Frankia alni Carbonic Anhydrase Regulates Cytoplasmic pH of Nitrogen-Fixing Vesicles
Abstract
:1. Introduction
2. Results
2.1. Genome Mining
2.2. Cells Growth
2.3. Physiology Measurements of Cells
2.4. Gene Expression
2.5. Proteomics
2.6. Metabolomics of Organic Acids
3. Discussion
4. Materials and Methods
4.1. Genome Mining
4.2. Plant Growth
4.3. Culture of Cells and Physiology Measurements of Cells
4.4. Microscopy
4.5. Phylogenomics
4.6. Gene Expression
4.7. Proteomics
4.8. Metabolomic of Organic Acids
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griesmann, M.; Chang, Y.; Liu, X.; Spannagl, M.; Crook, M.B.; Billault-Penneteau, B.; Lauressergues, D.; Imanishi, L.; Kohlen, W.; Haberer, G.; et al. Phylogenomics reveals multiple independent losses of the nitrogen-fixing root nodule symbiosis. Science 2018, 361, 6398. [Google Scholar] [CrossRef] [PubMed]
- Normand, P.; Orso, S.; Cournoyer, B.; Jeannin, P.; Chapelon, C.; Dawson, J.; Evtushenko, L.; Misra, A.K. Molecular phylogeny of the genus Frankia and related genera and emendation of the family Frankiaceae. Int. J. Syst. Bacteriol. 1996, 46, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Flandrois, J.; Brochier-Armanet, C.; Briolay, J.; Abrouk, D.; Schwob, G.; Normand, P.; Fernandez, M.P. Taxonomic assignment of uncultured prokaryotes with long range PCR targeting the spectinomycin operon. Res. Microbiol. 2019, 170, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Nouioui, I.; Ghodhbane-Gtari, F.; Del Carmen Montero-Calasanz, M.; Rohde, M.; Tisa, L.S.; Gtari, M.; Klenk, H.P. Frankia inefficax sp. nov., an actinobacterial endophyte inducing ineffective, non nitrogen-fixing, root nodules on its actinorhizal host plants. Antonie Leeuwenhoek 2017, 110, 313–320. [Google Scholar] [CrossRef]
- Tisa, L.S.; Beauchemin, N.; Cantor, M.N.; Furnholm, T.; Ghodhbane-Gtari, F.; Goodwin, L.; Copeland, A.; Gtari, M.; Huntemann, M.; Ivanova, N.; et al. Draft genome sequence of Frankia sp. strain DC12, an atypical, noninfective, ineffective isolate from Datisca cannabina. Genome Announc. 2015, 3, e00889-15. [Google Scholar] [CrossRef]
- Baker, D.; Newcomb, W.; Torrey, J. Characterization of an ineffective actinorhizal microsymbiont, Frankia sp. EuI1 (Actinomycetales). Can. J. Microbiol. 1980, 26, 1072–1089. [Google Scholar] [CrossRef]
- Hahn, D.; Starrenburg, M.; Akkermans, A. Variable compatibility of cloned Alnus glutinosa ecotypes against ineffective Frankia strains. Plant Soil 1988, 107, 233–243. [Google Scholar] [CrossRef]
- Pozzi, A.C.; Bautista-Guerrero, H.H.; Abby, S.S.; Herrera-Belaroussi, A.; Abrouk, D.; Normand, P.; Valdes, M.; Fernandez, M.P. Multi-Locus Sequence Analysis and extensive sampling bring new insights on Frankia phylogeny and phylogeography. Syst. Appl. Microbiol. 2018, 41, 311–323. [Google Scholar] [CrossRef]
- Sen, A.; Daubin, V.; Abrouk, D.; Gifford, I.; Berry, A.M.; Normand, P. Phylogeny of the class Actinobacteria revisited in the light of complete genomes. The orders ‘Frankiales’ and Micrococcales should be split into coherent entities: Proposal of Frankiales ord. nov., Geodermatophilales ord. nov., Acidothermales ord. nov. and Nakamurellales ord. nov. Int. J. Syst. Evol. Microbiol. 2014, 64, 3821–3832. [Google Scholar]
- Bell, C.D.; Soltis, D.E.; Soltis, P.S. The age and diversification of the Angiosperms re-revisited. Am. J. Bot. 2010, 97, 1296–1303. [Google Scholar] [CrossRef]
- Normand, P.; Lapierre, P.; Tisa, L.S.; Gogarten, J.P.; Alloisio, N.; Bagnarol, E.; Bassi, C.A.; Berry, A.M.; Bickhart, D.M.; Choisne, N.; et al. Genome characteristics of facultatively symbiotic Frankia sp. strains reflect host range and host plant biogeography. Genome Res. 2007, 17, 7–15. [Google Scholar] [CrossRef]
