Therapeutic Mechanisms and Clinical Effects of Glucagon-like Peptide 1 Receptor Agonists in Nonalcoholic Fatty Liver Disease
Abstract
:1. Introduction
2. Treatment Mechanisms of GLP-1RAs on NAFLD
3. Beneficial Effects of GLP-1RAs in Patients with NAFLD
3.1. Liraglutide
3.2. Semaglutide
3.3. Exenatide
3.4. Dulaglutide
4. Meta-Analysis
5. Dual GIP and GLP-1 Receptor Agonist
6. Dual GLP-1 and Glucagon Receptor Agonist
7. The Effect of GLP-1RA Treatment in the Presence of T2DM
8. Ongoing Clinical Trials
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NAFLD | nonalcoholic fatty liver disease |
NASH | nonalcoholic steatohepatitis |
GLP-1RA | glucagon-like peptide-1 receptor agonist |
T2DM | type 2 diabetes mellitus |
GIP | glucose-dependent insulinotropic peptide |
LFC | liver fat content |
SREBP | sterol regulatory element-binding transcription factor |
SCD | stearoyl-CoA desaturase |
PPAR | peroxisome proliferator-activated receptor |
ALT | alanine aminotransferase |
AMPK | adenosine monophosphate activated protein kinase |
ChREBP | carbohydrate-responsive element-binding protein |
VLDL | very low-density lipoprotein |
SGLT2 | sodium-glucose co-transporter 2 |
DPP-4 | dipeptidyl peptidase-4 |
RR | relative risk |
BMI | body mass index |
GGT | γ-glutamyl transferase |
LDL | low-density lipoprotein |
MRI | magnetic resonance imaging |
RCT | randomized controlled trial |
PDFF | proton density fat fraction |
LSM | lifestyle modification |
MRE | magnetic resonance elastography |
VAT | visceral adipose tissue |
SAT | subcutaneous adipose tissue |
OR | odds ratio |
MRS | magnetic resonance spectroscopy |
FIB-4 | fibrosis-4 index |
TNF | tumor necrosis factor |
ER | endoplasmic reticulum |
NEFA | nonesterified fatty acids |
FGF | fibroblast growth factor |
FFA | fibroblast growth factor |
LPS | lipopolysaccharide |
ROS | reactive oxygen species |
DNL | de novo lipogenesis |
AE | adverse event |
SAE | serious adverse event |
CI | confidence interval |
CT | computed tomography |
VCTE | vibration-controlled transient elastography |
LD | lipid droplet |
References
- Devarbhavi, H.; Asrani, S.K.; Arab, J.P.; Nartey, Y.A.; Pose, E.; Kamath, P.S. Global burden of Liver Disease: 2023 Update. J. Hepatol. 2023, in press. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Lee, H.W.; Yoo, J.J.; Cho, Y.; Kim, S.U.; Lee, T.H.; Jang, B.K.; Kim, S.G.; Ahn, S.B.; Kim, H.; et al. KASL clinical practice guidelines: Management of nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2021, 27, 363–401. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R. AASLD Practice Guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology 2023, 77, 1797–1835. [Google Scholar] [CrossRef] [PubMed]
- Bugianesi, E.; Gentilcore, E.; Manini, R.; Natale, S.; Vanni, E.; Villanova, N.; David, E.; Rizzetto, M.; Marchesini, G. A randomized controlled trial of metformin versus vitamin E or prescriptive diet in nonalcoholic fatty liver disease. Am. J. Gastroenterol. 2005, 100, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Uygun, A.; Kadayifci, A.; Isik, A.T.; Ozgurtas, T.; Deveci, S.; Tuzun, A.; Yesilova, Z.; Gulsen, M.; Dagalp, K. Metformin in the treatment of patients with non-alcoholic steatohepatitis. Aliment. Pharmacol. Ther. 2004, 19, 537–544. [Google Scholar] [CrossRef]
- Sanyal, A.J.; Chalasani, N.; Kowdley, K.V.; McCullough, A.; Diehl, A.M.; Bass, N.M.; Neuschwander-Tetri, B.A.; Lavine, J.E.; Tonascia, J.; Unalp, A.; et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 2010, 362, 1675–1685. [Google Scholar] [CrossRef]
- American Diabetes Association. 9. Pharmacologic approaches to glycemic treatment: Standards of medical care in Diabetes-2021. Diabetes Care 2021, 44 (Suppl. S1), S111–S124. [Google Scholar] [CrossRef]
- Müller, T.D.; Finan, B.; Bloom, S.R.; D’Alessio, D.; Drucker, D.J.; Flatt, P.R.; Fritsche, A.; Gribble, F.; Grill, H.J.; Habener, J.F.; et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar] [CrossRef]
