Nanoparticle-Shielded dsRNA Delivery for Enhancing RNAi Efficiency in Cotton Spotted Bollworm Earias vittella (Lepidoptera: Nolidae)
Abstract
:1. Introduction
2. Results
2.1. De Novo Transcriptome
2.2. Expression Profiles of Reference Genes
2.3. Stability of Candidate Reference Gene Expression
2.4. Identification of RNAi Machinery Genes
2.5. dsRNA Degradation Studies
2.6. Identification and Expression Analysis of Functional Genes across Developmental Stages
2.7. Nanoparticles’ Characterization and dsRNA Conjugation
2.8. RNAi Efficiency
2.9. Expression of Core RNAi Genes after Gene Knockdown
3. Discussion
3.1. E. vittella Transcriptome Generation
3.2. Reference Genes Analysis
3.3. Development and Detoxification Genes Expression Analysis
3.4. Identification and Expression Analysis of RNAi Machinery Genes
3.5. dsRNA Degradation: A Potential Cause of Low RNAi Sensitivity
3.6. Feeding of Nanoshield-dsRNA Improves the RNAi in E. vittella
4. Material and Methods
4.1. Rearing of Insect
4.2. Total RNA Isolation and Sequencing
4.3. De Novo Transcriptome Assembly
4.4. Selection, Amplification, and Real-Time Quantitative PCR (RT-qPCR) of Reference Genes
4.5. Expression Stability Analysis of Reference Genes
4.6. Identification of Functional Candidate Genes and Phylogenetic Analysis
4.7. Validating Transcriptomic Data across Development Stages Using RT-qPCR
4.8. RNAi Experiments
4.8.1. Preparation of dsRNA
4.8.2. dsRNA Stability Studies
4.8.3. Preparation of dsRNA–CQD (Carbon Quantum Dots) Nanoconjugates
4.8.4. Preparation of Chitosan Coated dsRNA Nanoconjugates
4.8.5. Preparation of Lipofectamine dsRNA Conjugate
4.9. Characterization of Nanoparticles
4.10. Insect Bioassays and dsRNA-Mediated Gene Knockdown
4.11. Expression of Core RNAi Genes with Gene Knockdown Samples
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CDS | Coding sequences |
CQD | Carbon quantum dots |
CYP450 | Cytochrome P450 monooxygenase |
dsRNA | Double-stranded RNA |
BUSCO | Benchmarking Universal Single Copy Ortholog |
BLAST | The Basic Local Alignment Search Tool |
Go | Gene ontology |
HMMER | Hidden Markov Model |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
RISC | RNA-induced silencing complex |
siRNA | Small interfering RNA |
References
- Vonzun, S.; Messmer, M.M.; Boller, T.; Shrivas, Y.; Patil, S.S.; Riar, A. Extent of bollworm and sucking pest damage on modern and traditional cotton species and potential for breeding in organic cotton. Sustainability 2019, 11, 6353. [Google Scholar] [CrossRef]
- Syed, T.S.; Abro, G.H.; Khanum, A.; Satta, M. Effect of Host Plants on the Biology of Earias vittella (Fab)(Noctuidae:Lepidoptera) Under Laboratory Conditions. Pak. J. Zool. 2011, 43, 127–132. [Google Scholar]
- Bras, A.; Roy, A.; Heckel, D.G.; Anderson, P.; Karlsson Green, K. Pesticide resistance in arthropods: Ecology matters too. Ecol. Lett. 2022, 25, 1746–1759. [Google Scholar] [CrossRef] [PubMed]
- Kranthi, K.R.; Jadhav, D.R.; Wanjari, R.R.; Ali, S.S.; Russell, D. Carbamate and organophosphate resistance in cotton pests in India, 1995 to 1999. Bull. Entomol. Res. 2001, 91, 37–46. [Google Scholar] [PubMed]
- Gautam, H.K.; Singh, N.N.; Rai, A.B. Screening of okra against shoot and fruit bores Earias vittella (Fab.). Indian J. Agric. Res. 2014, 48, 72. [Google Scholar] [CrossRef]
- Tabashnik, B.E.; Brévault, T.; Carrière, Y. Insect resistance to Bt crops: Lessons from the first billion acres. Nat. Biotechnol. 2013, 31, 510–521. [Google Scholar] [CrossRef]
- Mamta, B.; Rajam, M.V. RNAi technology: A new platform for crop pest control. Physiol. Mol. Biol. Plants 2017, 23, 487–501. [Google Scholar] [CrossRef]
