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Abstract: Disease modeling in non-human subjects is an essential part of any clinical research. To
gain proper understanding of the etiology and pathophysiology of any disease, experimental models
are required to replicate the disease process. Due to the huge diversity in pathophysiology and
prognosis in different diseases, animal modeling is customized and specific accordingly. As in other
neurodegenerative diseases, Parkinson’s disease is a progressive disorder coupled with varying forms
of physical and mental disabilities. The pathological hallmarks of Parkinson’s disease are associated
with the accumulation of misfolded protein called α-synuclein as Lewy body, and degeneration of
dopaminergic neurons in the substantia nigra pars compacta (SNc) area affecting the patient’s motor
activity. Extensive research has already been conducted regarding animal modeling of Parkinson’s
diseases. These include animal systems with induction of Parkinson’s, either pharmacologically or via
genetic manipulation. In this review, we will be summarizing and discussing some of the commonly
employed Parkinson’s disease animal model systems and their applications and limitations.

Keywords: α-synuclein; animal model; dopaminergic neurons; Lewy body; motor impairment;
neurodegeneration; oxidative stress; Parkinson’s disease

1. Introduction

More than two centuries ago, English physician James Parkinson first reported a
clinical syndrome having involuntary tremulous motion along with decreased muscular
power in an article titled ‘An Essay on the Shaking Palsy’. The syndrome later came
to be named after James Parkinson as Parkinson’s disease (PD) [1,2]. PD is a chronic
neurodegenerative disorder usually characterized by substantial reduction of dopaminergic
neurons in the SNc region and presence of Lewy bodies (which are intracytoplasmic
inclusions of proteins—α-synuclein and ubiquitin—and a major histopathological hallmark
of the disease). The ultimate expression of this neurodegeneration is abnormal motor
symptoms. Bradykinesia, postural instability, muscle tone rigidity, resting tremor, and
gait abnormalities are some of the unusual motor symptoms that arise as a result of this
neurodegeneration (together these symptoms are referred as parkinsonism/parkinsonian
syndrome) [3]. In addition to these, some non-motor symptoms that also manifest include
disturbances in sleep, dementia, sensory and autonomic dysfunction, and abnormalities
such as constipation, pain, depression, and inability to smell.

Various research evidence supports and suggests the interaction of different factors
such as aging, genetics, or even the environment in the prognosis of PD, describing the
key pointers leading up to it as multifactorial. Some underlying disease processes include
dysregulation of cellular proteostasis, mitochondrial dysfunction, neuronal inflamma-
tion, oxidative stress, and lysosomal and autophagy failures. PD may be classified into
sporadic or familial subtypes. Dopaminergic, which is loss observed with familial PD,
includes mutations in genes encoding for SNCA (α-synuclein), Parkin/PARK2, ubiquitin
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carboxy terminal hydrolase-1 (UCHL1), PINK1, DJ-1/PARK7, and LRRK2 [4,5]. Nor-
mally, α-synuclein is abundantly present in the presynaptic terminals in different forms
(oligomeric/monomeric/aggregated; it is an intrinsically disordered protein type) and
functions to regulate synaptic vesicular trafficking and neurotransmitter release [6–12].
In the case of PD, these proteins misfold and aggregate, resulting in the formation of
Lewy bodies/Lewy neurites that start spreading in the brain similar to prions. Different
pre-clinical studies have suggested that α-synuclein-induced inclusion toxicity is the main
player of dopaminergic neuronal death. Current treatment regimens include the use of
levodopa or other dopaminergic agonists that relieve patients from symptomatic motor
issues via restoration of the neurotransmission process, but, in most cases, this intervention
comes up with unwanted severe side-effects and complications. Unfortunately, there are
no treatments as such that have been shown to halt the neurodegenerative process in
patients [3].

Due to the complexity in the etiology and multifactorial nature of PD, studying the
disease mechanism and finding an ideal disease model is of utmost importance. The past
few decades have seen significant discoveries and breakthroughs in disease modeling
which have been possible via the use of various animal and cellular models. Of course,
considerable advancements have been achieved in modeling PD, and, still, work is under
way to reach a potentially ideal model which could help us attain significant therapeutic
successes. The aim of this review is to highlight the existing experimental model systems
for PD, their pros and cons, future perspectives, and outstanding questions that remain to
be answered.

2. Parkinson’s Disease Model Systems

The rationale behind the use of an experimental model system to emulate the PD
phenotype is to explore and discover potential therapy and treatment, and gain further
understanding about the disease progression. Studying such model systems presents
a platform to identify possible new therapeutic targets for disease intervention. Over
the past few years, researchers have achieved more clarity and understanding about the
genetics, pathology, and disease progression and heterogeneity of PD owing to the use and
application of different experimental models.

Presently, the existing PD models capture the disease’s pathology partially. A factor
contributing to this could be the fact that ‘model systems’ should, ideally, be able to develop
the disease pathology in a relatively shorter span of time for us to study it well, unlike
the duration of actual PD development in humans [13]. Bearing in mind the variations
and heterogeneity in the cause and origin of PD, efforts have been made to model the
disease pathology, aiming at recapitulating α-synucleinopathy observed in PD, genetic
types of PD, and dysfunction in the midbrain dopaminergic neuronal signaling model
systems (via toxin or other pharmacological interventions). These model systems usually
represent certain attributes of PD, such as observed changes in behavior, electrical activity,
and changes at the cellular or molecular levels [14].