- Tisa, L.S.; Oshone, R.; Sarkar, I.; Ktari, A.; Sen, A.; Gtari, M. Genomic approaches toward understanding the actinorhizal symbiosis: An update on the status of Frankia genomes. Symbiosis 2016, 70, 5–16. [Google Scholar] [CrossRef]
- Sen, A.; Sur, S.; Bothra, A.K.; Benson, D.R.; Normand, P.; Tisa, L.S. The implication of life style on codon usage patterns and predicted highly expressed genes for three Frankia genomes. Antonie Leeuwenhoek 2008, 93, 335–346. [Google Scholar] [CrossRef]
- Thakur, S.; Normand, P.; Daubin, V.; Tisa, L.S.; Sen, A. Contrasted evolutionary constraints on secreted and non-secreted proteomes of selected Actinobacteria. BMC Genom. 2013, 14, 474. [Google Scholar] [CrossRef]
- Bethencourt, L.; Vautrin, F.; Taib, N.; Dubost, A.; Castro-Garcia, L.; Imbaud, O.; Abrouk, D.; Fournier, P.; Briolay, J.; Nguyen, A.; et al. Draft genome sequences for three unisolated Alnus-infective Frankia Sp+ strains, AgTrS, AiOr and AvVan, the first sequenced Frankia strains able to sporulate in-planta. J. Genom. 2019, 7, 50–55. [Google Scholar] [CrossRef]
- Persson, T.; Battenberg, K.; Demina, I.V.; Vigil-Stenman, T.; Vanden Heuvel, B.; Pujic, P.; Facciotti, M.T.; Wilbanks, E.G.; O’Brien, A.; Fournier, P.; et al. Candidatus Frankia datiscae Dg1, the actinobacterial microsymbiont of Datisca glomerata, expresses the canonical nod genes nodABC in symbiosis with its host plant. PLoS ONE 2015, 10, e0127630. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Wibberg, D.; Battenberg, K.; Blom, J.; Vanden Heuvel, B.; Berry, A.M.; Kalinowski, J.; Pawlowski, K. An assemblage of Frankia Cluster II strains from California contains the canonical nod genes and also the sulfotransferase gene nodH. BMC Genom. 2016, 17, 796. [Google Scholar] [CrossRef]
- Gtari, M.; Ghodhbane-Gtari, F.; Nouioui, I. Frankia soli sp. nov., an actinobacterium isolated from soil beneath Ceanothus jepsonii. Int. J. Syst. Evol. Microbiol. 2019, 70, 1203–1209. [Google Scholar] [CrossRef]
- Pujic, P.; Alloisio, N.; Fournier, P.; Roche, D.; Sghaier, H.; Armengaud, J.; Normand, P. Omics of the early molecular dialogue between Frankia alni and Alnus glutinosa and the cellulase synton. Env. Microbiol. 2019, 21, 3328–3345. [Google Scholar] [CrossRef]
- Capasso, C.; Supuran, C.T. An overview of the alpha-, beta- and gammacarbonic anhydrases from Bacteria: Can bacterial carbonic anhydrases shed new light on evolution of bacteria? J. Enzym. Inhib. Med. Chem. 2015, 30, 325–332. [Google Scholar] [CrossRef]
- Alloisio, N.; Queiroux, C.; Fournier, P.; Pujic, P.; Normand, P.; Vallenet, D.; Medigue, C.; Yamaura, M.; Kakoi, K.; Kucho, K. The Frankia alni symbiotic transcriptome. Mol. Plant Microbe Interact. 2010, 23, 593–607. [Google Scholar] [CrossRef] [PubMed]
- Supuran, C.T. Legionella pneumophila carbonic anhydrases: Underexplored antibacterial drug targets. Pathogens 2016, 5, 44. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.K.; Colvin, C.J.; Needle, D.B.; Mba Medie, F.; Champion, P.A.; Abramovitch, R.B. The carbonic anhydrase inhibitor ethoxzolamide inhibits the Mycobacterium tuberculosis PhoPR Regulon and Esx-1 Secretion and Attenuates Virulence. Antimicrob. Agents Chemother. 2015, 59, 4436–4445. [Google Scholar] [CrossRef] [PubMed]
- Merlin, C.; Masters, M.; McAteer, S.; Coulson, A. Why Is carbonic anhydrase essential to Escherichia coli? J. Bacteriol. 2003, 185, 6415–6424. [Google Scholar] [CrossRef] [PubMed]
- Buchieri, M.V.; Riafrecha, L.E.; Rodríguez, O.M.; Vullo, D.; Morbidoni, H.R.; Supuran, C.T.; Colinas, P.A. Inhibition of the β-carbonic anhydrases from Mycobacterium tuberculosis with C-cinnamoyl glycosides: Identification of the first inhibitor with anti-mycobacterial activity. Bioorganic Med. Chem. Lett. 2013, 23, 740–743. [Google Scholar] [CrossRef]