- Nitnavare, R.B.; Bhattacharya, J.; Singh, S.; Kour, A.; Hawkesford, M.J.; Arora, N. Next Generation dsRNA-Based Insect Control: Success So Far and Challenges. Front. Plant Sci. 2021, 12, 673576. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, M.; Pandher, S.; Kaur, G.; Goel, N.; Rathore, P. Using de novo transcriptome assembly and analysis to study RNAi in Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Sci. Rep. 2019, 9, 13710. [Google Scholar] [CrossRef]
- Ganbaatar, O.; Cao, B.; Zhang, Y.; Bao, D.; Bao, W.; Wuriyanghan, H. Knockdown of Mythimna separata chitinase genes via bacterial expression and oral delivery of RNAi effectors. BMC Biotechnol. 2017, 17, 9. [Google Scholar] [CrossRef]
- Zha, W.; Peng, X.; Chen, R.; Du, B.; Zhu, L.; He, G. Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS ONE 2011, 6, e20504. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, M.; Pandher, S.; Kaur, G.; Rathore, P.; Palli, S.R. Selection of housekeeping genes and demonstration of RNAi in cotton leafhopper, Amrasca biguttula biguttula (Ishida). PLoS ONE 2018, 13, e0191116. [Google Scholar] [CrossRef]
- Tariq, K.; Ali, A.; Davies, T.G.E.; Naz, E.; Naz, L.; Sohail, S.; Hou, M.; Ullah, F. RNA interference-mediated knockdown of voltage-gated sodium channel (MpNav) gene causes mortality in peach-potato aphid, Myzus persicae. Sci. Rep. 2019, 9, 5291. [Google Scholar] [CrossRef]
- Terenius, O.; Papanicolaou, A.; Garbutt, J.S.; Eleftherianos, I.; Huvenne, H.; Kanginakudru, S.; Albrechtsen, M.; An, C.; Aymeric, J.-L.; Barthel, A.; et al. RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design. J. Insect Physiol. 2011, 57, 231–245. [Google Scholar] [CrossRef]
- Singh, I.K.; Singh, S.; Mogilicherla, K.; Shukla, J.N.; Palli, S.R. Comparative analysis of double-stranded RNA degradation and processing in insects. Sci. Rep. 2017, 7, 17059. [Google Scholar] [CrossRef]
- Shukla, J.N.; Kalsi, M.; Sethi, A.; Narva, K.E.; Fishilevich, E.; Singh, S.; Mogilicherla, K.; Palli, S.R. Reduced stability and intracellular transport of dsRNA contribute to poor RNAi response in lepidopteran insects. RNA Biol. 2016, 13, 656–669. [Google Scholar] [CrossRef]
- Joga, M.R.; Zotti, M.J.; Smagghe, G.; Christiaens, O. RNAi efficiency, systemic properties, and novel delivery methods for pest insect control: What we know so far. Front. Physiol. 2016, 7, 553. [Google Scholar] [CrossRef]
- Joga, M.R.; Mogilicherla, K.; Smagghe, G.; Roy, A. RNA Interference-Based Forest Protection Products (FPPs) Against Wood-Boring Coleopterans: Hope or Hype? Front. Plant Sci. 2021, 12, 733608. [Google Scholar] [CrossRef]
- Scott, J.G.; Michel, K.; Bartholomay, L.C.; Siegfried, B.D.; Hunter, W.B.; Smagghe, G.; Zhu, K.Y.; Douglas, A.E. Towards the elements of successful insect RNAi. J. Insect Physiol. 2013, 59, 1212–1221. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, X.; Wei, Y.; Song, C.; Wang, Y. Recent advances in targeted gene silencing and cancer therapy by nanoparticle-based delivery systems. Biomed. Pharmacother. 2023, 157, 114065. [Google Scholar] [CrossRef]
- Abballe, L.; Spinello, Z.; Antonacci, C.; Coppola, L.; Miele, E.; Catanzaro, G.; Miele, E. Nanoparticles for drug and gene delivery in pediatric brain tumors’ cancer stem cells: Current knowledge and future perspectives. Pharmaceutics 2023, 15, 505. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Debnath, N.; Cui, Y.; Unrine, J.; Palli, S.R. Chitosan, Carbon Quantum Dot, and Silica Nanoparticle Mediated dsRNA Delivery for Gene Silencing in Aedes aegypti: A Comparative Analysis. ACS Appl. Mater. Interfaces 2015, 7, 19530–19535. [Google Scholar] [CrossRef] [PubMed]