PD experimental model types may be classified into animal- and cell-culture-based
model systems (Figure 1). The disease model systems may use environmental or synthetic
neurotoxins or a genetics-based approach to study the disease pathology. Each group
comes with its own set of merits and demerits, and, therefore, learning about the existing
variations and how they are used to study PD may enable researchers to decide correctly
when selecting an appropriate model system for their specific experiments. The traditional
toxin-based animal models of PD which were developed via destroying the dopaminergic
neurons assisted in treatment development for PD symptoms and investigating the adverse
effects that might be related to therapies involving dopamine replacement. However, these
have not been able to modify, reduce, or reverse the disease’s course. Other model systems
looking at α-synuclein-induced dysfunction and death (rather than just direct neuronal
death) are closer to modulating the disease’s chronic degenerative procession [1].
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Figure 1. Flowchart summarizing some of the different experimental model types used for Parkin-
son’s disease.

The key features that cellular models have been observed to replicate include dopamin-
ergic neuronal degeneration and the presence of α-synuclein protein aggregates. While
cellular models may be more advantageous than the in vivo animal models in terms of
cost-effectiveness, time, and ease, appropriate model selection depends on the particular
aspect of PD [13].

Taken together, exploring different experimental models and ways of PD induction
forms an essential part when deciding what type of outcomes are expected and which one
modulates the pathology closest and is most relevant to the investigation at hand [15].

3. Animal Model

For any Parkinson’s disease model to hold value, certain general features or character-
istics of the model must be laid down. According to these, one can judge or determine how
close a disease model is to the actual situation and take better decisions while analyzing
the results. The following are some desirable pointers [15,16] that an ideal animal model
should have:

1. The presence of a complement of DA neurons during the birth stage, with specific
and gradual depletion of DA neurons as the organism progresses to adulthood. The
loss in neurons should be more than 50% of the total amount and be easily noticeable
via biochemistry- and neuropathology-related techniques [16];

2. The model animal must be able to exhibit motor deficits observed in the disease or
the expected behavioral phenotype, including slowness in movement, resting tremor,
and rigidity [16];

3. The presence of Lewy body and its development as an indicator of the manifestation
of α-synuclein pathology [16];

4. The model must also be sure to replicate the disease progression over a period of a
few months allowing for a faster and less expensive screening of potential therapeutic
candidates [16].

4. Common Laboratory Animals Used to Model PD
4.1. Rodents

Rodents are among the most popular animal models used across research groups,
given the ease of handling and care required. They do not need a special, hard-to-achieve
set-up for breeding and management. They are small-sized animals whose anatomy is
relatively similar to humans to a certain extent. A classical animal species is used for a PD
model system. Specifically, rats or mice are widely used to model PD due to the correlation
between motor dysfunction/deficit and dopaminergic neuronal degeneration in the SNc. In
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these animals, PD can be induced pharmacologically, or via specific genetic manipulation,
and these are broadly known as transgenic rodents.

Pharmacological or toxin-based induction usually lacks molecular similarities with
parkinsonism in humans but these are useful in developing motor, non-motor, and be-
havioral aspects of PD [17,18]. Some of these aspects include bradykinesia (measured by
pole test) [19], locomotor activity (measured by open field test) [20], akinesia (measured
by stepping test) [21], strength, balance, and coordination (measured by rotarod test) [22],
observing and monitoring daily activity of the animal (such as drinking, sleeping, and
eating), and the presence of any compulsive behavior or lack of motivation [1,23,24].

On the other hand, familial PD may be more accurately simulated using genetic
models. Though genetic interventions can induce different molecular dysfunctions (such
as dysfunctional mitochondria [25–27], altered mitophagy [28,29], ubiquitin proteasome
dysfunction [30], and altered ROS production [31]) that are related to PD, they lack important
pathological manifestation of PD-like presence of Lewy bodies, loss of DA neurons, etc. [32].

4.2. Non-Human Primates (NHPs)

NHPs bear a close relation with human beings in terms of genetic makeup and
physiology [33]. It is for this reason that they have come to fulfil an essential part in
helping gain better understanding and insights into the underlying disease mechanisms.
However, due to ethical issues, expenses, and the amount of effort and labor required for
management, their use is very limited, but studies using such animals for investigating
PD can be conducted if required for pre-clinical therapeutic evaluation [34]. Commonly
used NHPs to model PD include macaques [35], marmosets [36], squirrel monkeys [37],
baboons [38], and African green monkeys [39].

Similar to other animal models, PD can be induced in NHPs by neurotoxin administra-
tion or by genetic intervention [34]. Commonly used neurotoxins in NHPs are MPTP [40]
and 6-OHDA [41]. Genetic interventions for inducing PD in NHPs include injection of
viral vectors encoding for overexpression of α-synuclein and LRRK2 (autosomal-dominant
genes) and knockout or knockdown models for PINK1, Parkin, and DJ-1 (autosomal-
recessive genes) [42–46]. Different motor and neuropathological hallmarks of Parkinson’s
disease were reported in monkeys and macaques after adeno-associated virus (AAV) vector-
based genetic insertion of human α-synuclein gene having mutation at A53T [43,47,48].

NHP animal models display disease symptoms such as those observed in humans
(such as chorea/dystonia) [1]. Apart from those, they even have a similar sleeping pat-
tern/cycle as that of humans. With respect to these aspects, NHPs are much better and
superior animal models when compared to rodents. Neuro imaging studies and analyses
have shown that the NHP animal models are highly trustworthy and provide essential
knowledge or information [34]. Lewy bodies, which are among the major histopathological
hallmarks of PD, can only be observed in NHPs as compared to other models. While the
contribution of NHPs is of great significance in PD animal model systems, they are restricted
in terms of the high level of skills, expertise, support, and time that is required [1,49].

4.3. Non-Mammalian Species (NMSs)

This group consists of small organisms such as C. (Caenorhabditis) elegans, zebrafish,
Drosophila melanogaster, etc. Properties such as low maintenance cost and short lifespan ren-
der these organisms ideal for research mostly involving genetic/gene manipulations [50].
Among their most important features are the exhibition of clearly defined neuropathol-
ogy and observable behavior. NMSs are especially useful in whole-genome sequencing
experiments and large-scale drug screening.

