a CB2 receptor agonist produces multiple behavioral changes relevant to anxiety and depression in mice. Physiol. Behav. 2014, 135, 119–124. [Google Scholar] [CrossRef]
- Jastrząb, A.; Jarocka-Karpowicz, I.; Skrzydlewska, E. The origin and biomedical relevance of cannabigerol. Int. J. Mol. Sci. 2022, 23, 7929. [Google Scholar] [CrossRef]
Trait | Genotype (G) (df 5) | Year (Y) (df 2) | G × Y (df 17) |
---|---|---|---|
TPC | *** | *** | *** |
TFC | *** | *** | *** |
Phenolic acids | |||
Gallic acid | *** | *** | *** |
Vanillic acid | *** | *** | *** |
p-Hydroxybenzoic acid | *** | *** | *** |
Caffeic acid | *** | *** | *** |
p-Coumaric acid | *** | *** | *** |
Total phenolic acids | *** | *** | *** |
Flavonoids | |||
Epicatechin | *** | *** | *** |
Catechin | *** | *** | *** |
Orientin | *** | *** | *** |
Rutin | *** | *** | *** |
Vitexin | *** | *** | *** |
Naringenin | *** | *** | *** |
Total flavonoids | *** | *** | *** |
Monoterpenes | |||
α-Pinene | *** | *** | *** |
β-Pinene | *** | *** | *** |
β-Myrcene | *** | *** | ** |
3-Carene | *** | *** | ** |
α-Phellandrene | *** | *** | *** |
Limonene | *** | *** | *** |
trans-Ocimene | *** | *** | *** |
γ-Terpinene | *** | *** | *** |
Total monoterpenes | *** | *** | *** |
Oxygenated monoterpenes | |||
Eucalyptol | *** | *** | *** |
trans-Sabinene hydrate | *** | *** | *** |
Fenchol | *** | *** | *** |
trans-2-Pinanol | NS | *** | NS |
Terpinen-4-ol | *** | *** | *** |
p-Cymen-8-ol | *** | *** | *** |
α-Terpineol | *** | *** | *** |
Total oxygenated monoterpenes | *** | *** | *** |
Sesquiterpenes | |||
α-Ylangene | *** | *** | *** |
Isocaryophyllene | *** | *** | ** |
β-Caryophyllene | *** | *** | *** |
α-Humulene | *** | *** | *** |
Aromadendrene | *** | *** | *** |
β-Himachalene | *** | *** | *** |
4,11-Selinadiene | *** | *** | *** |
β-Selinene | *** | *** | *** |
β-Cadinene | *** | *** | *** |
α-Selinene | *** | *** | *** |
β-Curcumene | NS | *** | NS |
(E)-γ-Bisabolene | *** | *** | *** |
Cubenene | *** | *** | *** |
δ-Amorphene | * | *** | * |
Selina-3,7(11)-diene | * | *** | ** |
Total sesquiterpenes | *** | *** | *** |
Oxygenated sesquiterpenes | |||
α-Bisabolol | *** | *** | *** |
Caryophyllene oxide | *** | *** | *** |
Humulene epoxide II | *** | *** | *** |
trans-Longipinocarveol | *** | *** | *** |
Longifolenaldehyde | *** | *** | *** |
Alloaromadendrene oxide | *** | *** | *** |
Eudesm-7(11)-en-4-ol | *** | *** | *** |
Clovanediol | *** | *** | *** |
Total oxygenated sesquiterpenes | *** | *** | *** |
Triterpenes | |||
Phytol | ** | *** | NS |
