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Abstract: Strontium (Sr) belongs to the same group in the periodic table as calcium (Ca). Sr level can
serve as an index of rumen Ca absorption capacity; however, the effects of Sr on Ca2+ metabolism are
unclear. This study aims to investigate the effect of Sr on Ca2+ metabolism in bovine rumen epithelial
cells. The bovine rumen epithelial cells were isolated from the rumen of newborn Holstein male
calves (n = 3, 1 day old, 38.0 ± 2.8 kg, fasting). The half maximal inhibitory concentration (IC50)
of Sr-treated bovine rumen epithelial cells and cell cycle were used to establish the Sr treatment
model. Transcriptomics, proteomics, and network pharmacology were conducted to investigate the
core targets of Sr-mediated regulation of Ca2+ metabolism in bovine rumen epithelial cells. The
data of transcriptomics and proteomics were analyzed using bioinformatic analysis (Gene Ontol-
ogy and Kyoto Encyclopedia of genes/protein). Quantitative data were analyzed using one-way
ANOVA in GraphPad Prism 8.4.3 and the Shapiro–Wilk test was used for the normality test. Results
presented that the IC50 of Sr treatment bovine rumen epithelial cells for 24 h was 43.21 mmol/L,
and Sr increased intracellular Ca2+ levels. Multi-omics results demonstrated the differential ex-
pression of 770 mRNAs and 2436 proteins after Sr treatment; network pharmacology and reverse
transcriptase polymerase chain reaction (RT-PCR) revealed Adenosylhomocysteine hydrolase-like
protein 2 (AHCYL2), Semaphoring 3A (SEMA3A), Parathyroid hormone-related protein (PTHLH),
Transforming growth factor β2 (TGF-β2), and Cholesterol side-chain cleavage enzyme (CYP11A1) as
potential targets for Sr-mediated Ca2+ metabolism regulation. Together these results will improve the
current comprehension of the regulatory effect of Sr on Ca2+ metabolism and pave a theoretical basis
for Sr application in bovine hypocalcemia.

Keywords: strontium; Ca2+ metabolism; rumen epithelial cells; transcriptomics; proteomics; network
pharmacology

1. Introduction

Sr, as an alkaline-earth metal, is one of the essential trace elements in the body, which
plays a key role in osteoporosis treatment and prevention [1,2]. Sr belonging to the same
group in the periodic table as Ca exhibits similar physicochemical characteristics but dis-
tinct bone-seeking properties [2–4]. Numerous studies have suggested that Sr increases
bone mineral density by preventing osteoclast activation and promoting osteoblast differ-
entiation [3,5,6]. The team’s previous research found that Sr promoted proliferation and
inhibited differentiation of bovine primary chondrocytes via the TGFβ/SMAD pathway [7].
Sr plays different roles in the presence of various concentrations of Ca2+; for instance, Sr
inhibits bone regeneration at low Ca2+ concentration but enhances bone regeneration under
high Ca2+ concentration [8]. A previous study showed that a Ca-free medium was more ef-
ficient for bovine oocyte activation with Sr [9]. While Sr is an agonist of the calcium-sensing
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receptor (CaSR) and has a lower affinity than Ca2+ [10], whether it affects Ca2+ homeostasis
is yet unclear.

At the onset of lactation, many cows are unable to adapt efficiently to the sudden
increase in Ca demand, leading to blood Ca concentration decreases and causing hypocal-
cemia, thereby reducing cow performance and increasing the risk of other health disorders,
such as metritis and ketosis [11–14]. In ruminants, Ca2+ homeostasis is mainly dependent
on the regulation of intestinal Ca absorption, bone Ca resorption, and renal Ca reabsorp-
tion [15,16]. Ca absorption from the alimentary tract occurs in the small intestine as well as
in the rumen [17]. The rumen and intestinal Ca absorption pathways are the major routes for
obtaining Ca in vitro [18]. Given its chemical similarity with Ca, Sr has a similar transport
and distribution pathway as Ca in the body; Sr can replace Ca in some physiological pro-
cesses such as muscle contraction, blood clotting, and secretion of certain hormones [19,20].
Sr has been used as a Ca marker to measure intestinal Ca absorption [21,22]. Sr concentra-
tion in the blood plasma after an oral dose of strontium chloride (SrCl2) into the rumen can
serve as an index of rumen Ca absorption capacity under different states of Ca homeostasis
in sheep and dairy cows [19,23]. However, no study has investigated the effect of Sr on Ca
absorption in the bovine rumen.