4.3.1. Caenorhabditis elegans

C. elegans are host of a network of 302 neurons and 8 dopaminergic neurons [51].
Expression of homologues of various human genes, including LRRK2 (lrk-1), PINK1
(pink1), PARKIN (pdr-1), and DJ- 1 (dnaj-1.1, dnaj-1.2) (but not the α-synuclein), that are
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implicated in familial PD is observed in this organism [52]. This nematode model was
used in the late 1900s (1970s) to investigate the underlying genetic base for neuromuscular
activity by Sydney Brenner [53]. The fact that it has only eight ‘anatomically defined’
dopaminergic neurons allows for great accuracy in quantifying neurodegeneration that
may have been affected by external/internal stress factors [52].

4.3.2. Drosophila melanogaster

Drosophila has a well-defined nervous system, with the adult brain consisting of a
dopamine-producing neuronal cluster comprising around 200 DA neurons [53]. This
renders it a good model system in which we can recapitulate and study PD-associated
neurodegeneration. PD symptoms, such as those of dopaminergic neuronal loss, formation
of inclusion bodies, oxidative stress, and locomotor dysfunction, have all been displayed by
Drosophila exposed/treated to neurotoxin or expressing Wt or mutant α-synuclein [54,55].
The Drosophila genetic model is an excellent tool to study the function of PD-associated
genes and this will be discussed more in detail later in this review.

4.3.3. Zebrafish

Zebrafish have been extensively studied in PD development and pathogenesis [56].
On treatment with neurotoxins, they exhibit altered locomotor activity. These organisms
are able to recapture the key biochemical, morphological, neuro–chemical, and behavioral
features of PD. Zebrafish gene orthologs to human genes related to PD, have shown to be
quite conserved in their function and sequence [1,49].

5. PD Induction in Animal Models

Induction of PD in experimental models is achieved by different approaches, including
pharmacological intervention, genetic manipulation, or sometimes combination of the two.
Here are some insights into these models.

5.1. PD Induction in Animal Models by Pharmacological Intervention

The pharmacological models (toxin based) mimic sporadic PD via rapid and increased
nigrostriatal dopaminergic loss. Such models can be developed through exposure to
neurotoxins, such as 6-OHDA, MPTP, Paraquat, rotenone, etc., or by administration of
α-synuclein pre-formed fibril. However, a major limitation observed in such neurotoxin-
based models is the absence of the formation of Lewy bodies which is one of the key
features of PD [57–61]. Irrespective, animal models of PD induced by the above-mentioned
neurotoxin treatments have provided significant knowledge in understanding the disease
pathology and identifying potential therapeutic targets.

The different neurotoxin induced animal model systems for PD can be found summa-
rized in Table 1 along with their characteristic features and applications

5.2. Commonly Used Neurotoxins to Induce PD

Several compounds are used to induce PD in animal models, and each has advantages
and disadvantages. We will discuss them in the following sections:

5.2.1. 6-OHDA (6-Hydroydopamine)

About five decades ago, the first prototype of PD animal modeling was developed by
intracerebral administration of 6-OHDA in rats [62]. Since then, it is being used extensively
in PD-related research owing to the consistent behavioral phenotype and the degeneration
pattern observed in dopaminergic neurons, contributing information regarding biochemical,
physiological, and behavioral effects of DA in the central nervous system [62]. While 6-OHDA
shows sensitivity in different animals, such as monkeys, mice, dogs, and cats, it is more
commonly used in certain species of rats [34,63–65]. The addition of an extra-hydroxyl group
in DA is the main cause of exhibiting toxicity to dopaminergic neurons. Due to its inability to
cross the blood–brain barrier (BBB), this neurotoxin is delivered directly to the target regions,
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such as the SNpc, the striatum, and the medial forebrain bundle [1,54,56]. Once it reaches the
cytoplasm, it rapidly oxidizes to produce ROS-like superoxide radicals, hydroxyl radicals,
hydrogen peroxide, etc., all of which eventually lead up to a dysfunctional mitochondrion.
Based on the brain region exposed to 6-OHDA, different patterns of neuronal degeneration
can be observed [66]. For example, if this neurotoxin is injected into the striatum, it
will cause damage to the striatal axon terminals with subsequent dopaminergic neuronal
loss in the SNc area [67]. Numerous studies have looked at this type of injection, that
causes retrograde neuronal loss, a phenomenon observed in PD patients [68–70]. Injection
in the SNc proves to be lethal for 60% of TH-containing neurons, followed by loss of
the TH-positive terminal in the striatum. Prominent lesion and rapid cellular death are
observed upon injection to the SNc as cell bodies of dopaminergic neurons reside in
the SNc. Simultaneous to 6-OHDA administration, a norepinephrine transporter (NET)
inhibitor (such as desipramine) is given to ensure dopaminergic selectivity (since the
toxin can internalize to both dopaminergic and noradrenergic neurons via DAT and NET,
respectively) [71].

There are numerous studies investigating the neuro-protective effects of different
compounds on 6-OHDA-induced PD animal models [67,72–75]. While the neurotoxin
model does not replicate Lewy body formation or Lewy-like inclusions in the generated
PD models, it does exhibit interaction with the α-synuclein protein and has contributed
immensely to the field [71]. 6-OHDA finds popularity in its application and use as a
potential endogenous toxin in the induction of PD-associated neurodegeneration given
that it is a metabolic product of DA (synthesized due to -OH attack and the presence of
increased DA levels) [71]. Bilateral injection of 6-OHDA into the striatum results in severe
absence of thirst and hunger, which, ultimately, leads to death due to the animal’s inability
to care for itself [76]. This caused 6-OHDA to be an excellent component of unilateral
modeling of PD [71].