α-Amyrin | *** | *** | *** |
Total triterpenes | * | *** | NS |
Cannabinoids | |||
Cannabidivarin | *** | *** | *** |
Cannabidiol (CBD) | *** | *** | *** |
Δ9-Tetrahydrocannabinol (THC) | *** | *** | *** |
Cannabigerol (CBG) | *** | *** | *** |
Cannabinol | *** | *** | *** |
Total cannabinoids | *** | *** | *** |
Tocopherols | |||
γ-Tocopherol | *** | *** | *** |
α-Tocopherol | NS | *** | NS |
Total tocopherols | NS | *** | NS |
Phytosterols | |||
Campesterol | ** | *** | * |
γ-Sitosterol | NS | *** | NS |
Total phytosterols | NS | *** | NS |
Total phytochemicals | *** | *** | *** |
ABTS | *** | *** | *** |
DPPH | *** | *** | *** |
Trait 1 | GENOTYPE | YEAR | |||||||
---|---|---|---|---|---|---|---|---|---|
Carmaleonte | Codimono | Futura 75 | Santhica 27 | Carmagnola Selezionata | Fibrante | 2018 | 2019 | 2020 | |
TPC | 22.9 b | 28.2 a | 29.8 a | 21.9 b | 30.2 a | 30.8 a | 37.7 A | 26.3 B | 17.9 C |
TFC | 8.9 c | 9.9 ab | 10.7 a | 8.7 c | 9.5 bc | 9.4 bc | 15.2 A | 6.2 C | 7.1 B |
Phenolic acids | |||||||||
Gallic acid | 44.1 b | 60.2 b | 64.2 b | 118.4 a | 126.0 a | 126.3 a | 196.2 A | 73.3 B | 0.0 C |
Vanillic acid | 124.3 a | 113.6 a | 130.1 a | 138.6 a | 67.2 b | 119.1 a | 101.1 B | 169.9 A | 75.5 C |
p-Hydroxybenzoic acid | 76.6 a | 40.6 b | 53.1 ab | 80.9 a | 35.3 b | 73.6 a | 16.4 B | 163.6 A | 0.0 B |
Caffeic acid | 127.9 b | 127.2 b | 217.2 a | 131.6 b | 95.5 c | 139.4 b | 93.5 B | 257.4 A | 68.4 C |
p-Coumaric acid | 55.1 b | 48.2 b | 59.4 a | 44.0 b | 15.3 c | 51.8 b | 84.5 A | 51.4 B | 1.1 C |
Total phenolic acids | 428.1 b | 389.8 bc | 524.0 a | 513.5 a | 339.3 c | 510.2 a | 491.7 B | 715.7 A | 145.0 C |
Flavonoids | |||||||||
Epicatechin | 666.9 b | 1106.8 a | 1139.6 a | 747.0 b | 639.8 b | 695.1 b | 953.4 B | 1246.2 A | 298.0 C |
Catechin | 458.1 c | 711.7 b | 871.2 a | 707.4 b | 475.9 c | 758.3 ab | 599.1 B | 832.5 A | 559.7 B |
Orientin | 2880.3 bc | 3386.6 ab | 3741.4 a | 2215.7 d | 2710.2 cd | 3485.7 ab | 7413.3 A | 1420.4 B | 376.2 C |
Rutin | 1939.9 c | 2516.6 b | 3227.7 a | 2255.3 bc | 2177.6 bc | 3176.6 a | 5019.4 A | 791.8 C | 1835.6 B |
Vitexin | 845.1 bc | 560.9 c | 856.9 bc | 1001.9 b | 661.0 c | 1504.3 a | 753.6 B | 1786.9 A | 0.175 C |
Naringenin | 143.8 a | 141.9 a | 135.8 a | 81.0 b | 92.7 b | 160.2 a | 202.7 A | 156.4 B | 0.019 C |
Total flavonoids | 6934.1 c | 8424.6 b | 9972.8 a | 7008.2 c | 6757.2 c | 9780.3 a | 14,941.6 A | 6234.4 B | 3262.6 C |
Monoterpenes | |||||||||
α-Pinene | 217.9 bc | 295.2 ab | 414.9 a | 17.5 d | 106.4 cd | 149.4 bcd | 463.1 A | 2.2 C | 135.4 B |