To explore the effect of Sr on Ca2+ metabolism in bovine rumen epithelial cells, a
model of Sr treatment in bovine rumen epithelial cells was established in the present study.
RNA-sequencing-based transcriptomic profiles and DIA-based proteomic profiles were
used to analyze the effect of Sr on bovine rumen epithelial cells in vitro, and network
pharmacology was explored to investigate its effect on Ca2+ metabolism in bovine rumen
epithelial cells.

2. Results
2.1. Effect of Sr on Viability of Rumen Epithelial Cells

Rumen epithelial cells were successfully dissociated (Figure S1A) and identified by
the positive expression of cytokeratin 18 (CK18) and E-cadherin (Figure S1B). The Lactate
dehydrogenase (LDH) activity of cell culture supernatant was the highest on day 5, grad-
ually decreased after day 6, and did not significantly change on day 7 (Figure S1C). This
trend in the change of LDH activity correlated with the growth of rumen epithelial cells.

After treatment with different doses of Sr for 24 h, the IC50 value of rumen epithelial
cells was 43.21 mmol/L (Figure 1A). Cell cycle analysis results showed that the proliferation
index (PI) value was significantly increased in the 20 mmol/L doses of Sr compared to
the 0 mmol/L Sr group (p < 0.01) (Figure 1B,C). Hence, the 0, 1, 10, and 20 mmol/L Sr
concentrations were used for subsequent experiments.
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the 20 mmol/L Sr treatment group, and showed an increasing trend with an increase Sr dose in 
bovine rumen epithelial cells; * p < 0.05, ** p < 0.01 as compared to the 0 mmol/L Sr treatment group. 
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The DEGs were analyzed by Gene Ontology (GO) functional enrichment; a total of 
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terms were all biological processes, such as developmental process, anatomical structure 
development, tissue development, anatomical structure morphogenesis, multicellular or-
ganism development, system development, and cell differentiation (Figure 2C). Kyoto En-
cyclopedia of Genes and Genomes database (KEGG) pathway analysis of DEGs showed 
that the most enriched pathways were those involved in pathways in cancer, amino sugar 
and nucleotide sugar metabolism, and nitrogen metabolism (q-value < 0.05) (Figure 2D). 
Protein-protein interaction network (PPI) analysis of the DEGs showed that a total of 130 
core targets as selected by STRING and Cytoscape software (version 3.8.2) based on “be-
tweenness”, “closeness”, and “degree” (Figure 2E). 
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cell population distributing in the G0/G1, S, and G2/M phases. (C) Comparison of the proliferation
index in different groups. (D) The fluorescence value of Ca2+ staining was significantly increased
in the 20 mmol/L Sr treatment group, and showed an increasing trend with an increase Sr dose in
bovine rumen epithelial cells; * p < 0.05, ** p < 0.01 as compared to the 0 mmol/L Sr treatment group.

2.2. Effect of Sr on Intracellular Ca2+ Level in Rumen Epithelial Cells

The Ca2+ staining fluorescence value was significantly increased in the 20 mmol/L Sr
treatment group compared to the 0 mmol/L Sr group (p < 0.05) (Figure 1D), suggesting
that the intracellular Ca2+ level had an increasing trend with increasing Sr doses.

2.3. Analysis of Differentially Expressed Genes (DEGs)

After treatment with Sr, the DEGs in rumen epithelial cells were visualized using
volcano plots and hierarchical clustering. In total, 770 DEGs comprising 446 upregulated
and 324 downregulated genes were recorded (Figure 2A,B).
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strate junction (Figure 3C). KEGG pathway analysis showed a total of 631 significantly 
enriched pathways (q-value < 0.05). The top 20 pathways included proteasome, purine 
metabolism, biosynthesis of amino acids, cysteine and methionine metabolism, amino 
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nose metabolism, metabolic pathways, alanine, aspartate and glutamate metabolism, and 
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targets selected by STRING and Cytoscape software (version 3.8.2) based on “between-
ness”, “closeness”, and “degree” (Figure 3E). 

Figure 2. Transcriptomics profile comparison between control group (Sr-0) and Sr treatment group
(Sr-20). (A) Volcano plot of the fold change and statistical significance. (B) Heatmap showed the
changes in the expression pattern of DEGs. (C) GO enrichment analysis of DEGs; the top 20 significant
enrichment pathways were listed. (D) KEGG enrichment analysis of DEGs; the top 20 significant
enrichment pathways were listed; (E) PPI analysis of DEGs.