- Aspatwar, A.; Winum, J.Y.; Carta, F.; Supuran, C.T.; Hammaren, M.; Parikka, M.; Parkkila, S. Carbonic anhydrase inhibitors as novel drugs against mycobacterial β-Carbonic anhydrases: An update on in vitro and in vivo studies. Molecules 2018, 23, 2911. [Google Scholar] [CrossRef]
- Alyar, S.; Adem, S. Synthesis, characterization, antimicrobial activity and carbonic anhydrase enzyme inhibitor effects of salicilaldehyde-N-methyl p-toluenesulfonylhydrazone and its Palladium(II), Cobalt(II) complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 131, 294–302. [Google Scholar] [CrossRef]
- Smith, K.S.; Ferry, J.G. Prokaryotic carbonic anhydrases. FEMS Microbiol. Rev. 2000, 24, 335–366. [Google Scholar] [CrossRef]
- Heseltine, W.W.; Galloway, L.D. Some antibacterial properties of sodium propionate. J. Pharm. Pharmacol. 1951, 3, 581–585. [Google Scholar] [CrossRef]
- Zhitnitsky, D.; Rose, J.; Lewinson, O. The highly synergistic, broad spectrum, antibacterial activity of organic acids and transition metals. Sci. Rep. 2017, 7, 44554. [Google Scholar] [CrossRef]
- Gibson, J. Movement of acetate across the cytoplasmic membrane of the unicellular Cyanobacteria Synechococcus and Aphanocapsa. Arch. Microbiol. 1981, 130, 175–179. [Google Scholar] [CrossRef]
- Jolkver, E.; Emer, D.; Ballan, S.; Kramer, R.; Eikmanns, B.J.; Marin, K. Identification and characterization of a bacterial transport system for the uptake of pyruvate, propionate, and acetate in Corynebacterium glutamicum. J. Bacteriol. 2009, 191, 940–948. [Google Scholar] [CrossRef]
- Carro, L.; Persson, T.; Pujic, P.; Alloisio, N.; Fournier, P.; Boubakri, H.; Pawlowski, K.; Normand, P. Organic acids metabolism in Frankia alni. Symbiosis 2016, 70, 37–48. [Google Scholar] [CrossRef]
- Stowers, M.D.; Kulkarni, R.K.; Steele, D.B. Intermediary carbon metabolism in Frankia. Arch. Microbiol. 1986, 143, 319–324. [Google Scholar] [CrossRef]
- Pierre, O.; Engler, G.; Hopkins, J.; Brau, F.; Boncompagni, E.; Herouart, D. Peribacteroid space acidification: A marker of mature bacteroid functioning in Medicago truncatula nodules. Plant Cell Environ. 2013, 36, 2059–2070. [Google Scholar]
- Day, D.A.; Poole, P.S.; Tyermanc, S.D.; Rosendahld, L. Ammonia and amino acid transport across symbiotic membranes in nitrogen-fixing legume nodules. Cell. Mol. Life Sci. 2001, 58, 61–71. [Google Scholar] [CrossRef]
- Schultz, N.A.; Benson, D.R. Enzymes of ammonia assimilation in hyphae and vesicles of Frankia sp. strain CpI1. J. Bacteriol. 1990, 172, 1380–1384. [Google Scholar] [CrossRef]
- Carro, L.; Pujic, P.; Alloisio, N.; Fournier, P.; Boubakri, H.; Poly, F.; Rey, M.; Heddi, A.; Normand, P. Physiological effects of major upregulated Alnus glutinosa peptides on Frankia sp. ACN14a. Microbiology 2016, 162, 1173–1184. [Google Scholar] [CrossRef]
- Berry, A.M.; Harriott, O.T.; Moreau, R.A.; Osman, S.F.; Benson, D.R.; Jones, A.D. Hopanoid lipids compose the Frankia vesicle envelope. presumptive barrier of oxygen diffusion to nitrogenase. Proc. Natl. Acad. Sci. USA 1993, 90, 6091–6094. [Google Scholar] [CrossRef]
- Edmands, J.; Noridge, N.A.; Benson, D.R. The actinorhizal root-nodule symbiont Frankia sp. strain CpI1 has two glutamine synthetases. Proc. Natl. Acad. Sci. USA 1987, 84, 6126–6130. [Google Scholar] [CrossRef]
- Lundberg, P.; Lundquist, P.O. Primary metabolism in N2-fixing Alnus incana-Frankia symbiotic root nodules studied with 15N and 31P nuclear magnetic resonance spectroscopy. Planta 2004, 219, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Lucas, K.A.; Filley, J.R.; Erb, J.M.; Graybill, E.R.; Hawes, J.W. Peroxisomal metabolism of propionic acid and isobutyric acid in plants. J. Biol. Chem. 2007, 282, 24980–24989. [Google Scholar] [CrossRef] [PubMed]