5.2.2. Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)

Animal models using MPTP are mainly used to investigate and understand mito-
chondrial dysfunction in PD. The MPTP animal model is considered a gold standard for
a neurotoxin-induced PD animal model due to its ability to replicate almost all of the
important hallmarks of PD, such as oxidative stress, ROS, inflammation, and energy
failure [1,67,77–79]. It is commonly administered to the animal via systemic injection—
either subcutaneously or intravenously. In 1982, MPTP was discovered accidentally due to
a certain error/issue with its synthesis process. Young drug addicts had intravenously in-
jected these compounds into themselves, only to develop idiopathic parkinsonian syndrome
sometime later. Upon investigation into the cause of these symptoms, it was discovered
that MPTP resulted in the neurotoxic response with manifestation of parkinsonism [80].
This neurotoxin is a lipophilic molecule allowing it to easily cross the BBB. After systemic
administration, MPTP can be oxidized to MPP+ by monoamine oxidase B present in the
astrocytes. MPP+ is the main dopaminergic neuro-poisonous compound that confers the
observed toxicity [81]. It can be easily taken up/absorbed by the dopaminergic neuron via
DAT, due to the structural similarity it shares with dopamine [81]. MPP+ can be transported
to synaptic vesicles with the aid of a vesicular monoamine transporter (VMAT) [67], where
it induces cell death via inhibition of complex I in the mitochondria. This causes a quick
decrease in the ATP concentration in the striatum and the SNpc—resulting in DA neuron
apoptosis and necrosis [82]. Additionally, MPP+ displaces the dopamine from the vesicle
and enhances the dopamine auto-oxidation, adding more toxicity to neurons. Mice that
lack DAT are protected from MPTP toxicity [67]. The most popularly used animal for
PD modeling via MPTP is C57/Bl6 mice (I.P. injected) [78,83–85]. However, this model
is unable to produce Lewy bodies in mice. NHPs on administration with MPTP show
similar behavioral and neuro-anatomical properties as that of humans, i.e., they also show
bilateral parkinsonian syndrome [67]. The normative practice as seen in some studies
initially was treatment of monkeys with high-dose MPTP for a short period of time. These
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were acute MPTP model systems. However, recent research has identified an MPTP model
system that is closer to the human PD pathology via introduction of low-dose MPTP for a
longer span of time [86]. Chronic administration of MPTP spanned out over weeks allows
the development of a PD model closely resembling the original pathology, except Lewy
body formation [87]. Recent applications of the MPTP model system include evaluation of
non-motor PD symptoms and conduction of electrophysiological studies that lead to the
introduction of deep brain stimulation technology [67].

A certain disadvantage associated with MPTP is the alteration towards a PD-like
symptomatic behavior in mice models due to the bilateral lesion. More effort is, thus,
required in taking care of the animal’s food and water system. Another drawback is that
this toxin, due to some undetermined reason, is insensitive to rats and shows variable
sensitivities in different species of mice. Since it only works effectively in C57Bl6 mice, one
must be careful when selecting from the subtypes of the mouse model, too [71].

5.2.3. Paraquat (N,N-Dimethyl-4-4-4-bipyridinium)

This commonly used herbicide was identified as neurotoxic agent due to the struc-
tural similarity it shares with MPP+. It has been found to exhibit great toxicity to organs,
including liver, kidneys, and the lungs [1,88]. A few decades ago, paraquat (PQ) neuro-
toxicity was tested and investigated in the frog [89]. Findings from the study indicated
induction of PD-like behavioral characteristics in the animal. Systemic injection of the
pesticide in mice also resulted in dopaminergic neuronal degeneration [57,90–93]. PQ has
the ability to cross the BBB with the assistance of a neutral amino acid carrier (without
the requirement of any DAT to enter the dopaminergic neurons). While it bears similarity
to MPP+ structure, it does not function by inhibiting mitochondrial complex I. Rather, it
alters the redox cycling of glutathione and thioredoxin which impairs the cell’s ability to
protect itself from oxidative stress [94]. During the development and characterization of
the PD animal model induced by PQ, it was observed that there was a nigral dopaminergic
loss without any striatal dopamine depletion, indicating that a different neurochemical
pathway maybe guiding the presentation of some of the PD pathology. However, the effect
of PQ on nigrostriatal DS system is still under debate as some studies have noted that
chronic delivery of PD lead to chronic neurodegeneration and decreased level of DA—a
phase that could be adopted to study and understand the pre-clinical stage of PD [95].
Age-dependent nigral dopaminergic neuron loss has been observed and described as a
consequence of adult PQ exposure synergistically in combination with other compounds,
such as neonatal iron [96]. Other studies, too, have showed how the combination of PQ
with other compounds, such as maneb (fungicide)/lactacystin (proteosome inhibitor), re-
sults in stronger lesions accompanied by motor deficit and impairments [97,98]. Animals
portray decreased motor activity, and dose-dependent loss of striatal TH-positive fibers and
neurons in the midbrain SNc [67]. Based on the above-mentioned information, the PQ PD
model shows potential in being used to study the earlier disease stages in comparison to
other models, given that the PD phenotype appears progressively. Additional investigation
and study can help formulate a better understanding of how environmental exposure to
such herbicides/pesticides affect PD’s etiology.