The DEGs were analyzed by Gene Ontology (GO) functional enrichment; a total of
235 GO terms were found to be significantly enriched (q-value < 0.05). The top 20 GO
terms were all biological processes, such as developmental process, anatomical structure
development, tissue development, anatomical structure morphogenesis, multicellular
organism development, system development, and cell differentiation (Figure 2C). Kyoto
Encyclopedia of Genes and Genomes database (KEGG) pathway analysis of DEGs showed
that the most enriched pathways were those involved in pathways in cancer, amino sugar
and nucleotide sugar metabolism, and nitrogen metabolism (q-value < 0.05) (Figure 2D).
Protein-protein interaction network (PPI) analysis of the DEGs showed that a total of
130 core targets as selected by STRING and Cytoscape software (version 3.8.2) based on
“betweenness”, “closeness”, and “degree” (Figure 2E).
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2.4. Analysis of Differentially Expressed Proteins (DEPs)

The DEPs of rumen epithelial cells were visualized using volcano plots and hierarchical
clustering, and 2436 DEPs were observed, including 1846 upregulated and 590 downregu-
lated proteins (Figure 3A,B).
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Figure 3. Proteomics profile comparison between the control group (Sr-0) and Sr treatment group
(Sr-20). (A) Volcano plot of the fold change and statistical significance. (B) Heatmap showed the
changes expression patterns of DEPs. (C) GO enrichment analysis of DEPs. The top 20 significantly
enriched pathways were listed. (D) KEGG enrichment analysis of DEPs. The top 20 significantly
enriched pathways were listed. (E) PPI analysis of DEPs.

GO analysis showed that the DEPs in the Sr-treated and untreated cells were signifi-
cantly enriched in 245 GO terms (q-value < 0.05). The top 20 GO terms mainly involved
cellular components, including cytosol, cytoplasm, proteasome complex, cytoplasmic part,
proteasome core complex, exocyst, proteasome accessory complex, and cell-substrate
junction (Figure 3C). KEGG pathway analysis showed a total of 631 significantly en-
riched pathways (q-value < 0.05). The top 20 pathways included proteasome, purine
metabolism, biosynthesis of amino acids, cysteine and methionine metabolism, amino
sugar and nucleotide sugar metabolism, glycolysis/gluconeogenesis, fructose and man-
nose metabolism, metabolic pathways, alanine, aspartate and glutamate metabolism, and
necroptosis (q-value < 0.05) (Figure 3D). The PPI of the DEPs showed a total of 400 core
targets selected by STRING and Cytoscape software (version 3.8.2) based on “betweenness”,
“closeness”, and “degree” (Figure 3E).

2.5. Association Analysis of the Transcriptome and Proteome

A total of 665 DEGs and 725 DEPs were displayed, including 69 molecules that were
differentially expressed both at mRNA and protein levels, such as PTHLH, CA2, TGFBI,
and WWC2 (Figure 4A). The number of proteins and genes enriched was the highest in
quadrant 5, followed by quadrants 6, 4, 2, and 8. The proteins and genes enriched in
quadrant 5 were commonly expressed without any differences. The proteins and genes
enriched in quadrants 4 and 6 might be associated with post-transcriptional or translation-
level regulation. DEGs and DEPs in quadrants 3 and 7 showed similar expression patterns,
which might be related to the genes that were not regulated or less regulated at the level
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of translation after transcription. A small number of proteins and genes showed lower
abundance in quadrants 1 and 9. The association analysis of transcriptome and proteome
data revealed a Pearson’s correlation coefficient of 0.1869 (p-value = 0). These results
explained that the abundance of most DEPs did not correlate with the corresponding
transcriptional levels (Figure 4B).
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Figure 4. Associations analysis of transcriptomics and proteomics profiles. (A) Venn diagram of
all mRNAs and proteins. (B) In the nine-quadrant diagram, the differential expressed genes and
differential expressed proteins were screened according to the threshold of transcriptomics and
proteomics. (C) GO enrichment analysis for DEPs-DEGs; the top 20 significantly enriched pathways
were listed. (D) KEGG pathway analysis for DEPs-DEGs; the top 20 significantly enriched pathways
were listed.