- Meier, J.J. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2012, 8, 728–742. [Google Scholar] [CrossRef]
- Nauck, M.A.; Holst, J.J.; Willms, B.; Schmiegel, W. Glucagon-like peptide 1 (GLP-1) as a new therapeutic approach for type 2-diabetes. Exp. Clin. Endocrinol. Diabetes 1997, 105, 187–195. [Google Scholar] [CrossRef]
- Wettergren, A. Glucagon-like peptide-1. Gastrointestinal function and possible mechanism of action. Dan. Med. Bull. 2001, 48, 19–28. [Google Scholar] [PubMed]
- Armstrong, M.J.; Gaunt, P.; Aithal, G.P.; Barton, D.; Hull, D.; Parker, R.; Hazlehurst, J.M.; Guo, K.; LEAN Trial Team; Abouda, G.; et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN): A multicentre, double-blind, randomised, placebo-controlled phase 2 study. Lancet 2016, 387, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Newsome, P.N.; Buchholtz, K.; Cusi, K.; Linder, M.; Okanoue, T.; Ratziu, V.; Sanyal, A.J.; Sejling, A.S.; Harrison, S.A.; NN9931-4296 Investigators. A placebo-controlled trial of subcutaneous semaglutide in nonalcoholic steatohepatitis. N. Engl. J. Med. 2021, 384, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Ben-Shlomo, S.; Zvibel, I.; Shnell, M.; Shlomai, A.; Chepurko, E.; Halpern, Z.; Barzilai, N.; Oren, R.; Fishman, S. Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase. J. Hepatol. 2011, 54, 1214–1223. [Google Scholar] [CrossRef]
- Gupta, N.A.; Mells, J.; Dunham, R.M.; Grakoui, A.; Handy, J.; Saxena, N.K.; Anania, F.A. Glucagon-like peptide-1 receptor is present on human hepatocytes and has a direct role in decreasing hepatic steatosis in vitro by modulating elements of the insulin signaling pathway. Hepatology 2010, 51, 1584–1592. [Google Scholar] [CrossRef]
- Armstrong, M.J.; Hull, D.; Guo, K.; Barton, D.; Hazlehurst, J.M.; Gathercole, L.L.; Nasiri, M.; Yu, J.; Gough, S.C.; Newsome, P.N.; et al. Glucagon-like peptide 1 decreases lipotoxicity in non-alcoholic steatohepatitis. J. Hepatol. 2016, 64, 399–408. [Google Scholar] [CrossRef]
- Seghieri, M.; Christensen, A.S.; Andersen, A.; Solini, A.; Knop, F.K.; Vilsbøll, T. Future Perspectives on GLP-1 Receptor Agonists and GLP-1/glucagon Receptor Co-agonists in the Treatment of NAFLD. Front. Endocrinol. (Lausanne) 2018, 9, 649. [Google Scholar] [CrossRef]
- Hartman, M.L.; Sanyal, A.J.; Loomba, R.; Wilson, J.M.; Nikooienejad, A.; Bray, R.; Karanikas, C.A.; Duffin, K.L.; Robins, D.A.; Haupt, A. Effects of novel dual GIP and GLP-1 receptor agonist tirzepatide on biomarkers of nonalcoholic steatohepatitis in patients with Type 2 diabetes. Diabetes Care 2020, 43, 1352–1355. [Google Scholar] [CrossRef]
- Gastaldelli, A.; Cusi, K.; Fernández Landó, L.; Bray, R.; Brouwers, B.; Rodríguez, Á. Effect of tirzepatide versus insulin degludec on liver fat content and abdominal adipose tissue in people with type 2 diabetes (SURPASS-3 MRI): A substudy of the randomised, open-label, parallel-group, phase 3 SURPASS-3 trial. Lancet Diabetes Endocrinol. 2022, 10, 393–406. [Google Scholar] [CrossRef]
- Rajeev, S.P.; Wilding, J. GLP-1 as a target for therapeutic intervention. Curr. Opin. Pharmacol. 2016, 31, 44–49. [Google Scholar] [CrossRef]
- Mells, J.E.; Fu, P.P.; Sharma, S.; Olson, D.; Cheng, L.; Handy, J.A.; Saxena, N.K.; Sorescu, D.; Anania, F.A. GLP-1 analog, liraglutide, ameliorates hepatic steatosis and cardiac hypertrophy in C57BL/6J mice fed a Western diet. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 302, G225–G235. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, M.; Ren, H.; Hu, H.; Boden, G.; Li, L.; Yang, G. GLP-1 analogue prevents NAFLD in ApoE KO mice with diet and Acrp30 knockdown by inhibiting c-JNK. Liver Int. 2013, 33, 794–804. [Google Scholar] [CrossRef] [PubMed]
- Aldawsari, M.; Almadani, F.A.; Almuhammadi, N.; Algabsani, S.; Alamro, Y.; Aldhwayan, M. The efficacy of GLP-1 analogues on appetite parameters, gastric emptying, food preference and taste among adults with obesity: Systematic review of randomized controlled trials. Diabetes Metab. Syndr. Obes. 2023, 16, 575–595. [Google Scholar] [CrossRef] [PubMed]