5.2.4. Rotenone

Rotenone functions both as a herbicide and an insecticide found naturally in plants [99,100].
Rotenone is a lipophilic compound and can easily cross the BBB where it functions as a
mitochondrial complex I inhibitor such as MPTP. It can also inhibit proteasome activity.
These result in the development of oxidative and proteolytic stress [88]. However, it leads
to a systemic inhibition that is unlike that produced by the use of MPTP [67,101]. There
are different routes of rotenone administration that have been tested in animals. One of
the first models of Rotenone, described in the year 1985, found that stereotaxic injection
of the neurotoxin in high concentrations resulted in significantly lower levels of striatal
dopamine and serotonin [102].
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Table 1. Toxin Model System for PD.

Toxin
Mode

of
Action

Host
Species

Key features

Applications Refs.Nigro-Striatal
Tract Damage/α-
syn Spreading

DA
Neuron

Loss

Lewy
Body-Like
Structure

Phenotype/
Motor Symptoms

(Behavior)

6-OHDA auto-oxidation of
6-OHDA/formation of
hydrogen peroxides due
to the action of
monoamine oxidase/
direct inhibition of
mitochondrial
respiratory chain
complex I

Monkeys
(rhesus/
cynomolgus)
Mice (Tg/male
and female/
C57BL6)

Rats (male Wistar/
Fischer 344)

X

X

X

X

X

X

X

7

7

X

X(deficit in locomotor
activity and decrease
in motor coordination/
rotational bias)
Xdiminished locomotor
activity observed/anxiety-
like behavior portrayed.

In general, model systems have
been used to investigate neuroprotective effects of
different ‘disease modifying strategies’/drugs.
They have been used to establish and
characterize PD features and
develop protocols for the same.
Depending upon the objective,
factors such as neuroinflammation, various
moto/non-motor symptoms are investigated.

[96–106]

MPTP Mitochondrial
complex I inhibition

Mouse (male
C57BL6_Tg/Wt)

Male Wistar rats

Monkey (Macaca
fascicularis,
Macaca mulatta)

X

X

X

X

X

X

X

7

X

X

X

X

Investigate and compare between various
MPTP regimens found in
the literature. To observe the role
of adaptive immune response in
PD pathogenesis (the role of the
immune system). Observe
neuroprotective effects of certain drugs/observe
neuroinflammation,
cytotoxic effects of microglia and
astrocytes. Model system used
to investigate chronobiological
parameters, and cognitive and
motor symptoms upon MPTP
administration. Used to observe the relation
between MPTP-induced
inflammation and gut microbiota, along with
any possible differences in PD progression
between genders.

[95,107–119]
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Table 1. Cont.

Toxin
Mode

of
Action

Host
Species

Key features

Applications Refs.Nigro-Striatal
Tract Damage/α-
syn Spreading

DA
Neuron

Loss

Lewy
Body-Like
Structure

Phenotype/
Motor Symptoms

(Behavior)

ROTENONE Mitochondrial
complex I inhibition

Mice (C57BL6/Swiss)
Rats

X X 7 X Observation of the effect of ‘stress’ on disease
progression. Studies
observed dysfunction in gut –brain access. Use
of a lower dose of this neurotoxin to develop a
PD model system. Assess effect of social
recognition system, GI functioning, and
olfactory system. Development of model via
environmental
contact and investigate underlying
pathological and molecular
processes. Mostly rotenone rat model system
used for looking
at neuroprotective effects/
therapeutic interventions.

[59,120–130]

PARAQUAT Alteration in the redox
cycling of ‘glutathione
and thioredoxin’

Mice (C57BL6,
albino/Tg)
Rats (albino male
Wistar/Sprague Daw-
ley/male Wistar/long
Evans hooded rats

X X 7 X Used to develop a model system
to observe neuroprotective effects
of pomegranate seed extract and
pomegranate juice. One study
found intra-nasal administration route
showcasing better
survivability along with observation of
neuronal loss in the SNc and other essential
PD-like signs.
Generally, the rodents were used
to develop a PD model system and identify an
underlying molecular mechanism that aids in
the disease’s progression.

[131–143]

X: the key feature is present; 7: the key feature is not present.
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This observation is similar to reports on PD where neurodegeneration occurs be-
yond the dopaminergic system. Rotenone has been found to be related to 35% loss in
serotonin, 29% in cholinergic neurons, and 26% reduction in noradrenergic neurons [67].
However, the losses induced by the toxin in such high concentration was not dopamin-
ergic neuron-specific, rather it induced liquefactive necrosis in the striatum. In contrast
to this observation, chronic administration of rotenone at lower concentrations induced
cell-specific degeneration in the nigrostriatal region. IP injections in animals showed be-
havioral and neurochemical impairments with a high mortality rate [103,104]. Intravenous
(IV) administration has resulted in nigrostriatal DA neuronal damage along with Lewy
body-like α-synuclein aggregation, oxidative stress, and gastrointestinal issues [1,105].
PD animal models of rotenone have reported the presence of α-synuclein inclusions in
the viable dopaminergic neurons. Other PD-associated characteristics induced by expo-
sure to rotenone include motor impairments, depletion of catecholamine level, and nigral
dopaminergic neuronal loss. As of now, continuous administration of low-dose rotenone
for a period of about 30 days introduced via novel delivery vehicles has proved to be a good
rotenone study model with reduced death rate and robust motor impairments [71]. Given
the capability of achieving highly reproducible essential human PD features, researchers
have used it to examine and investigate compounds that may have a neuroprotective
effect [67,106].

5.3. PD Induction in Animal Model by α-Synuclein Pre-Formed Fibril (PFF)

α-synuclein pre-formed fibrils are aggregates of misfolded proteins that are thought to
be a major contributor to the development of Parkinson’s disease. These fibrils are formed
from the misfolding of α-synuclein proteins, which are found in the brain and other parts of
the body. They can cause the death of neurons, which leads to the symptoms of Parkinson’s.
These fibrils can also spread between cells, leading to a progressive spread of the disease.