β-Pinene | 59.3 b | 68.9 b | 113.6 a | 5.6 c | 43.7 bc | 29.0 bc | 102.0 A | 6.9 C | 51.2 B |
β-Myrcene | 129.2 b | 122.1 bc | 192.6 ab | 8.3 c | 110.0 bc | 257.6 a | 300.0 A | 2.9 C | 107.0 B |
3-Carene | 5.1 bc | 11.2 ab | 13.2 a | 3.1 c | 9.3 abc | 13.8 a | 16.1 A | 2.2 C | 9.5 B |
α-Phellandrene | 3.9 bc | 9.5 ab | 11.8 a | 3.1 c | 9.5 ab | 11.9 a | 14.9 A | 2.1 C | 7.9 B |
Limonene | 17.8 bc | 31.6 bc | 47.9 b | 5.9 c | 41.0 b | 94.2 a | 74.2 A | 3.4 C | 41.5 B |
trans-Ocimene | 36.3 a | 35.4 a | 33.1 a | 4.0 b | 12.8 b | 33.0 a | 44.7 A | 0.2 C | 32.4 B |
γ-Terpinene | 8.3 c | 54.6 b | 63.0 b | 7.9 c | 63.7 b | 143.8 a | 75.4 B | 0.1 C | 95.2 A |
Total monoterpenes | 477.8 bc | 628.6 abc | 890.2 a | 55.5 d | 396.4 c | 732.7 ab | 1090.5 A | 19.9 C | 480.2 B |
Oxygenated monoterpenes | |||||||||
Eucalyptol | 4.8 c | 17.0 a | 13.9 ab | 1.7 c | 2.4 c | 10.7 b | 12.6 A | 0.0 B | 12.6 A |
trans-Sabinene hydrate | 5.9 cd | 13.9 abc | 8.3 bcd | 1.2 d | 16.1 ab | 21.3 a | 18.4 A | 0.0 B | 15.0 A |
Fenchol | 0.0 b | 2.5 ab | 3.5 ab | 0.0 b | 5.7 a | 4.7 a | 8.2 A | 0.0 B | 0.0 B |
trans-2-Pinanol | 3.3 a | 2.6 a | 4.4 a | 0.7 b | 10.0 a | 5.0 a | 11.9 A | 1.1 B | 0.0 B |
Terpinen-4-ol | 3.6 bc | 5.6 bc | 5.5 bc | 1.6 c | 6.3 b | 12.1 a | 12.3 A | 0.0 C | 5.0 B |
p-Cymen-8-ol | 0.3 b | 2.0 ab | 3.1 a | 0.6 b | 0.1 b | 0.0 b | 3.0 A | 0.1 B | 0.0 B |
α-Terpineol | 5.4 cd | 13.6 abc | 11.7 bcd | 1.8 d | 23.9 a | 21.8 ab | 27.5 A | 0.2 C | 11.3 B |
Total oxygenated monoterpenes | 23.2 bc | 57.2 ab | 50.3 ab | 7.7 c | 64.5 a | 75.6 a | 93.8 A | 1.4 C | 43.9 B |
Sesquiterpenes | |||||||||
α-Ylangene | 7.9 a | 7.0 a | 8.7 a | 0.7 b | 6.2 a | 5.6 a | 15.0 A | 0.2 C | 2.9 B |
Isocaryophyllene | 9.8 a | 12.0 a | 11.4 a | 1.7 b | 6.1 ab | 8.4 a | 17.4 A | 0.4 C | 6.8 B |
β-Caryophyllene | 315.8 c | 455.7 b | 384.8 bc | 53.8 d | 383.0 bc | 608.1 a | 695.8 A | 21.4 C | 383.4 B |
α-Humulene | 388.7 c | 642.3 ab | 431.1 bc | 59.4 d | 596.5 abc | 784.6 a | 871.3 A | 41.7 C | 538.2 B |
Aromadendrene | 13.0 b | 27.5 a | 24.1 a | 4.8 c | 13.1 b | 13.9 b | 34.2 A | 1.8 C | 12.2 B |
β-Himachalene | 5.7 bc | 6.0 b | 15.6 a | 1.3 c | 3.5 bc | 3.6 bc | 13.8 A | 0.6 C | 3.4 B |
4,11-Selinadiene | 15.2 b | 17.2 b | 27.7 a | 2.5 c | 19.3 ab | 18.5 ab | 36.6 A | 1.7 C | 11.9 B |
β-Selinene | 18.2 bc | 25.1 b | 42.3 a | 5.4 c | 25.2 b | 22.7 b | 42.0 A | 3.5 C | 24.0 B |
β-Cadinene | 8.0 b | 8.7 ab | 8.6 ab | 0.9 c | 12.7 a | 13.0 a | 16.9 A | 1.7 C | 7.3 B |