- Trevaskis, J.L.; Griffin, P.S.; Wittmer, C.; Neuschwander-Tetri, B.A.; Brunt, E.M.; Dolman, C.S.; Erickson, M.R.; Napora, J.; Parkes, D.G.; Roth, J.D. Glucagon-like peptide-1 receptor agonism improves metabolic, biochemical, and histopathological indices of nonalcoholic steatohepatitis in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2012, 302, G762–G772. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Saxena, N.K.; Lin, S.; Gupta, N.A.; Anania, F.A. Exendin-4, a glucagon-like protein-1 (GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice. Hepatology 2006, 43, 173–181. [Google Scholar] [CrossRef]
- Sharma, S.; Mells, J.E.; Fu, P.P.; Saxena, N.K.; Anania, F.A. GLP-1 analogs reduce hepatocyte steatosis and improve survival by enhancing the unfolded protein response and promoting macroautophagy. PLoS ONE 2011, 6, e25269. [Google Scholar] [CrossRef]
- Kim Chung le, T.; Hosaka, T.; Yoshida, M.; Harada, N.; Sakaue, H.; Sakai, T.; Nakaya, Y. Exendin-4, a GLP-1 receptor agonist, directly induces adiponectin expression through protein kinase A pathway and prevents inflammatory adipokine expression. Biochem. Biophys Res. Commun. 2009, 390, 613–618. [Google Scholar] [CrossRef]
- Polyzos, S.A.; Kountouras, J.; Zavos, C.; Tsiaousi, E. The role of adiponectin in the pathogenesis and treatment of non-alcoholic fatty liver disease. Diabetes Obes. Metab. 2010, 12, 365–383. [Google Scholar] [CrossRef]
- Tong, W.; Ju, L.; Qiu, M.; Xie, Q.; Chen, Y.; Shen, W.; Sun, W.; Wang, W.; Tian, J. Liraglutide ameliorates non-alcoholic fatty liver disease by enhancing mitochondrial architecture and promoting autophagy through the SIRT1/SIRT3-FOXO3a pathway. Hepatol. Res. 2016, 46, 933–943. [Google Scholar] [CrossRef]
- Lee, J.; Hong, S.W.; Chae, S.W.; Kim, D.H.; Choi, J.H.; Bae, J.C.; Park, S.E.; Rhee, E.J.; Park, C.Y.; Oh, K.W.; et al. Exendin-4 improves steatohepatitis by increasing Sirt1 expression in high-fat diet-induced obese C57BL/6J mice. PLoS ONE 2012, 7, e31394. [Google Scholar] [CrossRef]
- Cariou, B. Pleiotropic effects of insulin and GLP-1 receptor agonists: Potential benefits of the association. Diabetes Metab. 2015, 41 (Suppl. S1), 6S28–6S35. [Google Scholar] [CrossRef] [PubMed]
- Ishii, S.; Iizuka, K.; Miller, B.C.; Uyeda, K. Carbohydrate response element binding protein directly promotes lipogenic enzyme gene transcription. Proc. Natl Acad. Sci. USA 2004, 101, 15597–15602. [Google Scholar] [CrossRef] [PubMed]
- Parlevliet, E.T.; Wang, Y.; Geerling, J.J.; Schröder-Van der Elst, J.P.; Picha, K.; O’Neil, K.; Stojanovic-Susulic, V.; Ort, T.; Havekes, L.M.; Romijn, J.A.; et al. GLP-1 receptor activation inhibits VLDL production and reverses hepatic steatosis by decreasing hepatic lipogenesis in high-fat-fed APOE*3-Leiden mice. PLoS ONE 2012, 7, e49152. [Google Scholar] [CrossRef] [PubMed]
- Samson, S.L.; Bajaj, M. Potential of incretin-based therapies for non-alcoholic fatty liver disease. J. Diabetes Complicat. 2013, 27, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Flock, G.; Baggio, L.L.; Longuet, C.; Drucker, D.J. Incretin receptors for glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide are essential for the sustained metabolic actions of vildagliptin in mice. Diabetes 2007, 56, 3006–3013. [Google Scholar] [CrossRef]
- Buse, J.B.; Wexler, D.J.; Tsapas, A.; Rossing, P.; Mingrone, G.; Mathieu, C.; D’Alessio, D.A.; Davies, M.J. 2019 Update to: Management of hyperglycemia in Type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2020, 43, 487–493; Erratum in Diabetes Care 2020, 43, 1670. [Google Scholar] [CrossRef]
- Drucker, D.J. Mechanisms of action and therapeutic application of glucagon-like Peptide-1. Cell Metab. 2018, 27, 740–756. [Google Scholar] [CrossRef]
- Yan, J.; Yao, B.; Kuang, H.; Yang, X.; Huang, Q.; Hong, T.; Li, Y.; Dou, J.; Yang, W.; Qin, G.; et al. Liraglutide, sitagliptin, and insulin glargine added to metformin: The effect on body weight and intrahepatic lipid in patients with type 2 diabetes mellitus and nonalcoholic fatty liver disease. Hepatology 2019, 69, 2414–2426. [Google Scholar] [CrossRef]