- Gurusamy, D.; Mogilicherla, K.; Palli, S.R. Chitosan nanoparticles help double-stranded RNA escape from endosomes and improve RNA interference in the fall armyworm, Spodoptera frugiperda. Arch. Insect. Biochem. Physiol. 2020, 104, e21677. [Google Scholar] [CrossRef] [PubMed]
- Mitter, N.; Worrall, E.A.; Robinson, K.E.; Li, P.; Jain, R.G.; Taochy, C.; Fletcher, S.J.; Carroll, B.J.; Lu, G.Q.M.; Xu, Z.P. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 2017, 3, 16207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, J.; Zhu, K.Y. Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect. Mol. Biol. 2010, 19, 683–693. [Google Scholar] [CrossRef]
- Kaur, R.; Gupta, M.; Singh, S.; Joshi, N.; Sharma, A. Enhancing RNAi Efficiency to Decipher the Functional Response of Potential Genes in Bemisia tabaci AsiaII-1 (Gennadius) Through dsRNA Feeding Assays. Front. Physiol. 2020, 11, 123. [Google Scholar] [CrossRef]
- Bulgarella, M.; Baty, J.W.; McGruddy, R.; Lester, P.J. Gene silencing for invasive paper wasp management: Synthesized dsRNA can modify gene expression but did not affect mortality. PLoS ONE 2023, 18, e0279983. [Google Scholar] [CrossRef]
- Mogilicherla, K.; Howell, J.L.; Palli, S.R. Improving RNAi in the Brown Marmorated Stink Bug: Identification of target genes and reference genes for RT-qPCR. Sci. Rep. 2018, 8, 3720. [Google Scholar] [CrossRef]
- Haberhausen, G.; Pinsl, J.; Kuhn, C.C.; Markert-Hahn, C. Comparative study of different standardization concepts in quantitative competitive reverse transcription-PCR assays. J. Clin. Microbiol. 1998, 36, 628–633. [Google Scholar] [CrossRef]
- Zhang, S.; An, S.; Li, Z.; Wu, F.; Yang, Q.; Liu, Y.; Cao, J.; Zhang, H.; Zhang, Q.; Liu, X. Identification and validation of reference genes for normalization of gene expression analysis using qRT-PCR in Helicoverpa armigera (Lepidoptera: Noctuidae). Gene 2015, 555, 393–402. [Google Scholar] [CrossRef]
- Kaur, R.; Gupta, M.; Singh, S.; Pandher, S. Evaluation and validation of experimental condition-specific reference genes for normalization of gene expression in Asia II-I Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Gene Expr. Patterns 2019, 34, 119058. [Google Scholar] [CrossRef]
- Chang, Y.-W.; Chen, J.-Y.; Lu, M.-X.; Gao, Y.; Tian, Z.-H.; Gong, W.-R.; Zhu, W.; Du, Y.-Z. Selection and validation of reference genes for quantitative real-time PCR analysis under different experimental conditions in the leafminer Liriomyza trifolii (Diptera: Agromyzidae). PLoS ONE 2017, 12, e0181862. [Google Scholar] [CrossRef]
- Ma, K.-S.; Li, F.; Liang, P.-Z.; Chen, X.-W.; Liu, Y.; Gao, X.-W. Identification and Validation of Reference Genes for the Normalization of Gene Expression Data in qRT-PCR Analysis in Aphis gossypii (Hemiptera: Aphididae). J. Insect Sci. 2016, 16, 17. [Google Scholar] [CrossRef]
- Arya, S.K.; Jain, G.; Upadhyay, S.K.; Sarita; Singh, H.; Dixit, S.; Verma, P.C. Reference genes validation in Phenacoccus solenopsis under various biotic and abiotic stress conditions. Sci. Rep. 2017, 7, 13520. [Google Scholar] [CrossRef]
- Dzaki, N.; Ramli, K.N.; Azlan, A.; Ishak, I.H.; Azzam, G. Evaluation of reference genes at different developmental stages for quantitative real-time PCR in Aedes aegypti. Sci. Rep. 2017, 7, 43618. [Google Scholar] [CrossRef]
- Koramutla, M.K.; Aminedi, R.; Bhattacharya, R. Comprehensive evaluation of candidate reference genes for qRT-PCR studies of gene expression in mustard aphid, Lipaphis erysimi (Kalt). Sci. Rep. 2016, 6, 25883. [Google Scholar] [CrossRef]