A PFF-induced animal model of α-synuclein is a type of animal model used to study
the effects of PFF-like aggregates of the protein α-synuclein on the brain. This type of model
is used to study the etiology, pathogenesis, and progression of Parkinson’s disease (PD). In
this model, a sample of pre-formed fibrils of α-synuclein is injected directly into the brain of
an animal, usually a mouse or a rat. This injection leads to the misfolding of the endogenous
synuclein protein and the formation of Lewy bodies, which are the pathological hallmark
of PD. Additionally, this model is used to evaluate potential therapeutic strategies for PD.
Luk et al. [144] reported successful Parkinson’s-like Lewy pathology by single intra-striatal
administration of synthetic α-Syn fibrils. However, this model requires six months to
develop neuropathology, such as dopamine neurons loss in the SNc area.

Recently our laboratory developed a PD model combining low-dose MPTP in PFF-
injected mouse. It was found that the addition of low-dose MPTP (once daily 10 mg/kg.b.wt
for five consecutive days) six weeks after the intra-striatal injection of PFF enhanced the
synuclein propagation, increased proteinase K-resistant synuclein filament, and caused
significant dopamine neurons death [86]. This model allows the investigator to study the
molecular mechanism of synuclein spreading, Lewy body-like pathology, and neuronal death
in the SNc area. Additionally, this model can be used to test molecules/inhibitors that can
halt synuclein spreading and its associated neuronal demise within a very short period.

5.4. PD Induction in Animal Model by Genetic Manipulation

Recently, rarer forms of PD associated with genetic perturbations and mutations in
genes encoding for α-synuclein, Parkin, Pink1, and LRRK2 have surfaced and could prove
to be potential therapeutic targets. PD genetic models are developed via overexpression of
autosomal dominant genes (α-syn and LRKK2) or autosomal recessive genes (knockout
or knockdown of genes coding for Parkin, Pink1, and DJ-1) [145]. These have contributed
towards establishing and comprehending the molecular mechanisms underlying famil-
ial/heritable PD. However, one of the major drawbacks of the genetic model is the failure to
produce sufficient dopaminergic neuronal loss, which is the major contributor of PD [1,146].
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It is essential to comprehend the underlying mechanisms and principles of the pres-
ence of different genetic mutations observed in parkinsonism as they shed light on the
shared molecular and biochemical pathways governing both familial and sporadic forms
of the disease. The identification of associate pathways in the disease’s progression and
pathogenesis contributes greatly to identifying probable therapeutic candidates. While
genetic perturbations and mutations observed in PD are quite less, forming only about
10% of diagnosed cases, animal models having a mutated gene are very important because
they represent potential therapeutic targets [67]. Linkage and association analyses con-
ducted by different studies for inherited and idiopathic PD, respectively, have identified
PD-causing genes. The first to be identified was SNCA (α-synuclein) in several families.
Later, other PD-associated genes were discovered that included Parkin, PINK1, LRRK2,
and DJ-1 [82,147]. We will discuss some of the mutation models and their importance in
the following sections. A summary of the mutation model systems along with their key
features can be found in Table 2.

5.4.1. α-Synuclein

This is a small protein of 14 kDa, present in the pre-synaptic terminal regions at a high
concentration [1,148]. While the exact function of α-synuclein is yet to be determined, it has
been found to regulate activities of the membrane and vesicular organs [149,150]. Mutations,
such as substitutions, duplications, and triplications, have been found to be associated
in α-synuclein-related genetic disturbances. α-synuclein forms the major component in
Lewy bodies observed in PD [112]. Based on this important feature, researchers across
communities aim at replicating the PD pathology by overexpression of the WT form of
α-synuclein. The first transgenic animal model for α-synuclein was developed in mice by
Masliah et al. [151]. Progressive growth and development of neuronal inclusions were seen
in the SNc, hippocampus, and neurocortex regions of the brain and they were positively
stained for a-synuclein. However, the model did not exactly recapitulate PD pathogenesis as
observed in humans, since there was not any significant decrease in dopaminergic neuron,
and the α-synuclein inclusions observed did not have a fibrillar structure—therefore it did
not resemble Lewy bodies pathology. Subsequently, another α-synuclein model system
was developed via TH promoter expression to observe the localized effect of the protein.
However, in this case, too, the model failed to achieve α-synuclein inclusion induction
and dopaminergic neuronal loss. However, a double mutant (A30P/A53T) model of α-
synuclein PD model reported the presence of neurite dystrophy accompanied by motor
activity loss and neuronal aggregation formation [71,152].

Mutations caused by the above-mentioned genes result in a dominant inherited PD
type [153,154]. A35T mutated mice display a severe motor phenotype that can induce
paralysis and animal death [155]. Another phenotype seen to be restricted with mutation
in this gene is the resemblance of α-synuclein inclusions to LB [151]. α-synuclein knock-
out models do not seem to have any effect on dopaminergic neuronal development and
maintenance [156,157]. Additionally, α-synuclein knockout mice are resistant to MPTP,
suggesting that α-synuclein is a prerequisite for developing PD [157]. Intriguingly, expres-
sion of mutant α-synuclein in Drosophila models has been observed downregulation of the
TH neurons in the SNc, filamentous intraneuronal inclusions, and motor activity impair-
ments [55]. Some α-synuclein transgenic mice models displayed non-motor symptoms
similar to deficits in the olfactory system, colonic dysfunction, etc. [158,159]. However,
given that the exact role and function of α-synuclein are yet to be understood and identified,
its role in PD pathology remains a little puzzling [67].