α-Selinene | 19.5 bc | 27.6 b | 48.3 a | 4.9 c | 27.8 b | 24.6 b | 53.4 A | 3.0 C | 20.0 B |
β-Curcumene | 19.8 a | 31.8 a | 33.6 a | 23.2 a | 25.1 a | 48.4 a | 81.8 A | 5.3 B | 3.9 B |
(E)-γ-Bisabolene | 10.2 b | 14.1 ab | 12.6 ab | 1.2 c | 19.0 a | 18.8 a | 20.5 A | 2.5 C | 14.9 B |
Cubenene | 20.6 b | 21.3 b | 30.3 a | 2.9 c | 16.9 b | 17.1 b | 37.2 A | 3.6 C | 13.6 B |
δ-Amorphene | 52.3 ab | 52.6 ab | 62.0 a | 5.8 b | 56.5 ab | 57.5 ab | 92.9 A | 8.0 C | 42.5 B |
Selina-3,7(11)-diene | 38.3 ab | 24.9 ab | 78.1 a | 4.6 b | 36.5 ab | 35.5 ab | 74.9 A | 7.2 C | 26.8 B |
Total sesquiterpenes | 943.0 c | 1373.9 ab | 1219.3 bc | 173.1 d | 1247.2 bc | 1680.1 a | 2103.9 A | 102.5 C | 1111.9 B |
Oxygenated sesquiterpenes | |||||||||
α-Bisabolol | 9.9 bc | 35.6 a | 10.7 bc | 2.0 c | 17.7 bc | 25.5 ab | 34.7 A | 10.2 B | 5.8 B |
Caryophyllene oxide | 72.7 a | 59.3 a | 68.3 a | 19.5 b | 52.7 a | 55.4 a | 90.6 A | 33.2 B | 40.1 B |
Humulene epoxide II | 19.7 a | 17.5 a | 13.5 a | 3.6 b | 18.8 a | 18.7 a | 31.2 A | 6.1 B | 8.6 B |
trans-Longipinocarveol | 38.2 a | 30.1 a | 31.6 a | 6.4 b | 23.7 a | 24.9 a | 56.8 A | 12.6 B | 8.1 B |
Longifolenaldehyde | 22.3 a | 12.5 b | 24.3 a | 3.2 c | 10.9 bc | 11.5 b | 38.0 A | 4.4 B | 0.0 C |
Alloaromadendrene oxide | 22.4 a | 12.2 abc | 23.5 a | 2.9 c | 14.8 ab | 8.5 bc | 32.1 A | 7.3 B | 2.8 B |
Eudesm-7(11)-en-4-ol | 14.6 a | 14.0 a | 12.6 a | 2.6 b | 17.6 a | 17.9 a | 26.9 A | 5.1 B | 7.6 B |
Clovanediol | 9.8 a | 6.3 b | 5.8 b | 1.7 c | 1.9 c | 3.1 bc | 13.7 A | 0.6 B | 0.0 B |
Total oxygenated sesquiterpenes | 209.7 a | 187.4 a | 190.3 a | 42.0 b | 158.1 a | 165.5 a | 323.9 A | 79.6 B | 73.0 B |
Triterpenes | |||||||||
Phytol | 26.6 b | 43.4 ab | 33.6 b | 40.7 ab | 56.1 ab | 74.4 a | 115.0 A | 14.4 B | 8.0 B |
α-Amyrin | 5.8 b | 4.9 b | 4.9 b | 9.2 a | 4.4 b | 4.5 b | 13.7 A | 2.0 B | 1.2 B |
Total triterpenes | 32.2 b | 48.2 ab | 38.5 b | 49.9 ab | 60.5 ab | 78.9 a | 128.7 A | 16.4 B | 9.1 B |
Cannabinoids | |||||||||
Cannabidivarin | 452.2 b | 969.9 a | 805.1 ab | 18.2 c | 858.0 ab | 1128.6 a | 1590.5 A | 277.0 B | 248.6 B |
Cannabidiol (CBD) | 15,814.2 c | 22,329.8 bc | 24,487.5 b | 2573.8 d | 25,254.3 b | 35,575.9 a | 31,019.6 A | 16,122.7 B | 15,875.5 B |
Δ9-Tetrahydrocannabinol (THC) | 688.8 c | 819.9 c | 936.5 bc | 28.6 d | 1153.6 ab | 1283.9 a | 1625.9 A | 353.6 B | 476.2 B |
Cannabigerol (CBG) | 1404.1 bc | 972.6 c | 893.8 c | 6370.0 a | 1660.5 bc | 1820.8 b | 4182.9 A | 848.9 C | 1529.1 B |
Cannabinol | 218.7 a | 204.9 a | 266.6 a | 5.8 b | 163.4 a | 158.2 a | 418.7 A | 74.8 B | 15.2 B |