- Brar, G.S.; Kaur, G.; Singh, S.; Shukla, J.N.; Pandher, S. Identification and validation of stage-specific reference genes for gene expression analysis in Callosobruchus maculatus (Coleoptera: Bruchidae). Gene Expr. Patterns 2022, 43, 119233. [Google Scholar] [CrossRef]
- Sellamuthu, G.; Bílý, J.; Joga, M.R.; Synek, J.; Roy, A. Identifying optimal reference genes for gene expression studies in Eurasian spruce bark beetle, Ips typographus (Coleoptera: Curculionidae: Scolytinae). Sci. Rep. 2022, 12, 4671. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, B.; Geng, Z.; Chang, Y.; Wei, J.; An, S. The uncommon function and mechanism of the common enzyme glyceraldehyde-3-phosphate dehydrogenase in the metamorphosis of Helicoverpa armigera. Front. Bioeng. Biotechnol. 2022, 10, 1042867. [Google Scholar] [CrossRef]
- Lu, Y.; Yuan, M.; Gao, X.; Kang, T.; Zhan, S.; Wan, H.; Li, J. Identification and validation of reference genes for gene expression analysis using quantitative PCR in Spodoptera litura (Lepidoptera: Noctuidae). PLoS ONE 2013, 8, e68059. [Google Scholar] [CrossRef]
- Jeon, J.H.; Moon, K.; Kim, Y.; Kim, Y.H. Reference gene selection for qRT-PCR analysis of season- and tissue-specific gene expression profiles in the honey bee Apis mellifera. Sci. Rep. 2020, 10, 13935. [Google Scholar] [CrossRef] [PubMed]
- Bansal, R.; Mamidala, P.; Mian, M.A.R.; Mittapalli, O.; Michel, A.P. Validation of reference genes for gene expression studies in Aphis glycines (Hemiptera: Aphididae). J. Econ. Entomol. 2012, 105, 1432–1438. [Google Scholar] [CrossRef] [PubMed]
- Sandiford, S.L.; Dong, Y.; Pike, A.; Blumberg, B.J.; Bahia, A.C.; Dimopoulos, G. Cytoplasmic actin is an extracellular insect immune factor which is secreted upon immune challenge and mediates phagocytosis and direct killing of bacteria, and is a Plasmodium Antagonist. PLoS Pathog. 2015, 11, e1004631. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.-I.; Minami, R.; Yamahama, Y.; Hariyama, T.; Hosoda, N. Framework with cytoskeletal actin filaments forming insect footpad hairs inspires biomimetic adhesive device design. Commun. Biol. 2020, 3, 272. [Google Scholar] [CrossRef] [PubMed]
- Mounier, N.; Prudhomme, J.-C. Differential expression of muscle and cytoplasmic actin genes during development of Bombyx mori. Insect Biochem. 1991, 21, 523–533. [Google Scholar] [CrossRef]
- Zhu, X.; Yuan, M.; Shakeel, M.; Zhang, Y.; Wang, S.; Wang, X.; Zhan, S.; Kang, T.; Li, J. Selection and evaluation of reference genes for expression analysis using qRT-PCR in the beet armyworm Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). PLoS ONE 2014, 9, e84730. [Google Scholar] [CrossRef]
- Felton, G.W.; Summers, C.B. Antioxidant systems in insects. Arch. Insect. Biochem. Physiol. 1995, 29, 187–197. [Google Scholar] [CrossRef]
- Yan, X.; Zhang, Y.; Xu, K.; Wang, Y.; Yang, W. Selection and Validation of Reference Genes for Gene Expression Analysis in Tuta absoluta Meyrick (Lepidoptera: Gelechiidae). Insects 2021, 12, 589. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, M.; Pandher, S.; Kaur, G.; Goel, N.; Rathore, P.; Palli, S.R. RNA sequencing, selection of reference genes and demonstration of feeding RNAi in Thrips tabaci (Lind.) (Thysanoptera: Thripidae). BMC Mol. Biol. 2019, 20, 6. [Google Scholar] [CrossRef]
- Qu, C.; Wang, R.; Che, W.; Zhu, X.; Li, F.; Luo, C. Selection and evaluation of reference genes for expression analysis using quantitative real-time PCR in the Asian Ladybird Harmonia axyridis (Coleoptera: Coccinellidae). PLoS ONE 2018, 13, e0192521. [Google Scholar] [CrossRef]