- Bizino, M.B.; Jazet, I.M.; de Heer, P.; van Eyk, H.J.; Dekkers, I.A.; Rensen, P.C.N.; Paiman, E.H.M.; Lamb, H.J.; Smit, J.W. Placebo-controlled randomised trial with liraglutide on magnetic resonance endpoints in individuals with type 2 diabetes: A pre-specified secondary study on ectopic fat accumulation. Diabetologia 2020, 63, 65–74. [Google Scholar] [CrossRef]
- Feng, W.; Gao, C.; Bi, Y.; Wu, M.; Li, P.; Shen, S.; Chen, W.; Yin, T.; Zhu, D. Randomized trial comparing the effects of gliclazide, liraglutide, and metformin on diabetes with non-alcoholic fatty liver disease. J. Diabetes 2017, 9, 800–809. [Google Scholar] [CrossRef]
- Guo, W.; Tian, W.; Lin, L.; Xu, X. Liraglutide or insulin glargine treatments improves hepatic fat in obese patients with type 2 diabetes and nonalcoholic fatty liver disease in twenty-six weeks: A randomized placebo-controlled trial. Diabetes Res. Clin. Pract. 2020, 170, 108487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.Y.; Qu, X.N.; Sun, Z.Y.; Zhang, Y. Effect of liraglutide therapy on serum fetuin A in patients with type 2 diabetes and non-alcoholic fatty liver disease. Clin. Res. Hepatol. Gastroenterol. 2020, 44, 674–680. [Google Scholar] [CrossRef] [PubMed]
- Bouchi, R.; Nakano, Y.; Fukuda, T.; Takeuchi, T.; Murakami, M.; Minami, I.; Izumiyama, H.; Hashimoto, K.; Yoshimoto, T.; Ogawa, Y. Reduction of visceral fat by liraglutide is associated with ameliorations of hepatic steatosis, albuminuria, and micro-inflammation in type 2 diabetic patients with insulin treatment: A randomized control trial. Endocr. J. 2017, 64, 269–281. [Google Scholar] [CrossRef]
- Khoo, J.; Hsiang, J.C.; Taneja, R.; Koo, S.H.; Soon, G.H.; Kam, C.J.; Law, N.M.; Ang, T.L. Randomized trial comparing effects of weight loss by liraglutide with lifestyle modification in non-alcoholic fatty liver disease. Liver Int. 2019, 39, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Volpe, S.; Lisco, G.; Fanelli, M.; Racaniello, D.; Colaianni, V.; Triggiani, D.; Donghia, R.; Crudele, L.; Rinaldi, R.; Sabbà, C.; et al. Once-Weekly Subcutaneous Semaglutide Improves Fatty Liver Disease in Patients with Type 2 Diabetes: A 52-Week Prospective Real-Life Study. Nutrients 2022, 14, 4673. [Google Scholar] [CrossRef] [PubMed]
- Flint, A.; Andersen, G.; Hockings, P.; Johansson, L.; Morsing, A.; Sundby Palle, M.; Vogl, T.; Loomba, R.; Plum-Mörschel, L. Randomised clinical trial: Semaglutide versus placebo reduced liver steatosis but not liver stiffness in subjects with non-alcoholic fatty liver disease assessed by magnetic resonance imaging. Aliment. Pharmacol. Ther. 2021, 54, 1150–1161. [Google Scholar] [CrossRef]
- Loomba, R.; Abdelmalek, M.F.; Armstrong, M.J.; Jara, M.; Kjær, M.S.; Krarup, N.; Lawitz, E.; Ratziu, V.; Sanyal, A.J.; Schattenberg, J.M.; et al. Semaglutide 2·4 mg once weekly in patients with non-alcoholic steatohepatitis-related cirrhosis: A randomised, placebo-controlled phase 2 trial. Lancet Gastroenterol. Hepatol. 2023, 6, 511–522. [Google Scholar] [CrossRef]
- Liu, L.; Yan, H.; Xia, M.; Zhao, L.; Lv, M.; Zhao, N.; Rao, S.; Yao, X.; Wu, W.; Pan, B.; et al. Efficacy of exenatide and insulin glargine on nonalcoholic fatty liver disease in patients with type 2 diabetes. Diabetes Metab. Res. Rev. 2020, 36, e3292. [Google Scholar] [CrossRef]
- Dutour, A.; Abdesselam, I.; Ancel, P.; Kober, F.; Mrad, G.; Darmon, P.; Ronsin, O.; Pradel, V.; Lesavre, N.; Martin, J.C.; et al. Exenatide decreases liver fat content and epicardial adipose tissue in patients with obesity and type 2 diabetes: A prospective randomized clinical trial using magnetic resonance imaging and spectroscopy. Diabetes Obes. Metab. 2016, 18, 882–891. [Google Scholar] [CrossRef]
- Shao, N.; Kuang, H.Y.; Hao, M.; Gao, X.Y.; Lin, W.J.; Zou, W. Benefits of exenatide on obesity and non-alcoholic fatty liver disease with elevated liver enzymes in patients with type 2 diabetes. Diabetes Metab. Res. Rev. 2014, 30, 521–529. [Google Scholar] [CrossRef]