- Perez de Souza, L.; Garbowicz, K.; Brotman, Y.; Tohge, T.; Fernie, A.R. The acetate pathway supports flavonoid and lipid biosynthesis in Arabidopsis. Plant Physiol. 2020, 182, 857–869. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.M.; To, T.K.; Matsui, A.; Tanoi, K.; Kobayashi, N.I.; Matsuda, F.; Habu, Y.; Ogawa, D.; Sakamoto, T.; Matsunaga, S.; et al. Acetate-mediated novel survival strategy against drought in plants. Nat. Plants 2017, 3, 17097. [Google Scholar] [CrossRef] [PubMed]
- McClure, P.R.; Coker, G.T.I.; Schubert, K.R. Carbon dioxide fixation in roots and nodules of Alnus glutinosa. 1. Role of phosphoenolpyruvate carboxylase and carbamyl phosphate synthetase in dark CO2 fixation, citrulline synthesis and N2 fixation. Plant Physiol. 1983, 71, 652–657. [Google Scholar] [CrossRef]
- Murry, M.A.; Fontaine, M.S.; Torrey, J.G. Growth kinetics and nitrogenase induction in Frankia sp. HFPArI3 grown in batch culture. Plant Soil 1984, 78, 61–78. [Google Scholar] [CrossRef]
- Jeong, J.; Suh, S.; Guan, C.; Tsay, Y.F.; Moran, N.; Oh, C.J.; An, C.S.; Demchenko, K.N.; Pawlowski, K.; Lee, Y. A nodule-specific dicarboxylate transporter from alder is a member of the peptide transporter family. Plant Physiol. 2004, 134, 969–978. [Google Scholar] [CrossRef]
- Brooks, J.M.; Benson, D.R. Comparative metabolomics of root nodules infected with Frankia sp. strains and uninfected roots from Alnus glutinosa and Casuarina cunninghamiana reflects physiological integration. Symbiosis 2016, 70, 87–96. [Google Scholar] [CrossRef]
- Leaf, G.; Gardner, I.; Bond, G. Observation on the composition and metabolism of the nitrogen-fixing nodules of Alnus. J. Exp. Bot. 1958, 9, 320–334. [Google Scholar] [CrossRef]
- Boone, C.D.; Gill, S.; Habibzadegan, A.; McKenna, R. Carbonic anhydrase: An efficient enzyme with possible global implications. Int. J. Chem. Eng. 2013, 2013, 813931. [Google Scholar] [CrossRef]
- Vallenet, D.; Calteau, A.; Cruveiller, S.; Gachet, M.; Lajus, A.; Josso, A.; Mercier, J.; Renaux, A.; Rollin, J.; Rouy, Z.; et al. MicroScope in 2017: An expanding and evolving integrated resource for community expertise of microbial genomes. Nucleic Acids Res. 2017, 45, D517–D528. [Google Scholar] [CrossRef]
- Ghodhbane-Gtari, F.; Beauchemin, N.; Bruce, D.; Chain, P.; Chen, A.; Walston Davenport, K.; Deshpande, S.; Detter, C.; Furnholm, T.; Goodwin, L.; et al. Draft genome sequence of Frankia sp. strain CN3, an atypical, noninfective (Nod-) ineffective (Fix-) isolate from Coriaria nepalensis. Genome Announc. 2013, 1, e0008513. [Google Scholar] [CrossRef]
- Tisa, L.; McBride, M.; Ensign, J.C. Studies on growth and morphology of Frankia strains EAN1pec, EuI1c, CpI1 and ACN1AG. Can. J. Bot. 1983, 61, 2768–2773. [Google Scholar] [CrossRef]
- Schwenke, J. Rapid, exponential growth and increased biomass yield of some Frankia strains in buffered and stirred mineral medium (BAP) with phosphatidyl choline. Plant Soil 1991, 137, 37–41. [Google Scholar] [CrossRef]
- Simonin, M.; Cantarel, A.A.M.; Crouzet, A.; Gervaix, J.; Martins, J.F.; Richaume, A. Negative effects of copper oxide nanoparticles on carbon and nitrogen cycle microbial activities in contrasting agricultural soils and in presence of plants. Front. Microbiol. 2018, 9, 3102. [Google Scholar] [CrossRef]
- Gouy, M.; Guindon, S.; Gascuel, O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 2010, 27, 221–224. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef]