- Hoogewijs, D.; Houthoofd, K.; Matthijssens, F.; Vandesompele, J.; Vanfleteren, J.R. Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC Mol. Biol. 2008, 9, 9. [Google Scholar] [CrossRef]
- Dombrovski, M.; Kuhar, R.; Mitchell, A.; Shelton, H.; Condron, B. Cooperative foraging during larval stage affects fitness in Drosophila. J. Comp. Physiol. A. 2020, 206, 743–755. [Google Scholar] [CrossRef]
- Wei, D.-D.; He, W.; Miao, Z.-Q.; Tu, Y.-Q.; Wang, L.; Dou, W.; Wang, J.-J. Characterization of Esterase Genes Involving Malathion Detoxification and Establishment of an RNA Interference Method in Liposcelis bostrychophila. Front. Physiol. 2020, 11, 274. [Google Scholar] [CrossRef]
- Pavlidi, N.; Vontas, J.; Van Leeuwen, T. The role of glutathione S-transferases (GSTs) in insecticide resistance in crop pests and disease vectors. Curr. Opin. Insect Sci. 2018, 27, 97–102. [Google Scholar] [CrossRef]
- Yu, L.; Tang, W.; He, W.; Ma, X.; Vasseur, L.; Baxter, S.W.; Yang, G.; Huang, S.; Song, F.; You, M. Characterization and expression of the cytochrome P450 gene family in diamondback moth, Plutella xylostella (L.). Sci. Rep. 2015, 5, 8952. [Google Scholar] [CrossRef]
- Chen, C.; Wang, C.; Liu, Y.; Shi, X.; Gao, X. Transcriptome analysis and identification of P450 genes relevant to imidacloprid detoxification in Bradysia odoriphaga. Sci. Rep. 2018, 8, 2564. [Google Scholar] [CrossRef]
- Iga, M.; Kataoka, H. Recent studies on insect hormone metabolic pathways mediated by cytochrome P450 enzymes. Biol. Pharm. Bull. 2012, 35, 838–843. [Google Scholar] [CrossRef]
- Jing, Y.-P.; Wen, X.; Li, L.; Zhang, S.; Zhang, C.; Zhou, S. The vitellogenin receptor functionality of the migratory locust depends on its phosphorylation by juvenile hormone. Proc. Natl. Acad. Sci. USA 2021, 118, e2106908118. [Google Scholar] [CrossRef]
- Santos, C.G.; Humann, F.C.; Hartfelder, K. Juvenile hormone signaling in insect oogenesis. Curr. Opin. Insect Sci. 2019, 31, 43–48. [Google Scholar] [CrossRef]
- Song, J.; Zhou, S. Post-transcriptional regulation of insect metamorphosis and oogenesis. Cell. Mol. Life Sci. 2020, 77, 1893–1909. [Google Scholar] [CrossRef]
- Zhu, K.Y.; Palli, S.R. Mechanisms, applications, and challenges of insect RNA interference. Annu. Rev. Entomol. 2020, 65, 293–311. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.-S.; Shukla, J.N.; Gong, Z.J.; Mogilicherla, K.; Palli, S.R. RNA interference in the Colorado potato beetle, Leptinotarsa decemlineata: Identification of key contributors. Insect Biochem. Mol. Biol. 2016, 78, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Singh, S.; Kaur, G.; Pandher, S.; Kaur, N.; Goel, N.; Kaur, R.; Rathore, P. Transcriptome analysis unravels RNAi pathways genes and putative expansion of CYP450 gene family in cotton leafhopper Amrasca biguttula (Ishida). Mol. Biol. Rep. 2021, 48, 4383–4396. [Google Scholar] [CrossRef] [PubMed]
- Mogilicherla, K.; Chakraborty, A.; Taning, C.N.T.; Smagghe, G.; Roy, A. RNAi in termites (Isoptera): Current status and prospects for pest management. Entomologia 2022. [Google Scholar] [CrossRef]
- Yoon, J.-S.; Mogilicherla, K.; Gurusamy, D.; Chen, X.; Chereddy, S.C.R.R.; Palli, S.R. Double-stranded RNA binding protein, Staufen, is required for the initiation of RNAi in coleopteran insects. Proc. Natl. Acad. Sci. USA 2018, 115, 8334–8339. [Google Scholar] [CrossRef]