Total cannabinoids | 18,577.9 c | 25,297.2 bc | 27,389.5 b | 8996.5 d | 29,089.8 b | 39,967.4 a | 38,837.4 A | 17,677.0 B | 18,144.6 B |
Tocopherols | |||||||||
γ-Tocopherol | 80.2 ab | 52.4 c | 43.8 c | 41.8 c | 87.2 a | 64.4 bc | 113.9 A | 55.3 B | 15.7 C |
α-Tocopherol | 301.6 a | 213.3 a | 270.8 a | 212.4 a | 294.3 a | 456.5 a | 645.0 A | 166.4 B | 63.1 B |
Total tocopherols | 381.8 ab | 265.7 ab | 314.6 ab | 254.2 b | 381.5 ab | 520.9 a | 758.8 A | 221.7 B | 78.8 B |
Phytosterols | |||||||||
Campesterol | 13.9 ab | 16.8 ab | 8.7 b | 16.4 ab | 21.2 a | 19.9 a | 37.1 A | 6.2 B | 5.2 B |
γ-Sitosterol | 14.0 a | 11.9 a | 5.6 a | 11.4 a | 12.8 a | 12.2 a | 24.7 A | 6.1 B | 3.2 B |
Total phytosterols | 27.9 ab | 28.7 ab | 14.3 b | 27.8 ab | 34.0 a | 32.1 ab | 61.8 A | 12.3 B | 8.4 B |
Total phytochemicals | 20,035.9 c | 36,701.3 b | 40,603.8 b | 17,128.5 d | 38,528.3 b | 53,543.7 a | 58,832.2 A | 25,080.9 B | 23,357.6 B |
ABTS | 139.2 d | 162.5 c | 211.2 a | 139.9 d | 160.0 c | 171.8 b | 199.5 B | 218.8 A | 74.0 C |
DPPH | 100.5 d | 110.9 c | 122.4 a | 112.7 c | 122.6 a | 116.5 b | 125.5 A | 113.7 B | 103.5 C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beleggia, R.; Menga, V.; Fulvio, F.; Fares, C.; Trono, D. Effect of Genotype, Year, and Their Interaction on the Accumulation of Bioactive Compounds and the Antioxidant Activity in Industrial Hemp (Cannabis sativa L.) Inflorescences. Int. J. Mol. Sci. 2023, 24, 8969. https://doi.org/10.3390/ijms24108969
Beleggia R, Menga V, Fulvio F, Fares C, Trono D. Effect of Genotype, Year, and Their Interaction on the Accumulation of Bioactive Compounds and the Antioxidant Activity in Industrial Hemp (Cannabis sativa L.) Inflorescences. International Journal of Molecular Sciences. 2023; 24(10):8969. https://doi.org/10.3390/ijms24108969
Chicago/Turabian StyleBeleggia, Romina, Valeria Menga, Flavia Fulvio, Clara Fares, and Daniela Trono. 2023. "Effect of Genotype, Year, and Their Interaction on the Accumulation of Bioactive Compounds and the Antioxidant Activity in Industrial Hemp (Cannabis sativa L.) Inflorescences" International Journal of Molecular Sciences 24, no. 10: 8969. https://doi.org/10.3390/ijms24108969
APA StyleBeleggia, R., Menga, V., Fulvio, F., Fares, C., & Trono, D. (2023). Effect of Genotype, Year, and Their Interaction on the Accumulation of Bioactive Compounds and the Antioxidant Activity in Industrial Hemp (Cannabis sativa L.) Inflorescences. International Journal of Molecular Sciences, 24(10), 8969. https://doi.org/10.3390/ijms24108969