- Guindon, S.; Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003, 52, 696–704. [Google Scholar] [CrossRef]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Ghedira, K.; Harigua-Souiai, E.; Benhamda, C.; Fournier, P.; Pujic, P.; Guesmi, S.; Guizani, I.; Miotello, G.; Armengaud, J.; Normand, P.; et al. The PEG-responding desiccome of the alder microsymbiont Frankia alni. Sci. Rep. 2018, 8, 759. [Google Scholar] [CrossRef]
Label | Begin | Gene | Product |
---|---|---|---|
FRAAL0011 | 12280 | - | putative membrane protein |
FRAAL0337 | 365258 | ddpC | ABC transporter dipeptide permease, membrane component |
FRAAL0338 | 366130 | ddpB | ABC transporter oligopeptide permease, membrane component. |
FRAAL0476 | 543271 | - | Putative acetyltransferase |
FRAAL0564 | 622164 | - | Protein of unknown function |
FRAAL0674 | 735035 | - | Protein of unknown function |
FRAAL0757 | 818794 | - | Putative membrane protein |
FRAAL0911 | 981382 | malE | Malic enzyme |
FRAAL1009 | 1080832 | - | Protein of unknown function |
FRAAL1027 | 1099037 | - | 6-aminodeoxyfutalosine deaminase |
FRAAL1029 | 1101440 | - | Protein of unknown function |
FRAAL1057 | 1133454 | - | Putative membrane protein |
FRAAL1119 | 1186573 | - | Putative PadR-like family Transcriptional regulator |
FRAAL1194 | 1269992 | deoA | Thymidine phosphorylase |
FRAAL1222 | 1300029 | can | Carbonic anhydrase |
FRAAL1671 | 1792140 | - | Putative oxidoreductase |
FRAAL1675 | 1796237 | - | Oxidoreductase involved in polyketide synthesis |
FRAAL1914 | 2074787 | folC | Folylpolyglutamate synthase, Dihydrofolate synthase |
FRAAL1958 | 2125395 | - | Putative Short-chain dehydrogenase/reductase SDR |
FRAAL1997 | 2164212 | - | Putative DNA-binding protein |
FRAAL2052 | 2228153 | gtf | UDP-Glycosyltransferase |
FRAAL2055 | 2231919 | idhA | Inositol 2-dehydrogenase |
FRAAL2057 | 2235712 | rffE | UDP-N-acetyl glucosamine-2-epimerase |
FRAAL2100 | 2290841 | - | Protein of unknown function |
FRAAL2126 | 2322837 | trpE | Anthranilate synthase |
FRAAL2162 | 2363687 | - | Conserved protein of unknown function |
FRAAL2208 | 2420975 | lspA | Lipoprotein signal peptidase |
FRAAL2318 | 2525122 | - | Protein of unknown function |
FRAAL2432 | 2651458 | - | Protein of unknown function |
FRAAL2718 | 2967613 | - | conserved hypothetical protein |
FRAAL2942 | 3184379 | - | conserved hypothetical protein |
FRAAL3047 | 3321125 | - | Protein of unknown function |
FRAAL3189 | 3459207 | - | Transcriptional regulator, lysR family |
FRAAL3191 | 3462339 | - | Monooxygenase FAD-binding |
FRAAL3194 | 3471740 | fabA | beta-ketoacyl synthase |
FRAAL3195 | 3473917 | pksE | Polyketide biosynthesis protein PksE |
FRAAL3196 | 3475554 | accA | Acetyl carboxylase |
FRAAL3211 | 3491576 | - | Putative phytoene dehydrogenase (Phytoene desaturase) |
FRAAL3225 | 3507852 | pheA | Prephenate dehydratase (PDT) |
FRAAL3280 | 3568827 | - | Putative NADPH-dependent FMN reductase domain |
FRAAL3449 | 3738250 | - | Putative fatty acid desaturase |
FRAAL3451 | 3739662 | - | Cyclopropane-fatty-acyl-phospholipid synthase |
FRAAL3453 | 3742003 | - | Putative peptide synthetase |
FRAAL3533 | 3831802 | - | Putative GntR-family transcriptional regulator |
FRAAL3599 | 3896141 | - | Protein of unknown function |
FRAAL4108 | 4444365 | - | Protein of unknown function |
FRAAL4206 | 4571703 | - | Putative cytochrome P450 |
FRAAL4337 | 4705479 | sodF | Superoxide dismutase [Fe-Zn] 1 (FeSOD I) |
FRAAL4345 | 4713659 | - | Protein of unknown function |
FRAAL4378 | 4754901 | - | putative DNA helicase |
FRAAL4436 | 4823328 | - | Membrane-bound metal-dependent hydrolase |
FRAAL4513 | 4899008 | - | Lysophospholipase; GDSL domain |
FRAAL4612 | 5006448 | - | Putative membrane protein; putative GGDEF and EAL domains |