- Kuchay, M.S.; Krishan, S.; Mishra, S.K.; Choudhary, N.S.; Singh, M.K.; Wasir, J.S.; Kaur, P.; Gill, H.K.; Bano, T.; Farooqui, K.J.; et al. Effect of dulaglutide on liver fat in patients with type 2 diabetes and NAFLD: Randomised controlled trial (D-LIFT trial). Diabetologia 2020, 63, 2434–2445. [Google Scholar] [CrossRef] [PubMed]
- Seko, Y.; Sumida, Y.; Tanaka, S.; Mori, K.; Taketani, H.; Ishiba, H.; Hara, T.; Okajima, A.; Umemura, A.; Nishikawa, T.; et al. Effect of 12-week dulaglutide therapy in Japanese patients with biopsy-proven non-alcoholic fatty liver disease and type 2 diabetes mellitus. Hepatol. Res. 2017, 47, 1206–1211. [Google Scholar] [CrossRef] [PubMed]
- Capehorn, M.S.; Catarig, A.M.; Furberg, J.K.; Janez, A.; Price, H.C.; Tadayon, S.; Vergès, B.; Marre, M. Efficacy and safety of once-weekly semaglutide 1.0mg vs once-daily liraglutide 1.2mg as add-on to 1-3 oral antidiabetic drugs in subjects with type 2 diabetes (SUSTAIN 10). Diabetes Metab. 2020, 46, 100–109. [Google Scholar] [CrossRef] [PubMed]
- Fala, L. Trulicity (dulaglutide): A new GLP-1 receptor agonist once-weekly subcutaneous injection approved for the treatment of patients with Type 2 diabetes. Am. Health Drug Benefits 2015, 8, 131–134. [Google Scholar]
- Li, Z.; Zhang, Y.; Quan, X.; Yang, Z.; Zeng, X.; Ji, L.; Sun, F.; Zhan, S. Efficacy and acceptability of glycemic control of glucagon-like Peptide-1 receptor agonists among Type 2 diabetes: A systematic review and network meta-analysis. PLoS ONE 2016, 11, e0154206. [Google Scholar] [CrossRef]
- Borodavkin, P.; Sheridan, W.; Coelho, C.; Oštarijaš, E.; Zaïr, Z.M.; Miras, A.D.; McGowan, B.; le Roux, C.W.; Vincent, R.P.; Dimitriadis, G.K. Effects of glucagon-like peptide-1 receptor agonists on histopathological and secondary biomarkers of non-alcoholic steatohepatitis: A systematic review and meta-analysis. Diabetes Obes. Metab. 2022, 24, 337–342. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, J.; Zhang, D.; Mu, X.; Shi, Y.; Chen, S.; Wu, Z.; Li, S. Efficacy and safety of GLP-1 receptor agonists in patients with type 2 diabetes mellitus and non-alcoholic fatty liver disease: A systematic review and meta-analysis. Front. Endocrinol. (Lausanne) 2021, 12, 769069. [Google Scholar] [CrossRef]
- Gu, Y.; Sun, L.; He, Y.; Yang, L.; Deng, C.; Zhou, R.; Kong, T.; Zhang, W.; Chen, Y.; Li, J.; et al. Comparative efficacy of glucagon-like peptide 1 (GLP-1) receptor agonists, pioglitazone and vitamin E for liver histology among patients with nonalcoholic fatty liver disease: Systematic review and pilot network meta-analysis of randomized controlled trials. Expert Rev. Gastroenterol. Hepatol. 2023, 17, 273–282. [Google Scholar]
- Zou, C.Y.; Sun, Y.; Liang, J. Comparative efficacy of diabetes medications on liver enzymes and fat fraction in patients with nonalcoholic fatty liver disease: A network meta-analysis. Clin. Res. Hepatol. Gastroenterol. 2023, 47, 102053. [Google Scholar] [CrossRef]
- Coskun, T.; Sloop, K.W.; Loghin, C.; Alsina-Fernandez, J.; Urva, S.; Bokvist, K.B.; Cui, X.; Briere, D.A.; Cabrera, O.; Roell, W.C.; et al. LY3298176, a novel dual GIP and GLP-1 receptor agonist for the treatment of type 2 diabetes mellitus: From discovery to clinical proof of concept. Mol. Metab. 2018, 18, 3–14. [Google Scholar] [CrossRef]
- Frias, J.P.; Nauck, M.A.; Van, J.; Kutner, M.E.; Cui, X.; Benson, C.; Urva, S.; Gimeno, R.E.; Milicevic, Z.; Robins, D.; et al. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: A randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet 2018, 392, 2180–2193. [Google Scholar] [CrossRef] [PubMed]
- Frías, J.P.; Davies, M.J.; Rosenstock, J.; Pérez Manghi, F.C.; Fernández Landó, L.; Bergman, B.K.; Liu, B.; Cui, X.; Brown, K.; SURPASS-2 Investigators. Tirzepatide versus semaglutide Once Weekly in Patients with Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Jastreboff, A.M.; Aronne, L.J.; Ahmad, N.N.; Wharton, S.; Connery, L.; Alves, B.; Kiyosue, A.; Zhang, S.; Liu, B.; Bunck, M.C.; et al. Tirzepatide once weekly for the treatment of obesity. N. Engl. J. Med. 2022, 387, 205–216. [Google Scholar] [CrossRef]