The DEGs and DEPs were analyzed by GO functional enrichment, and a total of 24 GO
terms were significantly enriched (q-value < 0.05). The top 20 GO terms mainly involved bi-
ological processes such as nucleotide-sugar biosynthetic process, UDP-N-acetylglucosamine
biosynthetic process, amino sugar biosynthetic process, UDP-N-acetylglucosamine metabolic
process, nucleotide-sugar metabolic process, and amino sugar metabolic process (Figure 4C).
KEGG pathway analysis showed that the DEGs and DEPs were significantly enriched in
three pathways (q-value < 0.05), including amino sugar and nucleotide sugar metabolism,
metabolic pathways, and fructose and mannose metabolism (Figure 4D).

2.6. Networks and Enriched Functions in Ca2+ Metabolism-Associated Genes

A total of 1143 Ca2+ metabolism-associated genes were identified, and 9 common
targets were identified between hypocalcemia, transcriptome, and proteome profiles
(Figure 5A). These common targets were considered as core targets of Sr action on Ca2+

metabolism. Among these targets, the expression levels of AHCYL2, WW-and-C2-domain-
containing protein 2 (WWC2), SEMA3A, PTHLH, and Carbonic anhydrase II (CA2) were
significantly upregulated, and CYP11A1, Uroplakin 1b (UPK1B), TGF-β2, and Transforming
growth factor, β-induced (TGFBI) were significantly downregulated in transcriptomics and
proteomics (Figure 5B). These core targets showed a positive correlation in transcriptomics
and proteomics (R2 = 0.9420, p < 0.01) (Figure 5C).
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Figure 5. Screening and validation of Ca2+ metabolism and Sr core targets. (A) Venn diagram of
hypocalcemia, transcriptomics, and proteomics profiles. (B) Core targets between hypocalcemia and
Sr expression levels in transcriptomics and proteomics profiles. (C) Correlation analysis of core targets
between transcriptomics and proteomics profiles. (D) Correlation analysis of CYP11A1, AHCYL2,
SEMA3A, PTHLH, and TGF-β2 between RT-PCR and transcriptomics. (E) The core targets were
verified using RT-PCR, * p < 0.05, ** p < 0.01, as compared to the 0 mmol/L Sr treatment group.

2.7. RT-PCR Analysis of the Effect of Sr on Targets Changes

As shown in Figure 5E, the mRNA expression levels of AHCYL2, WWC2, SEMA3A,
PTHLH, and TGFBI significantly increased with the Sr concentration increase (p < 0.05,
p < 0.01) at 10 and 20 mmol/L Sr doses, and the expression of UPK1B significantly in-
creased at 1 and 10 mmol/L Sr doses (p < 0.01). The CYP11A1 expression was significantly
upregulated at 1 mmol/L Sr doses (p < 0.05) and, in contrast, significantly decreased at
20 mmol/L Sr doses (p < 0.05). The TGF-β2 mRNA expression level was significantly
downregulated (p < 0.01) at 10 and 20 mmol/L Sr doses (p < 0.01), while the CA2 expression
level did not change significantly after Sr treatment. The RT-PCR results of CYP11A1, AH-
CYL2, WWC2, SEMA3A, PTHLH, and TGF-β2 were consistent with transcriptomics results.
Transcriptome results of CYP11A1, AHCYL2, SEMA3A, PTHLH, and TGF-β2 were posi-
tively correlated with RT-PCR results (R2 = 0.7785, p < 0.05) (Figure 5D). The normality test
results of CYP11A1, AHCYL2, UPK1B, WWC2, TGF-β2, SEMA3A, PTHLH, CA2, and TGFBI
were not significantly changed (p > 0.05), and were normally distributed (Table S1). These
results proved that the core targets identified by association analysis between network
pharmacology, transcriptomics, and proteomics were reliable.