FRAAL4744 | 5135553 | - | Conserved hypothetical protein |
FRAAL4889 | 5291471 | can | Carbonic anhydrase |
FRAAL4971 | 5397536 | - | Trp biosynthesis associated, transmembrane protein, Oprn/Chp |
FRAAL5040 | 5472936 | - | Putative acetyltransferase protein |
FRAAL5142 | 5574524 | cobS | cobalamin 5′-phosphate synthase |
FRAAL5202 | 5637735 | argG | Argininosuccinate synthase (Citrulline-aspartate ligase) |
FRAAL5248 | 5688660 | - | Putative integral membrane peptidase |
FRAAL5656 | 6113062 | - | D-amino acid dehydrogenase small subunit |
FRAAL5679 | 6141476 | mobA | molybdopterin-guanine dinucleotide biosynthesis protein (partial) |
FRAAL5702 | 6174425 | - | Conserved hypothetical protein; putative signal peptide |
FRAAL5757 | 6240667 | - | Conserved hypothetical protein |
FRAAL5768 | 6250966 | - | ABC transporter transmembrane subunit |
FRAAL5770 | 6252849 | - | Aliphatic sulfonates family ABC transporter, periplsmic ligand-binding protein |
FRAAL5844 | 6327476 | - | Putative signal peptide |
FRAAL6006 | 6512802 | - | Putative permease |
FRAAL6064 | 6579159 | - | Putative PE-PGRS family protein PE_PGRS54 precursor |
FRAAL6069 | 6583344 | - | Putative integral membrane protein (partial match); putative coiled-coil domain |
FRAAL6082 | 6599422 | - | putative succinate-semialdehyde dehydrogenase I, NADP-dependent |
FRAAL6136 | 6660036 | - | putative pterin-4-alpha-carbinolamine dehydratase (PHS) |
FRAAL6207 | 6732283 | - | Conserved protein of unknown function, putative coiled-coil domain |
FRAAL6220 | 6748530 | - | Putative Prolyl aminopeptidase |
FRAAL6231 | 6759567 | - | Conserved hypothetical protein |
FRAAL6294 | 6828148 | - | Conserved protein of unknown function |
FRAAL6420 | 6974297 | lysA | Diaminopimelate decarboxylase protein |
FRAAL6421 | 6976208 | rhbA | Diaminobutyrate-2-oxoglutarate aminotransferase |
FRAAL6422 | 6977644 | rhbB | L-2,4-diaminobutyrate decarboxylase |
FRAAL6424 | 6981251 | rhbE | rhizobactin biosynthesis protein RhbE |
FRAAL6425 | 6982828 | rhbF | N4-acetyl-N4-hydroxy-1-aminopropane citrate synthase, siderophore |
FRAAL6426 | 6985113 | glnA3 | Glutamine synthetase |
FRAAL6442 | 7009938 | hesA2 | Protein hesA |
FRAAL6448 | 7014231 | - | Putative molybdenum binding protein |
FRAAL6506 | 7073847 | mmpI | cAMP-binding potassium voltage-gated channel protein |
FRAAL6507 | 7075397 | cyc2 | Germacradienol/geosmin synthase |
FRAAL6536 | 7112699 | - | Conserved protein of unknown function |
FRAAL6606 | 7192461 | - | Hypothetical protein; putative signal peptide |
FRAAL6623 | 7206003 | - | Putative F420-dependent glucose-6-phosphate dehydrogenase domain |
FRAAL6637 | 7231846 | - | Conserved hypothetical protein; putative NERD domain |
FRAAL6653 | 7250627 | - | Secreted CAP protein |
FRAAL6671 | 7268730 | panD | Aspartate 1-decarboxylase |
FRAAL6724 | 7333518 | purQ | Phosphoribosylformylglycinamidine synthase I (FGAM synthase I) |
FRAAL6730 | 7338262 | purL | Phosphoribosylformylglycinamidine synthase II (FGAM synthase II) |
FRAAL6738 | 7347692 | - | Conserved hypothetical protein |
FRAAL6800 | 7407340 | nifS | Cysteine desulfurase (Nitrogenase metalloclusters biosynthesis protein) |
FRAAL6801 | 7408818 | hesA | Molybdenum cofactor biosynthesis protein hesA |
FRAAL6802 | 7409711 | erpA | Iron-sulfur cluster insertion protein ErpA |
FRAAL6803 | 7410328 | nifB | FeMo cofactor biosynthesis protein nifB |
FRAAL6805 | 7412516 | nifW | Nitrogenase stabilizing/protective protein nifW |
FRAAL6807 | 7413131 | - | Putative NifX-associated protein |
FRAAL6808 | 7413571 | nifX | NifX protein |
FRAAL6810 | 7415792 | nifE | Nitrogenase iron-molybdenum cofactor biosynthesis protein nifE |
FRAAL6811 | 7417374 | nifK | Nitrogenase molybdenum-iron protein beta chain |