- Clemmensen, C.; Finan, B.; Müller, T.D.; Dimarchi, R.D.; Tschöp, M.H.; Hofmann, S.M. Emerging hormonal-based combination pharmacotherapies for the treatment of metabolic diseases. Nat. Rev. Endocrinol. 2019, 15, 90–104. [Google Scholar] [CrossRef] [PubMed]
- Nahra, R.; Wang, T.; Gadde, K.M.; Oscarsson, J.; Stumvoll, M.; Jermutus, L.; Hirshberg, B.; Ambery, P. Effects of cotadutide on metabolic and hepatic parameters in adults with overweight or obesity and type 2 diabetes: A 54-week randomized phase 2b study. Diabetes Care 2021, 44, 1433–1442. [Google Scholar] [CrossRef] [PubMed]
GLP-1RA | First Approved | Molecular Weight (Da) | Reference Amino Acid Sequence | Included Components | Elimination Half-Life | Administration Schedule |
---|---|---|---|---|---|---|
Short-acting compounds | ||||||
Exenatide | 2005 | 4186.6 | Exendin-4 | None | 3.3–4.0 h | Twice daily |
Long-acting compounds | ||||||
Liraglutide | 2009 | 3751.2 | Mammalian GLP-1 | Free fatty acid * | 12.6–14.3 h | Once daily |
Dulaglutide | 2014 | 59,670.6 | Mammalian GLP-1 | Immunoglobulin Fc fragment | 4.7–5.5 day | Once weekly |
Semaglutide | 2017 | 4113.6 | Mammalian GLP-1 | Free fatty acid * | 5.7–6.7 day | Once weekly |
Author | Population | Comparators | Duration | Assessment | Findings | Safety (GLP-1RAs) |
---|---|---|---|---|---|---|
Armstrong et al. (UK) [12] | Overweight NASH | Liraglutide 1.8 mg/day (n = 26) Placebo (n = 26) | 48 weeks | Histology | NASH resolution with no worsening of fibrosis: 39% with liraglutide vs. 9% with placebo (p = 0.019) Progression of fibrosis: 9% with liraglutide vs. 36% with placebo (p = 0.04) | SAE in 8% and treatment withdrawl due to AE in 8% of patients with liraglutide |
Yan et al. (China) [38] | T2DM and NAFLD | Liraglutide 1.8 mg/day (n = 24) Sitagliptin 100 mg/day (n = 27) Insulin glargine 0.2 IU/kg/day (n = 24) | 26 weeks | MRI-PDFF | Change in LFC: −4.0% with liraglutide vs. −3.8% with sitagliptin vs. −0.8% with insulin glargine (p = 0.911 for liraglutide vs. sitagliptin; p = 0.039 for liraglutide vs. insuline glargine; p = 0.043 for sitagliptin vs. insulin glargine) | AE in 20.8% and gastrointestinal disorders in 16.7% of patients with liraglutide |
Bizino et al. (The Netherlands) [39] | T2DM with obesity or uncontrolled T2DM | Liraglutide 1.8 mg/day (n = 23) Placebo (n = 26) | 26 weeks | MRI-PDFF | Change in LFC: 18.1% to 12.0% with liraglutide vs. 18.4% to 14.7% with placebo (estimated treatment effect −2.1% [95% CI −5.3 to 1.0]) | Not reported |
Feng et al. (China) [40] | T2DM and NAFLD | Liraglutide 1.8 mg/day (n = 31) Gliclazide 120 mg/day (n = 31) Metformin 2000 mg/day (n = 31) | 24 weeks | Ultrasonography | Change in LFC: 36.7% to 13.1% with liraglutide vs. 33.0% to 19.6% with gliclazide vs. 35.1% to 18.4% with metformin (p < 0.01 for liraglutide vs. gliclazide) | Not reported |
Guo et al. (China) [41] | Uncontrolled T2DM, obesity, and NAFLD | Insulin glargine (n = 30) Liraglutide 1.8 mg/day (n = 31) Placebo (n = 30) | 26 weeks | H-MRS | Change in LFC: 26.4% to 20.6% with liraglutide (p < 0.05) vs. 25.0% to 22.6% with insulin glargine (p > 0.05) | Not reported |
Zhang et al. (China) [42] | T2DM and NAFLD | Liraglutide 1.2 mg/day (n = 30) Pioglitazone 30 mg/day (n = 30) | 24 weeks | H-MRS | Change in LFC: 24.1 to 20.1 with liraglutide vs. 23.9 to 22.4 with pioglitazone (p < 0.05) | AE in 33.3% and gastrointestinal reactions in 30% of patients with liraglutide |
Bouchi et al. (Japan) [43] | T2DM with insulin treatment and obesity | Liraglutide 0.9 mg/day + insulin (n = 8) Insulin (n = 9) | 36 weeks | CT | Change in liver attenuation index: 0.84 to 0.99 with liraglutide + insulin vs. 0.99 to 1.06 with insulin (p = 0.065) | No severe AE |