5.4.2. Leucine-Rich Repeat Kinase 2 (LRRK2)

Mutations in LRRK2 exhibit an autosomal dominant inheritance pattern in familial
form of PD [1,160]. They are localized in the membranous region of the cell. The two most
commonly observed mutations in this gene comprise G2019S and R1441C/G. The BAC-
LRRK2-R1441G transgenic mice models are associated with motor impairments and axonal
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pathology in the striatal region of the brain—but observed in the absence of dopaminergic
neuronal loss and a-synuclein aggregation [161]. Viral vectors, such as herpes simplex
virus, or adenoviral vectors have been used to create other types of LRRK2 PD models [162].
Transfection of the mutation LRRK2-G2019S portrayed better stimulation of neurodegener-
ation and inclusion formation. Infecting HSV-LRRK2-G2019 in the mouse striatum resulted
in about 50% reduction of dopaminergic neurons in the SNc [162]. This model offers the
opportunity to comprehend complex and essential information regarding the correlation
and association between genetic and environmental factors in the pathogenesis and pro-
gression of PD [1]. A potential therapeutic option suggested for PD includes the potential
of LRRK2 kinase inhibitors—which have been tried and tested [163].

5.4.3. Parkin

Parkin comprises one of the most autosomal recessive patterns of inherited mutation
in early-onset PD. It is associated with 50% and 20% of familial and idiopathic types of
PD, respectively. Parkin has a ubiquitin ligase and plays an essential part in proteasomal
degradation. A loss of function mutation is what results in the disease-causing genetic
alteration in its genotype [164]. Parkinsonism stemming from mutation in Parkin could
result in aggregation of neurotoxic substrates [1,46]. Knockout (KO) Parkin models have
been created to study the effect they have in PD etiology, however, none of the KO models
captured the typical PD phenotype [46]. However, Parkin knockout in Drosophila causes
mitochondrial defects and locomotion deficit, and exhibits reduced life span [165]. On
the other hand, Parkin overexpression has been shown to be preventive and protective
against dopaminergic neurodegeneration in rats exposed to 6-OHDA or mice treated with
MPTP [1,166]. While the application of the gene encoding for this enzyme does not extend
very well in PD model construction, it could itself prove to be an essential and potential
therapeutic target.

5.4.4. Protein Deglycase (DJ-1)

Mutations affecting the gene encoding for this enzyme are also of the recessive type.
Numerous studies have suggested the function of this protein as an antioxidant—that is
required on countering the oxidative environment of dopaminergic neurons [167]. However,
elimination/downregulation of DJ-1 protein in mice did not induce DA neuronal loss in
the SNc, even at an older age. No inclusion bodies were detected, either [168]. What is
clear, though, about this protein is that it plays a neuroprotective role in our CNS. DJ-1
KO mice model may be used as an effective means of studying the PD-related molecular
mechanism [1,169].

5.4.5. PINK1 (Phosphatase and Tensin Homolog—PTEN-Induced Novel Kinase 1)

PINK1 mutations are also associated with a recessive type of parkinsonism. It is a neu-
roprotective kinase, mainly found in the mitochondria (intermembrane space) and cytosolic
areas. It plays an important role in the differentiation of neurons. Upregulation of PINK1 was
found to induce neurite outgrowth in SH-SY5Y neuronal cells along with an increased length
of dopaminergic neurons dendrites [170]. Deletion of the PINK1 gene in Drosophila causes mi-
tochondrial defects, dopaminergic neuronal degeneration, and locomotor deficits [1,171,172].
Interestingly, in Drosophila, knockdown of PINK1 or the Parkin gene displays similar mito-
chondrial defects and locomotor phenotype [1,165,171,172]. Experiments in PINK1 null flies
concluded that Parkin acts downstream of PINK1 [171,172]. However, the PINK1 KO mice
model has been shown to be susceptible to oxidative stress and ROS production (without
any neuronal degeneration/reduced striatal DA levels, though).
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Table 2. Genetic Model Systems for PD.

Gene Protein Host
System

Key Features

Applications Refs.DA
Neuronal Loss

Lewy
Body-Like
Structure

Phenotype/
Behavior Mitochondrial Defects

SNCA α-synuclein Mice

Rat

Monkey

Zebra fish

C. elegans
Drosophila

X

X

X

X

X

X

X

7

X

X

-

X

X

X

X

X

X

X(climbing defects)
X

The pathological
development of PD takes a long time
in this model. However, in the case of
Drosophila it takes less time for PD
development.
Drosophila model
systems
are useful
for suppressor–
enhancer screening.

[1,5,49,56,65,142,146–
150,173]

LRRK2 Leucine-rich repeat
kinase 2

Mice
Rat
Monkey
C. elegans
Zebra Fish

Drosophila

X
7
decreased
neuronal viability
X
-

X

-
-
-

-
-

-

X
X
-
X
Increases in
locomotion in adult
stages

X(climbing defects)

X
-
No mito defect seen,
however, increased ROS
observed due
to increased
kinase activity
-
-
-

This model lacks α-synuclein
inclusions and dopaminergic
neuronal manifestation of PD. This is
usually appropriate for
LRRK2-specific drug
testing.

[1,46,65,162,174–176]

PARKIN Parkin Mice and rat

C. elegans

Zebrafish

Drosophila

7

X

X

X

7

X

No disturbances in
swimming behavior

X(climbing defects)

X

X

X

Drosophila model
systems
are useful for suppressor–enhancer
screening and require less time for PD

development.

[1,46,56,65,165]
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Table 2. Cont.

Gene Protein Host
System

Key Features

Applications Refs.DA
Neuronal Loss

Lewy
Body-Like
Structure

Phenotype/
Behavior Mitochondrial Defects

PINK1 PTEN-induced putative
kinase protein 1

Mice and rats

C. elegans
Zebra fish

Drosophila

X

7

disturbed DA
projection, no
substantial loss of
DA neurons.