3. Discussion

Hypocalcemia is a metabolic disease caused by the homeostatic imbalance of blood
Ca2+ concentration in cows, which impacts their health, future milk production, and
reproductive performance [24,25]. Research suggests that blood plasma Sr level can be
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used as an index of rumen Ca absorption capacity in sheep and dairy cows [19,23]. A few
studies have shown that Sr causes intracellular Ca2+ concentration oscillations generation in
rats and mice [26,27]. In the present study, a model of Sr treatment bovine rumen epithelial
cells was established in vitro. The intracellular Ca2+ concentration significantly increased
in bovine rumen epithelial cells treated with 20 mmol/L Sr. To further explore the effect
of Sr on Ca2+ homeostasis in rumen epithelial cells, the characteristics and differences of
each group were comprehensively analyzed using RNA-sequencing-based transcriptomics
and DIA-based proteomics. Additionally, 770 DEGs and 2436 DEPs were found in an
analysis of differential expression between the control and 20 mmol/L Sr group, including
69 differential expressions molecular both in gene and protein levels; these overlapping
DEGs/DEPs were mainly related to the cellular metabolism. Furthermore, the number
of DEPs was more than the number of DEGs in quadrants 4 and 6, and the association
between transcriptome and proteome was weak, this result suggests that the effect of Sr on
rumen epithelial cells might be regulated by post-transcriptional modifications [28].

In ruminants, the maintenance of blood Ca2+ concentration mainly relies on the
regulation of intestinal Ca absorption, bone Ca resorption, and renal Ca reabsorption [29].
Intestinal Ca absorption is a major pathway for external Ca intake [18]. Sr and Ca have the
same mechanisms for absorption from the gastrointestinal tract and bone accumulation in
the human body [29]. Stimulation of Ca absorption via transcellular transport gains can
counteract hypocalcemia at the onset of lactation. Ca absorption and transport are mainly
active and transcellular transport in the rumen. Transcellular transport in the epithelium
is regulated by calbindin-D9K, transient receptor potential cation channel subfamily V
member 5 (TRPV5), TRPV6, plasma membrane Na+/Ca2+ exchanger (NCX1), and plasma
membrane Ca2+ ATPase 1b (PMCA1b). The vitamin D metabolite, 1,25-dihydroxy vitamin
D3 [1,25-(OH)2D3], parathyroid hormone (PTH), and fibroblast growth factor 23 (FGF23)
are prominent hormones controlling the Ca2+ balance [30,31]. In the rumen of goat, sheep,
and bovine, the calbindin-D9K, TRPV5, and TRPV6 expression levels are weak or have
no expression [18,32,33]. To further screen the core targets of Sr-mediated regulation of
Ca2+ metabolism, in the present study, the combination of network pharmacology and
multi-omics have obtained 9 cores targets as follows: PTHLH, SEMA3A, TGF-β2, TGFBI,
CA2, CYP11A1, WWC2, UPK1B, and AHCYL2.

PTHLH (also called the PTHrP) is a key component in Ca2+ metabolism during preg-
nancy [34]. PTHLH increases chondrocyte sensitivity to 1,25(OH)2D3 by enhancing vitamin
D receptor (VDR) production [35,36]. The change in PTHrP expression level was cor-
related with the changes in Ca2+ concentration in goat mammary epithelial cells and
serum [37,38]. SEMA3A is a secreted glycoprotein that functions as a potent osteoprotective
factor by synchronously inhibiting bone resorption and promoting bone formation [39].
SEMA3A treatment induces Ca2+ elevation in neurons [40,41]. TGF-β2 plays a vital role in
maintaining the homeostasis of cartilage tissue and regulating chondrocyte proliferation,
differentiation, and apoptosis [42]. The presence of TGF-β2 stimulates FGF23 expression
and induces cellular Orai1-mediated calcium influx from extracellular space in UMR106
cells [42]. TGFBI (also known as βig-h3) is a secretory extracellular matrix protein induced
by TGF-β [43], the reduction in the level of TGFBI indirectly increased the concentration
of extracellular Ca2+ [44]. CA2 acts as a mediator of hormones that stimulate bone re-
sorption and osteoclast differentiation [45]. Calcitonin increased the CA2 activity and
PTH had opposite effects in the human erythrocyte [46]. The expression level of CA2
was stimulated by PTH and 1,25-(OH)2D3 [47,48]. CYP11A1, also known as cytochrome
P450scc, is a member of the cytochrome P450 family of heme-containing enzymes that
plays an important role in steroidogenesis [49]. CYP11A1 activates vitamin D3 to produce
noncalcemic products, such as 20(OH)D3 [50]. Intracellular Ca2+ levels has negatively
correlated with CYP11A1 [51]. There is no published literature on how WWC2, UPK1B,
and AHCYL2 regulate Ca2+ metabolism. In this study, PTHLH, SEMA3A, CYP11A1, and
TGF-β2 expression was consistent in RT-PCR and transcriptomics, the UPK1B, CA2, and
TGFBI expression levels are incompatible with transcriptomics, probably owing to the
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interference of duplication on the quantitative results of sequencing. The differences in
AHCYL2, SEMA3A, PTHLH, TGF-β2, and CYP11A1 gene expression levels and coefficients
between the RNA-sequencing and RT-PCR results may reflect the underlying targets of
Sr-mediated Ca2+ metabolism regulation. The molecular mechanisms of these molecules
mediated by Sr in Ca2+ metabolism regulation require further investigation.