- Black, J.J.; Wang, Z.; Goering, L.M.; Johnson, A.W. Utp14 interaction with the small subunit processome. RNA 2018, 24, 1214–1228. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, K.; Fu, W.; Sheng, C.; Han, Z. Biochemical comparison of dsRNA degrading nucleases in four different insects. Front. Physiol. 2018, 9, 624. [Google Scholar] [CrossRef]
- Prentice, K.; Smagghe, G.; Gheysen, G.; Christiaens, O. Nuclease activity decreases the RNAi response in the sweetpotato weevil Cylas puncticollis. Insect. Biochem. Mol. Biol. 2019, 110, 80–89. [Google Scholar] [CrossRef]
- Song, H.; Fan, Y.; Zhang, J.; Cooper, A.M.; Silver, K.; Li, D.; Li, T.; Ma, E.; Zhu, K.Y.; Zhang, J. Contributions of dsRNAses to differential RNAi efficiencies between the injection and oral delivery of dsRNA in Locusta migratoria. Pest Manag. Sci. 2019, 75, 1707–1717. [Google Scholar] [CrossRef]
- Guan, R.-B.; Li, H.-C.; Fan, Y.-J.; Hu, S.-R.; Christiaens, O.; Smagghe, G.; Miao, X.-X. A nuclease specific to lepidopteran insects suppresses RNAi. J. Biol. Chem. 2018, 293, 6011–6021. [Google Scholar] [CrossRef]
- Dhandapani, R.K.; Gurusamy, D.; Palli, S.R. Protamine-Lipid-dsRNA Nanoparticles Improve RNAi Efficiency in the Fall Armyworm, Spodoptera frugiperda. J. Agric. Food Chem. 2022, 70, 6634–6643. [Google Scholar] [CrossRef]
- Geng, K.; Zhang, Y.; Zhao, X.; Zhang, W.; Guo, X.; He, L.; Liu, K.; Yang, H.; Hong, H.; Peng, J.; et al. Fluorescent Nanoparticle-RNAi-Mediated Silencing of Sterol Carrier Protein-2 Gene Expression Suppresses the Growth, Development, and Reproduction of Helicoverpa armigera. Nanomaterials 2023, 13, 245. [Google Scholar] [CrossRef]
- Avila, L.A.; Chandrasekar, R.; Wilkinson, K.E.; Balthazor, J.; Heerman, M.; Bechard, J.; Brown, S.; Park, Y.; Dhar, S.; Reeck, G.R.; et al. Delivery of lethal dsRNAs in insect diets by branched amphiphilic peptide capsules. J. Control. Release 2018, 273, 139–146. [Google Scholar] [CrossRef]
- Christiaens, O.; Tardajos, M.G.; Martinez Reyna, Z.L.; Dash, M.; Dubruel, P.; Smagghe, G. Increased RNAi Efficacy in Spodoptera exigua via the Formulation of dsRNA With Guanylated Polymers. Front. Physiol. 2018, 9, 316. [Google Scholar] [CrossRef]
- Dhandapani, R.K.; Gurusamy, D.; Howell, J.L.; Palli, S.R. Development of CS-TPP-dsRNA nanoparticles to enhance RNAi efficiency in the yellow fever mosquito, Aedes aegypti. Sci. Rep. 2019, 9, 8775. [Google Scholar] [CrossRef]
- Kunte, N.; McGraw, E.; Bell, S.; Held, D.; Avila, L.-A. Prospects, challenges and current status of RNAi through insect feeding. Pest Manag. Sci. 2020, 76, 26–41. [Google Scholar] [CrossRef]
- Mysore, K.; Andrews, E.; Li, P.; Duman-Scheel, M. Chitosan/siRNA nanoparticle targeting demonstrates a requirement for single-minded during larval and pupal olfactory system development of the vector mosquito Aedes aegypti. BMC Dev. Biol. 2014, 14, 9. [Google Scholar] [CrossRef]
- Zhang, Q.; Hua, G.; Adang, M.J. Chitosan/DsiRNA nanoparticle targeting identifies AgCad1 cadherin in Anopheles gambiae larvae as an in vivo receptor of Cry11Ba toxin of Bacillus thuringiensis subsp. jegathesan. Insect Biochem. Mol. Biol. 2015, 60, 33–38. [Google Scholar] [CrossRef]
- Ramesh Kumar, D.; Saravana Kumar, P.; Gandhi, M.R.; Al-Dhabi, N.A.; Paulraj, M.G.; Ignacimuthu, S. Delivery of chitosan/dsRNA nanoparticles for silencing of wing development vestigial (vg) gene in Aedes aegypti mosquitoes. Int. J. Biol. Macromol. 2016, 86, 89–95. [Google Scholar] [CrossRef]
- Theerawanitchpan, G.; Saengkrit, N.; Sajomsang, W.; Gonil, P.; Ruktanonchai, U.; Saesoo, S.; Flegel, T.W.; Saksmerprome, V. Chitosan and its quaternized derivative as effective long dsRNA carriers targeting shrimp virus in Spodoptera frugiperda 9 cells. J. Biotechnol. 2012, 160, 97–104. [Google Scholar] [CrossRef]