X

7

-

-

X

Xabnormal
swimming

X(climbing defects)

-

X

X

X

Drosophila model
systems
are useful for suppressor–enhancer
screening and require less time for PD

development.

[1,46,56,65,171,172,
177,178]

DJ-1 DJ1 Mice
Rats

Drosophila

C. elegans

7
X

X

7

7
Xdemonstrate
age-dependent
motor
deficits of PD.
X(climbing defects)

X

Drosophila model
systems
are useful for suppressor–enhancer
screening and require less time for PD

development.

[1,46,65,168,177,179–
181]
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To sum up, none of the above briefly discussed genetic mouse models—while able to
efficiently replicate particular aspects of the disease—are able to produce the exact type
of neurodegeneration associated with PD and, thus, may need some further/additional
modifications/intervention.

5.5. PD Induction in Animal Models by Combination of Pharmacological Intervention and
Genetic Manipulation

Due to heterogenous manifestation and etiology of PD it is still needed to achieve a
single animal model which will demonstrate all the features of PD [3]. However, many
researchers are now working on a combination of pharmacological intervention and ge-
netic manipulation [182,183]. This combined approach is, basically, due to two reasons:
firstly, some genetic manipulations render the experimental animal more susceptible to
neurotoxins for inducing PD [182,184]. Secondly, as genetic factors as well as environmen-
tal factors are involved in the etiology of PD, the animals of a combined approach will
surely have more PD-like features than the animals of only pharmacological or only genetic
intervention [3,49,185].

6. Recent Development in PD Model System

An important aspect to be considered in the field of clinical research is that of ‘repro-
ducibility’. This poses a challenge that needs to be tackled with utmost importance and
efficiency. One approach can be via improving the quality of experiments conducted in PD
research. This can be achieved by constructing and abiding by certain guidelines governing
the conduction of pre-clinical PD studies. The other approach comprises of a ‘hypothesis-
driven research’. In this, it is important to comprehend the basic biology/physiology of
human dopaminergic system function well—at both behavioral and cellular levels [71].
While developing any new model system, it has been observed to achieve decreasing
level of α-synucleinopathy and aggregated α-synuclein—as these form an essential part
in identifying new PD therapies. α-synuclein levels in blood may provide a reflection of
its concentration in the brain and emphasize the requirement of quantifiable targets to
monitor the disease progression and clinical outcome [71]. Recently, the advancement in
technology assisting the development of stem cell-derived midbrain dopaminergic pro-
genitors resolved issues relating to human neuronal cell availability and ethical issues,
allowing PD investigations via the use of DA human neurons in culture [100,186]. Research
goals in PD have been shifting towards a more neuroprotective-related focus that offers a
better PD study model. DA neurons differentiated from sporadic and inherited PD patient-
derived iPS successfully emulate and recapture the PD pathological environment, meaning
increased stress, mitochondrial and synaptic abnormalities, pathological accumulation of
protein, etc. Another very current development in the PD modeling arena is the potential of
midbrain organoids [187,188]. These offer a much better modeling system with pros such
as recapturing the glial and neuronal cell interactions [189]. Given that they are a fairly
recent development, the drawback associated with them comprises the unavailability of
established, robust protocols. While it was demonstrated that human organoids can be
translated into the adult mouse brain, they do not provide the opportunity of studying
experimental neurorestorative treatments for the impaired motor behavioral phenotype
yet. However, midbrain organoids do appear as a promising PD model given the ideal
surrounding provided to neuronal cells for growth and development [16]. This strategy
was successfully tried and tested in order to achieve development of ‘humanized brains
chimeric’ [190].

7. Conclusions

To put it in a nutshell, there exist various experimental model systems recapitulating
Parkinson’s disease progression and pathogenesis. Its widespread prevalence across the
globe and lack of definite treatment or cure necessitates the requirement of either an animal
or a cellular model mimicking essential aspects of the disease for researchers to study
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and understand. These model systems have been developed over several years and are
still in the process of improvements and adjustments. With the rising understanding of
this disease’s pathology and advancing technology, a combinatorial model looking at both
genetic and environmental factors together in human-derived neuronal cells seems to be the
future of coming research. In this article, we have summarized some of the existing model
systems, their applications, and characteristics. Since PD is thought to be multifactorial,
the choice of a model system that should be used to study PD depends on our research
objectives and a decision should be reached based on careful study of the strengths and
weakness of the experimental model. While a pharmacological model may help determine
the effectiveness of drugs to treat PD, a genetic PD model would assist in identifying
disease pathway therapeutics targets. Finally, the development of an ideal model system
for PD—while it may be a challenging and tedious work in progress—would provide
outstanding knowledge, enabling scientists to come up with strong and personalized cures.
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6-OHDA 6-hydroydopamine
BBB Blood–Brain Barrier
BDNF Brain-derived neurotrophic factor
C. elegans Caenorhabditis elegans
D2R Dopamine D2 receptor
DA Dopamine
DAT Dopamine Transporter
DJ-1 Protein Deglycase
GDNF Glial cell line-derived neurotrophic factor
iPSC induced pluripotent stem cell
IP Intraperitoneal
IV Intravenous
LB Lewy body
LRRK2 Leucine Rich Repeat Kinase
LUHMES Lund Human Mesencephalic cells
MPP+ 1-methyl-4-phenylpyridinium
MPTP Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
NGF Nerve Growth Factor
NHP Non-Human Primate
NMS Non-Mammalian Species
NT Neurotransmitter
PD Parkinson’s disease
PINK1 PTEN-induced novel kinase 1
p-PKCa Protein Kinase C
SNc/SNpc/SN Substantia Nigra (pars compacta)
TH Tyrosine Hydroxylase
VMAT Vesicular Monoamine transporter
YOPD Young-onset Parkinson’s disease
PQ paraquat
KO Knockout
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