In conclusion, the RNA-sequencing-based transcriptomic profiles and DIA-based
proteomics profiles of Sr-treated bovine rumen epithelial cells revealed 770 DEGs and
2436 DEPs. The most highly expressed genes and proteins were involved in metabolism.
The combined network pharmacology analysis and RT-PCR validation revealed 5 core
targets that were potentially involved in the Sr-mediated Ca2+ metabolism regulation,
namely, AHCYL2, SEMA3A, PTHLH, TGF-β2, and CYP11A1. The results of this study will
help to understand the regulatory effect of Sr on Ca2+ metabolism and provide a theoretical
basis for Sr application in bovine hypocalcemia.

4. Materials and Methods
4.1. Isolation and Culture of Primary Bovine Rumen Epithelial Cells

The rumen tissue was collected from newborn Holstein male calves (n = 3, 38.0 ± 2.8 kg
body weight) within 15 min after euthanasia, serial trypsin digestions were used to isolate
primary bovine ruminal epithelial cells as previously described [52,53]. The collected rumen
tissue was washed several times with ice-cold 0.9% (w/v) sodium chloride (NaCl, pH 7.0)
until no visible rumen contents remained. The rumen epithelium was bluntly dissected,
washed twice with phosphate-buffered saline (PBS) containing penicillin (2500 U/mL) and
streptomycin (2500 mg/mL) for 30 min at 37 ◦C, and then washed with PBS containing
amphotericin B (1000 U/mL) and gentamicin (12 µg/mL) for 30 min at 37 ◦C. The rumen ep-
ithelium was aseptically cut into small pieces (3–4 cm2), washed with PBS, and subjected to
serial trypsinization (Sigma, St. Louis, MO, USA) with trypsin-ethylenediaminetetraacetic
acid (EDTA) solution (0.25% trypsin and 0.02% EDTA-Na2) at 37 ◦C. The trypsin-EDTA
solution was freshly replaced every 8 min; the first fraction of the supernatant was dis-
carded, and the subsequent four fractions were separately strained through 50-mesh and
centrifuged for 10 min at 180× g at 25 ◦C. The obtained ruminal epithelium cell pellets
were resuspended in Dulbecco’s modified eagle medium (DMEM) and analyzed for cell
viability using trypan blue. Finally, the cell density was adjusted to 1 × 106 cells/mL, and
the cells were seeded into 6-well cell culture plates (2 mL per well), 96-well cell culture
plates (0.1 mL per well), and 24-well cell culture plates (1 mL per well) and incubated at
37 ◦C in 5% CO2 in a humidified incubator (Thermo Fisher Scientific, Waltham, MA, USA).
The medium was replaced every 2 days. The animal experimental protocol adopted in this
study was approved by the Ethics Committee on the Use and Care of Animals at Northwest
A&F University (Yangling, China) and was conducted in accordance with the university’s
guidelines for animal research (Approval No. 2021049).

4.2. Identification of Primary Bovine Rumen Epithelial Cells

The cells were grown at 50–60% confluency on the coverslips and then fixed with
4% paraformaldehyde, washed thrice with PBS, permeabilized with 0.02% Triton X-100,
and blocked for 40 min with bovine serum albumin. The coverslips were washed thrice
and incubated with primary antibodies specific for CK18 (BOSTER, Wuhan, China) and E-
cadherin (Abways, Shanghai, China) overnight at 4 ◦C. Following incubation, the coverslips
were probed with suitable secondary antibodies for 4 h at 25 ◦C, washed thrice with PBS,
and strained with 4′,6-diamidino-2-phenylindole (DAPI, Sigma, St. Louis, MO, USA)
nuclear stain. The coverslips were rinsed again, sealed with an anti-fluorescence quencher,
and photographed using a fluorescence microscope (Nikon, Ni-U, Nagasaki, Japan).