Khoo et al. (Singapore) [44] | NAFLD and obesity without T2DM | Liraglutide 3 mg/day (n = 15) Moderate-intensity exercise (n = 15) | 26 weeks | MRI | Change in LFC: −7.0 ± 7.1% with liraglutide vs. −8.1 ± 13.2% with exercise (p = 0.78) Change in liver stiffness: −0.25 ± 0.27 kPa with liraglutide vs. −0.12 ± 0.19 kPa with exercise (p = 0.17) | Nausea in 80%, abdominal discomfort in 100%, and diarrhea in 33% of patients with liraglutide |
Nwesome et al. (UK) [13] | Biopsy-confirmed NASH and liver fibrosis of stage F1–3 and obesity | Semaglutide 0.1 mg (n = 80), 0.2 mg (n = 78), 0.4 mg/day (n = 82) Placebo (n = 80) | 72 weeks | Histology | NASH resolution with no worsening of fibrosis: 40% with semaglutide 0.1 mg, 36% with 0.2 mg, 59% with 0.4 mg, and 17% with placebo (p < 0.001 for semaglutide 0.4 mg vs. placebo) Improvement in fibrosis stage: 43% of semaglutide 0.4 mg vs. 33% of placebo (p = 0.48). | Nausea in 40%, constipation in 22%, vomiting in 15%, and malignancy in 1% of patients with semaglutide |
Volpe et al. (Italy) [45] | Uncontrolled T2DM and NAFLD | Semaglutide 0.5 mg/week (n = 40) | 52 weeks | Ultrasonography | 70% achieved at least one-class reduction in the 4-point semiquantitative staging (p < 0.001) | Not reported |
Flint et al. (Multinational) [46] | NAFLD and obesity | Semaglutide 0.4 mg/day (n = 34) Placebo (n = 33) | 48 weeks | MRI-PDFFMRE | ≥30% reduction in LFC: 76.5% with semaglutide vs. 30.3% with placebo (estimated treatment ratio 0.47 [95% CI 0.36 to 0.60; p < 0.001]) ≥15% reduction in liver stiffness: 17.6% with semaglutide vs. 15.2% with placebo (etimated treatment ratio 0.96 [95% CI 0.89 to 1.03; p = 0.2798]) | AE in 93.9%, SAE in 12.1%, drug discontinuation due to AE in 3.0% of patients with semaglutide |
Loomba et al. (USA) [47] | Biopsy-confirmed NASH-related cirrhosis and BMI ≥27 kg/m2 | Semaglutide 2.4 mg/week (n = 47) Placebo (n = 24) | 48 weeks | Histology | Improvement in liver fibrosis of one stage or more without worsening of NASH: 11% with semaglutide vs. 29% with placebo (OR 0.28 [95% CI 0.06 to 1.24; p = 0.087]) NASH resolution: 34% with semaglutide vs. 21% with placebo (OR 1.97 [95% CI 0.56 to 7.91; p = 0.29]) | AE in 89%, SAE in 13%, nausea in 45%, diarrhea in 19%, and vomiting in 17% of patients with semaglutide |
Liu et al. (China) [48] | Newly diagnosed T2DM and NAFLD | Exenatide 5 μg/10 μg bid (n = 38) Insulin glargine 0.1–0.3 IU/kg/day (n = 38) | 24 weeks | H-MRS | Change in LFC: −17.55 ± 12.93% (p < 0.05) with exenatide vs. −10.49 ± 11.38% (p < 0.05) with insulin glargine | AE in 13.16% and hypoglycemia in 7.89% of patients with exenatide |
Dutour, et al. (France) [49] | Uncontrolled T2DM and obesity | Exenatide 5 μg/10 μg bid (n = 22) Control (n = 22) | 26 weeks | H-MRS | Change in LFC: −23.8 ± 9.5% with exenatide vs. +12.5 ± 9.6% with control (p = 0.007) | Not reported |
Shao et al. (China) [50] | Newly diagnosed obesity, T2DM, and NAFLD | Exenatide + Insulin glargine (n = 30) Insulin (n = 30) | 12 weeks | Ultrasonography | Reversal rate of fatty liver: 93.3% with exenatide vs. 66.7% with insulin (p < 0.01) | Not reported |
Kuchay et al. (India) [51] | T2DM and NAFLD | Dulaglutide 1.5 mg/week (n = 27) Control (n = 25) | 24 weeks | MRI-PDFF VCTE | Change in LFC: −5.8 ± 1.0% with dulaglutide vs. −2.3 ± 1.2% with control (between-group difference −3.5% [95% CI −6.6 to −0.4; p = 0.025]) Change in liver stiffness: −1.43 ± 0.56% with dulaglutide vs. −0.12 ± 0.63% with control (between-group difference −1.31% [95% CI −2.99 to 0.37; p = 0.123]) | Three discontinued due to upper gastrointestinal upset and no SAE in patients with dulaglutide |
Seko et al. (Japan) [52] | Biopsy-proven NAFLD with T2DM | Dulaglutide 0.75 mg/week (n = 15) | 12 weeks | Controlled attenuation parameter, VCTE | Change in LFC: 313.6 to 333.4 dB/m (p = 0.080) Change in liver stiffness: 9.3 to 6.9 kPa (p = 0.043) | One with diarrhea |