- Whyard, S.; Singh, A.D.; Wong, S. Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem. Mol. Biol. 2009, 39, 824–832. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.A.; Bitra, K.; Zhang, S.; Wang, L.; Lynn, D.E.; Strand, M.R. The UGA-CiE1 cell line from Chrysodeixis includens exhibits characteristics of granulocytes and is permissive to infection by two viruses. Insect Biochem. Mol. Biol. 2010, 40, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Taning, C.N.T.; Christiaens, O.; Berkvens, N.; Casteels, H.; Maes, M.; Smagghe, G. Oral RNAi to control Drosophila suzukii: Laboratory testing against larval and adult stages. J. Pest Sci. 2016, 89, 803–814. [Google Scholar] [CrossRef]
- Barry, G.; Alberdi, P.; Schnettler, E.; Weisheit, S.; Kohl, A.; Fazakerley, J.K.; Bell-Sakyi, L. Gene silencing in tick cell lines using small interfering or long double-stranded RNA. Exp. Appl. Acarol. 2013, 59, 319–338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cui, J.; Zhou, Y.; Cao, J.; Gong, H.; Zhang, H.; Zhou, J. Liposome mediated double-stranded RNA delivery to silence ribosomal protein P0 in the tick Rhipicephalus haemaphysaloides. Ticks Tick Borne Dis. 2018, 9, 638–644. [Google Scholar] [CrossRef]
- Costa, B.; Boueri, B.; Oliveira, C.; Silveira, I.; Ribeiro, A.J. Lipoplexes and polyplexes as nucleic acids delivery nanosystems: The current state and future considerations. Expert Opin. Drug Deliv. 2022, 19, 577–594. [Google Scholar] [CrossRef]
- Wang, K.; Peng, Y.; Jason Chen, J.; Peng, Y.; Wang, X.; Shen, Z.; Han, Z. Comparison of efficacy of RNAi mediated by various nanoparticles in the rice striped stem borer (Chilo suppressalis). Pestic. Biochem. Physiol. 2019, 165, 104467. [Google Scholar] [CrossRef]
- Gupta, G.P.; Rani, S.; Birah, A.; Raghuraman, M. Mass rearing of the spotted bollworm, Earias vittella (Lepidoptera: Noctuidae) on an artificial diet. JTI 2005, 25, 134–137. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Zerbino, D.R.; Birney, E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008, 18, 821–829. [Google Scholar] [CrossRef]
- Schulz, C.; Gomez Perdiguero, E.; Chorro, L.; Szabo-Rogers, H.; Cagnard, N.; Kierdorf, K.; Prinz, M.; Wu, B.; Jacobsen, S.E.W.; Pollard, J.W.; et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 2012, 336, 86–90. [Google Scholar] [CrossRef]
- Du, J.; Li, M.; Yuan, Z.; Guo, M.; Song, J.; Xie, X.; Chen, Y. A decision analysis model for KEGG pathway analysis. BMC Bioinform. 2016, 17, 407. [Google Scholar] [CrossRef]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef]
- Huang, J.-H.; Liu, Y.; Lin, Y.-H.; Belles, X.; Lee, H.-J. Practical Use of RNA Interference: Oral Delivery of Double-stranded RNA in Liposome Carriers for Cockroaches. J. Vis. Exp. 2018, 135, e57385. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Gene Name | Egg | 1st Instar | 2nd Instar | 3rd Instar | 4th Instar | 5th Instar | Adult Female | Adult Male | All Stages |
---|---|---|---|---|---|---|---|---|---|
geNorm | |||||||||
ACTIN | 10 | 10 | 9 | 2 | 2 | 7 | 4 | 9 | 8 |
TEF | 2 | 2 | 7 | 7 | 1 | 8 | 3 | 1 | 2 |
ALP | 5 | 8 | 8 | 9 | 9 | 3 | 8 | 1 | 7 |
SOD | 9 | 3 | 10 | 4 | 10 | 1 | 6 | 4 | 10 |
EFB | 1 | 9 | 2 | 1 | 5 | 5 | 5 | 7 | 5 |
V-ATPase | 6 | 4 | 6 | 3 | 6 | 10 | 1 | 10 | 9 |
TUBULIN | 7 | 1 | 4 | 5 | 7 | 1 | 7 | 8 | 1 |
GADPH | 3 | 7 | 5 | 6 | 3 | 6 | 2 | 2 | 1 |
APN | 8 | 1 | 1 | 10 | 8 | 9 | 9 | 5 | 4 |
RPS15 | 1 | 6 | 1 | 8 | 4 | 4 | 1 | 6 | 3 |
TATA | 4 | 5 | 3 | 1 | 1 | 2 | 10 | 3 | 6 |