FRAAL6812 | 7419136 | nifD | Nitrogenase molybdenum-iron protein alpha chain |
FRAAL6813 | 7420646 | nifH | Nitrogenase iron protein (Nitrogenase component II) |
FRAAL6814 | 7421686 | nifV | Nitrogenase-associated homocitrate synthase |
FRAAL6857 | 7460193 | - | Peptidoglycan-binding glycosyltransferase |
Section a | 40 Most Overabundant Proteins in Fumarate-Fed Cells Relative to Propionate-Fed Cells | |
---|---|---|
Gene | Functional description | Tfold |
FRAAL4675 | Acyl-CoA transferase | 11.5 |
FRAAL2567 | Protein of unknown function | 8.5 |
FRAAL3063 | Branched-chain amino acid ABC transporter | 7.4 |
FRAAL1390 | C4-dicarboxylate transporter | 6.83 |
FRAAL3378 | Protein of unknown function | 6.8 |
FRAAL0382 | CoA-transferase | 6.35 |
FRAAL6022 | Gamma-aminobutyraldehyde dehydrogenase | 6 |
FRAAL4493 | Alkyl hydroperoxide reductase AhpD | 5.6 |
FRAAL3042 | Short-chain dehydrogenase | 5.23 |
FRAAL4031 | Protein of unknown function | 5 |
FRAAL2915 | Dehydrogenase | 4.5 |
FRAAL5988 | Arginine ABC transporter ATP-binding protein | 4.4 |
FRAAL6577 | Potassium transporter | 4.37 |
FRAAL0095 | Large mechanosensitive ion channel protein MscL | 4.2 |
FRAAL4431 | Clp protease | 4 |
FRAAL5296 | Protein of unknown function | 3.86 |
FRAAL4754 | Protein of unknown function | 3.83 |
FRAAL2473 | Antibiotic biosynthesis monooxygenase | 3.8 |
FRAAL0785 | Membrane protein of unknown function | 3.8 |
FRAAL4195 | Protein of unknown function | 3.8 |
FRAAL3527 | Branched-chain amino acid ABC transporter | 3.71 |
FRAAL2449 | F420-dependent oxidoreductase | 3.69 |
FRAAL4251 | ABC transporter ATP-binding protein | 3.6 |
FRAAL3695 | Deaminase | 3.6 |
FRAAL5155 | Peptidase | 3.55 |
FRAAL3391 | Branched-chain amino acid ABC transporter | 3.43 |
FRAAL3545 | Protein of unknown function | 3.4 |
FRAAL0756 | C4-dicarboxylate ABC transporter | 3.4 |
FRAAL0729 | Branched-chain amino acid ABC transporter | 3.4 |
FRAAL4252 | Nitrate ABC transporter permease | 3.4 |
FRAAL0091 | Membrane protein of unknown function | 3.4 |
FRAAL4026 | Short-chain dehydrogenase | 3.38 |
FRAAL6394 | Molybdenum cofactor biosynthesis protein | 3.33 |
FRAAL3575 | Protein of unknown function | 3.33 |
FRAAL4335 | C4-dicarboxylate ABC transporter | 3.3 |
FRAAL2821 | Peptide-binding protein | 3.27 |
FRAAL3848 | Thiolase | 3.2 |
FRAAL3365 | Branched-chain amino acid ABC transporter | 3.2 |
FRAAL5858 | Amino acid-binding protein | 3.17 |
FRAAL2285 | Phosphohistidine phosphatase | 3.14 |
FRAAL2855 | Protein of unknown function | 3.14 |
Section b | 40 most overabundant proteins in propionate- relative to fumarate-fed cells | |
Gene | Functional description | Tfold |
FRAAL3447 | Beta-ketoacyl synthase | 10.8 |
FRAAL4683 | Carbamoyl phosphate synthase large subunit | 10.8 |
FRAAL6742 | Protein of unknown function | 8.2 |
FRAAL3139 | Protein of unknown function | 7.8 |
FRAAL6810 | Nitrogenase iron-molybdenum cofactor biosynthesis NifE | 7.6 |
FRAAL4690 | Protein of unknown function | 7.12 |
FRAAL4693 | Inducer of phenazine A | 6.67 |
FRAAL4681 | Tryptophan synthase subunit beta | 6.6 |
FRAAL5683 | DNA-binding protein | 6.1 |
FRAAL4934 | Acetyl-CoA acetyltransferase | 6.08 |
FRAAL4684 | Carbamoyl phosphate synthase small subunit | 5.8 |
FRAAL4687 | L-amino acid ligase | 5.61 |
FRAAL0025 | Glycosyl transferase family 1 | 5.6 |
FRAAL6528 | DNA repair protein RadA | 5.2 |
FRAAL2491 | Squalene-hopene cyclase | 5.2 |
FRAAL5157 | Lipoyl synthase | 5.2 |
FRAAL4695 | Oxidoreductase | 5.16 |
FRAAL1433 | 4-hydroxy-3-methylbut-2-enyl diphosphate reductase | 5.12 |
FRAAL4489 | Carboxylate-amine ligase | 5.08 |
FRAAL4685 | Biotin carboxylase | 4.8 |
FRAAL6803 | Nitrogen fixation protein NifB | 4.68 |