Gastaldelli et al. (Italy) [19] | Uncontrolled T2DM and obesity | Tirzepatide 5 mg (n = 71); 10 mg (n = 79); 15 mg (n = 72) Insulin degludec (n = 74) | 52 weeks | MRI-PDFF | Change in LFC: –8.09 ± 0.57% with pooled tirzepatide 10 mg and 15 mg vs. –3.38 ± 0.83% with insulin degludec group (estimated treatment difference –4.71% [95% CI –6.72 to –2.70; p < 0.0001]) | One discontinued due to adverse event |
Name | Phase | Population | Comparators | Duration | Assessment | Primary Endpoints |
---|---|---|---|---|---|---|
ESSENCE, NCT04822181 | III | Biopsy-confirmed NASH with fibrosis stage 2 and 3 (n = 1200) | Semaglutide once weekly Placebo | 72 weeks | Histology | Resolution of steatohepatitis and no worsening of liver fibrosis Improvement in liver fibrosis and no worsening of steatohepatitis Time to first liver-related clinical event |
COMBATT2NASH, NCT04639414 | IV | T2DM and biopsy-confirmed NASH with fibrosis stage 1–3 (n = 192) | Combined treatment with Empagliflozin once daily and Semaglutide once weekly Empagliflozin once daily monotherapy Placebo | 48 weeks | Histology | Histological resolution of NASH without worsening of fibrosis |
NCT04971785 | II | Biopsy confirmed NASH-related cirrhosis (n = 440) | Semaglutide once weekly + cilofexor and firsocostat Semaglutide once weekly monotherapy Cilofexor and firsocostat monotherapy Placebo | 72 weeks | Histology | Percentage of participants who achieve ≥1-stage improvement in fibrosis without worsening of NASH Percentage of participants with NASH resolution |
NCT03884075 | II | Histological or imaging evidence of hepatic steatosis (n = 84) | Semaglutide once weekly No intervention | 30 weeks | Histology MRS | ≥1 point decrease in NAFLD activity score Reduction in liver fat content ≥25% and reduction in ALT by ≥25% or normalization of ALT |
NCT05067621 | III | Impaired glucose tolerance or T2DM and NAFLD (n = 60) | Semaglutide once weekly Placebo | 24 weeks | MRI-PDFF | Change in oral disposition index Change in MRI-PDFF |
NCT05016882 | II | Biopsy-confirmed NASH with fibrosis stage 2–4 (n = 672) | NNC0194 0499 once weekly + semaglutide once weekly Semaglutide once weekly monotherapy Placebo | 52 weeks | Histology | Improvement in liver fibrosis and no worsening of NASH |
SYNERGY-NASH; NCT04166773 | II | T2DM and biopsy-confirmed NASH with fibrosis stage 2–3, and obesity (n = 196) | Tirzepatide once weekly Placebo | 52 weeks | Histology | Percentage of participants with absence of NASH with no worsening of fibrosis |
NCT05751720 | I/II | T2DM and NAFLD with fibrosis stage 3 and 4 (n = 30) | Tirzepatide once weekly | 12 months | VCTE, MRI-PDFF | Change in liver stiffness in terms of kPa Change in liver fat quantification |
PROXYMO-ADV, NCT05364931 | IIb/III | Biopsy-confirmed NASH with fibrosis stage 2 and 3 (n = 45) | Cotadutide once daily Placebo | 84 weeks | Histology | Proportion of participants with resolution of NASH without worsening of liver fibrosis Proportion of participants with improvement in liver fibrosis by at least one stage without worsening of NASH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.A.; Kim, H.Y. Therapeutic Mechanisms and Clinical Effects of Glucagon-like Peptide 1 Receptor Agonists in Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2023, 24, 9324. https://doi.org/10.3390/ijms24119324
Lee HA, Kim HY. Therapeutic Mechanisms and Clinical Effects of Glucagon-like Peptide 1 Receptor Agonists in Nonalcoholic Fatty Liver Disease. International Journal of Molecular Sciences. 2023; 24(11):9324. https://doi.org/10.3390/ijms24119324
Chicago/Turabian StyleLee, Han Ah, and Hwi Young Kim. 2023. "Therapeutic Mechanisms and Clinical Effects of Glucagon-like Peptide 1 Receptor Agonists in Nonalcoholic Fatty Liver Disease" International Journal of Molecular Sciences 24, no. 11: 9324. https://doi.org/10.3390/ijms24119324
APA StyleLee, H. A., & Kim, H. Y. (2023). Therapeutic Mechanisms and Clinical Effects of Glucagon-like Peptide 1 Receptor Agonists in Nonalcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 24(11), 9324. https://doi.org/10.3390/ijms24119324