NormFinder | |||||||||
ACTIN | 11 | 11 | 10 | 1 | 2 | 3 | 4 | 10 | 9 |
TEF | 1 | 2 | 8 | 7 | 6 | 4 | 5 | 1 | 3 |
ALP | 9 | 8 | 9 | 10 | 8 | 9 | 9 | 2 | 8 |
SOD | 10 | 1 | 11 | 3 | 11 | 5 | 10 | 8 | 11 |
EFB | 4 | 10 | 3 | 8 | 4 | 2 | 7 | 6 | 7 |
V-ATPase | 6 | 4 | 2 | 2 | 1 | 11 | 1 | 11 | 10 |
TUBULIN | 7 | 6 | 1 | 4 | 7 | 8 | 6 | 9 | 5 |
GADPH | 5 | 7 | 7 | 5 | 5 | 1 | 2 | 4 | 2 |
APN | 8 | 5 | 6 | 11 | 10 | 10 | 8 | 3 | 5 |
RPS15 | 3 | 9 | 4 | 9 | 9 | 7 | 3 | 5 | 1 |
TATA | 2 | 3 | 5 | 6 | 3 | 6 | 11 | 7 | 6 |
BestKeeper | |||||||||
ACTIN | 9 | 2 | 10 | 4 | 2 | 2 | 5 | 10 | 11 |
TEF | 5 | 5 | 2 | 8 | 3 | 3 | 2 | 4 | 2 |
ALP | 10 | 8 | 6 | 11 | 10 | 8 | 11 | 6 | 6 |
SOD | 11 | 6 | 11 | 5 | 11 | 6 | 10 | 9 | 9 |
EFB | 7 | 11 | 7 | 3 | 6 | 4 | 9 | 2 | 8 |
V-ATPase | 1 | 7 | 4 | 1 | 4 | 11 | 4 | 3 | 10 |
TUBULIN | 3 | 10 | 1 | 6 | 8 | 10 | 3 | 11 | 5 |
GADPH | 6 | 1 | 3 | 7 | 5 | 1 | 1 | 5 | 4 |
APN | 2 | 9 | 8 | 10 | 9 | 9 | 8 | 7 | 7 |
RPS15 | 8 | 3 | 5 | 9 | 7 | 7 | 6 | 1 | 3 |
TATA | 4 | 4 | 9 | 2 | 1 | 5 | 7 | 8 | 1 |
∆CT | |||||||||
ACTIN | 11 | 11 | 10 | 2 | 1 | 6 | 4 | 10 | 9 |
TEF | 1 | 1 | 8 | 8 | 5 | 8 | 5 | 1 | 3 |
ALP | 9 | 9 | 9 | 10 | 9 | 9 | 10 | 2 | 8 |
SOD | 10 | 2 | 11 | 3 | 11 | 3 | 9 | 6 | 11 |
EFB | 3 | 10 | 2 | 7 | 6 | 2 | 7 | 8 | 7 |
V-ATPase | 6 | 6 | 6 | 4 | 3 | 11 | 1 | 11 | 10 |
TUBULIN | 7 | 5 | 1 | 1 | 8 | 5 | 6 | 9 | 4 |
GADPH | 5 | 7 | 7 | 5 | 4 | 1 | 3 | 3 | 1 |
APN | 8 | 4 | 4 | 11 | 10 | 10 | 8 | 4 | 5 |
RPS15 | 4 | 8 | 3 | 9 | 7 | 7 | 2 | 7 | 2 |
TATA | 2 | 3 | 5 | 6 | 2 | 4 | 11 | 5 | 6 |
Comprehensive | |||||||||
ACTIN | 11 | 9 | 10 | 1 | 2 | 4 | 5 | 11 | 9 |
TEF | 1 | 1 | 8 | 8 | 4 | 7 | 4 | 1 | 3 |
ALP | 9 | 10 | 9 | 10 | 9 | 9 | 10 | 2 | 8 |
SOD | 10 | 2 | 11 | 6 | 11 | 2 | 9 | 8 | 11 |
EFB | 3 | 11 | 3 | 5 | 6 | 3 | 7 | 6 | 7 |
V-ATPase | 5 | 7 | 5 | 2 | 3 | 11 | 1 | 9 | 10 |
TUBULIN | 8 | 5 | 1 | 4 | 8 | 6 | 6 | 10 | 4 |
GADPH | 6 | 6 | 6 | 7 | 5 | 1 | 2 | 3 | 1 |
APN | 7 | 3 | 4 | 11 | 10 | 10 | 8 | 5 | 6 |
RPS15 | 4 | 8 | 2 | 9 | 7 | 8 | 3 | 4 | 2 |
TATA | 2 | 4 | 7 | 3 | 1 | 5 | 11 | 7 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandal, S.; Singh, S.; Bansal, G.; Kaur, R.; Mogilicherla, K.; Pandher, S.; Roy, A.; Kaur, G.; Rathore, P.; Kalia, A. Nanoparticle-Shielded dsRNA Delivery for Enhancing RNAi Efficiency in Cotton Spotted Bollworm Earias vittella (Lepidoptera: Nolidae). Int. J. Mol. Sci. 2023, 24, 9161. https://doi.org/10.3390/ijms24119161
Sandal S, Singh S, Bansal G, Kaur R, Mogilicherla K, Pandher S, Roy A, Kaur G, Rathore P, Kalia A. Nanoparticle-Shielded dsRNA Delivery for Enhancing RNAi Efficiency in Cotton Spotted Bollworm Earias vittella (Lepidoptera: Nolidae). International Journal of Molecular Sciences. 2023; 24(11):9161. https://doi.org/10.3390/ijms24119161
Chicago/Turabian StyleSandal, Shelja, Satnam Singh, Gulshan Bansal, Ramandeep Kaur, Kanakachari Mogilicherla, Suneet Pandher, Amit Roy, Gurmeet Kaur, Pankaj Rathore, and Anu Kalia. 2023. "Nanoparticle-Shielded dsRNA Delivery for Enhancing RNAi Efficiency in Cotton Spotted Bollworm Earias vittella (Lepidoptera: Nolidae)" International Journal of Molecular Sciences 24, no. 11: 9161. https://doi.org/10.3390/ijms24119161
APA StyleSandal, S., Singh, S., Bansal, G., Kaur, R., Mogilicherla, K., Pandher, S., Roy, A., Kaur, G., Rathore, P., & Kalia, A. (2023). Nanoparticle-Shielded dsRNA Delivery for Enhancing RNAi Efficiency in Cotton Spotted Bollworm Earias vittella (Lepidoptera: Nolidae). International Journal of Molecular Sciences, 24(11), 9161. https://doi.org/10.3390/ijms24119161