FRAAL0263 | Protein of unknown function | 4.67 |
FRAAL4691 | Protein of unknown function | 4.6 |
FRAAL4724 | Putative carbonate transporter | 4.6 |
FRAAL2577 | Protein of unknown function | 4.6 |
FRAAL6814 | Homocitrate synthase | 4.33 |
FRAAL6720 | Preprotein translocase SecA | 4.33 |
FRAAL0984 | Porphobilinogen deaminase | 4.33 |
FRAAL5851 | Acetolactate synthase | 4.25 |
FRAAL1432 | Squalene-hopene cyclase | 4.23 |
FRAAL5482 | Acetyl-CoA acetyltransferase | 4.22 |
FRAAL1003 | Cytochrome C biogenesis protein ResB | 4.2 |
FRAAL6672 | L-aspartate oxidase | 4.2 |
FRAAL4095 | FMN-dependent alkanal monooxygenase | 4.2 |
FRAAL3600 | Protein of unknown function | 4.18 |
FRAAL5337 | (2Fe-2S)-binding protein | 4.18 |
FRAAL1423 | Protein of unknown function | 4.17 |
FRAAL0262 | Helicase | 4.1 |
FRAAL5952 | Diaminopimelate decarboxylase | 4 |
FRAAL6862 | HDIG domain-containing protein | 4 |
FRAAL3851 | Serine/threonine protein kinase | 4 |
Compound | Formula | R1 | R2 | N1 | N2 | Ratio (N1 + N2)/(R1 + R2) |
---|---|---|---|---|---|---|
Formic acid | HCOOH | 235,661 | 76,769 | 162,492 | 117,920 | 0.90 |
Acetic acid | CH3COOH | 4997 | 605 | 5543 | 3227 | 1.57 |
Pyruvic acid | CH3COCOOH | 70,735 | 16,847 | 78,529 | 87,003 | 1.89 |
Propionic acid | CH3CH2COOH | 1511 | 920 | 948 | 808 | 0.72 |
Malonic acid | CH2(COOH)2 | 418,776 | 125,492 | 441,849 | 330,058 | 1.42 |
Malic acid | C4H6O5 | 6,842,086 | 5,418,694 | 7,713,529 | 7,219,222 | 1.22 |
Succinic acid | (CH2)2(COOH)2 | 18,095 | 18,081 | 20,557 | 21,713 | 1.17 |
Oxoglutaric acid | C3OH4(COOH)2 | 165,722 | 32,647 | 230,854 | 189,843 | 2.12 |
Fumaric acid | HOOC-CH=CH-COOH | 7867 | 2193 | 11,919 | 8994 | 2.08 |
Citric acid | HOC(COOH)(CH2COOH)2 | 11,042,145 | 9,255,806 | 14,287,742 | 11,434,886 | 1.27 |
Oxalic acid | HOOC-COOH | 667,609 | 738,765 | 811,020 | 672,537 | 1.05 |
Oligo | Sequence |
---|---|
FRAAL1222q7 | AGATCATCCTCCTGCACCACA |
FRAAL1222q8 | GAAGCCGTCGTCGGTGAT |
FRAAL4889q5 | GCTGGGAACCCGAGAGATCA |
FRAAL4889q6 | GAACGCCTCGTCGGTGAAAG |
FRAAL4724q1 | TCCTCGGTCAGATCCACGTC |
FRAAL4724q2 | GTATCGCCCGGATGTTGTCC |
FRAAL4684q3 | TGCCTCGGTAACCAACTCCT |
FRAAL4684q4 | TCCTGGACCGGCTGATTGAT |
FRAAL4683q5 | ACTGGTGACTCCATCACGGT |
FRAAL4683q6 | CGATGTCGCGAAGGATCTGG |
16sRNA_f | GAGTAACACGTGGGCAACCT |
16sRNA_r | ATCCCGAGCCGATAAATCTT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pujic, P.; Carro, L.; Fournier, P.; Armengaud, J.; Miotello, G.; Dumont, N.; Bourgeois, C.; Saupin, X.; Jame, P.; Selak, G.V.; et al. Frankia alni Carbonic Anhydrase Regulates Cytoplasmic pH of Nitrogen-Fixing Vesicles. Int. J. Mol. Sci. 2023, 24, 9162. https://doi.org/10.3390/ijms24119162
Pujic P, Carro L, Fournier P, Armengaud J, Miotello G, Dumont N, Bourgeois C, Saupin X, Jame P, Selak GV, et al. Frankia alni Carbonic Anhydrase Regulates Cytoplasmic pH of Nitrogen-Fixing Vesicles. International Journal of Molecular Sciences. 2023; 24(11):9162. https://doi.org/10.3390/ijms24119162
Chicago/Turabian StylePujic, Petar, Lorena Carro, Pascale Fournier, Jean Armengaud, Guylaine Miotello, Nathalie Dumont, Caroline Bourgeois, Xavier Saupin, Patrick Jame, Gabriela Vuletin Selak, and et al. 2023. "Frankia alni Carbonic Anhydrase Regulates Cytoplasmic pH of Nitrogen-Fixing Vesicles" International Journal of Molecular Sciences 24, no. 11: 9162. https://doi.org/10.3390/ijms24119162
APA StylePujic, P., Carro, L., Fournier, P., Armengaud, J., Miotello, G., Dumont, N., Bourgeois, C., Saupin, X., Jame, P., Selak, G. V., Alloisio, N., & Normand, P. (2023). Frankia alni Carbonic Anhydrase Regulates Cytoplasmic pH of Nitrogen-Fixing Vesicles. International Journal of Molecular Sciences, 24(11), 9162. https://doi.org/10.3390/ijms24119162