4.3. LDH Activities Analysis

Membrane integrity was assessed by LDH activity [54]. After the cells were seeded
into 24-well plates, the medium was collected daily for 7 consecutive days. The absorbance
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was measured at 450 nm wavelength according to the manufacturer’s protocol (Nanjing
Jiancheng, Nanjing, China), and the LDH activity was calculated according to the following
equation: LDH activity (U/L) = (ODexperiment − ODcontrol)/(ODstandard − ODblank) ×
standard sample concentration × 1000.

4.4. Cell Viability Analysis

Primary bovine rumen epithelial cells were cultured up to 80% confluency, and the
medium was replaced with fresh medium containing different doses of Sr (0, 0.1, 0.5, 1, 5,
10, 20, 50, 100, and 300 mmol/L) for 24 h at 37 ◦C in a 5% CO2 atmosphere. Each well was
then treated with Cell Counting Kit-8 (CCK-8, ZETA LIFE, Menlo Park, CA, USA) at 37 ◦C
in a 5% CO2 atmosphere for 4 h, and the absorbance was measured at 450 nm. The cell
inhibition was calculated according to the following formula: cell inhibition = 1 − [(ODdrug
− ODblank/ODcontrol − ODblank) × 100%]. The IC50 value was calculated by using the
GraphPad Prism 8.4.3.

4.5. Cell Cycle Analysis

After treatment with Sr, bovine rumen epithelial cells were harvested with 0.25%
trypsin-EDTA and fixed with 70% ethyl alcohol overnight at −20 ◦C; then, the cells
were stained with 0.5 mL of propidium iodide/RNase staining buffer (BD Pharmingen™,
Franklin Lakes, NJ, USA) for 15 min at 25 ◦C. Stained cells were immediately analyzed for
propidium iodide fluorescence using flow cytometry (Coulter-XL). Cell cycle analysis was
performed using the Cell Cycle platform in ModFit 3.0, and the PI was calculated according
to the following formula: PI = (S + G2/M)/(S + G2/M + G0/G1) [55].

4.6. Intracellular Ca2+ Analysis

After treatment with Sr, bovine rumen epithelial cells were washed thrice with PBS
and incubated with Fluo-4 AM (2 µm, Beyotime, Shanghai, China) for 4 h at 37 ◦C; then,
the cells were incubated for 4 h at 37 ◦C after being washed thrice. Finally, fluorescence
was measured on a multimode microplate reader (Tecan Spark, Männedorf, Switzerland).

4.7. RNA Extraction and RNA-Sequencing

Total RNA was extracted using the TRIzol reagent kit (Invitrogen, Carlsbad, CA, USA)
from bovine rumen epithelial cells according to the manufacturer’s protocol. RNA quality
was assessed on an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA)
and checked using an RNase-free agarose gel. Total RNA was used to prepare a separate
Poly-A isolated, strand-specific cDNA Library using NEBNext Ultra RNA Library Prep
Kit (NEB #7530, New England Biolabs, Ipswich, MA, USA). The prepared cDNA was
purified with AMPure XP Beads (1.0×) and sequenced on Illumina Novaseq6000 by Gene
Denovo Biotechnology Co., (Guangzhou, China). The raw Illumina sequencing data were
archived in the National Centre for Biotechnology Information-Sequence Read Archive
(NCBI SRA, https://www.ncbi.nlm.nih.gov/sra accessed on 30 October 2022) under the
accession number SUB12106664.

4.8. Protein Extraction and DIA Labelling

Total proteins were extracted from bovine rumen epithelial cells by the cold acetone
treatment method, and protein quality was determined by the bicinchoninic acid (BCA)
protein assay kit and examined using sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis (SDS-PAGE). The proteins extracted from cells were reduced by dithiothreitol
at 55 ◦C for 1 h, alkylated by iodoacetamide in the dark at 37 ◦C for 1 h, and digested to
peptides at 37 ◦C for 16 h. The peptide mixture was re-dissolved in solvent A (A: 0.1%
formic acid in water) and analyzed by on-line nano spray liquid chromatography-tandem
mass spectrometry (LC-MS/MS) on an Orbitrap Fusion Lumos coupled to EASY-nLC 1200
system (Thermo Fisher Scientific, Waltham, MA, USA); the peptide sample was loaded onto
an analytical column (Acclaim PepMap C18, 75 µm × 25 cm) with a 120 min gradient from

https://www.ncbi.nlm.nih.gov/sra
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5% to 35% B (B: 0.1% formic acid in ACN). Finally, the column flow rate was maintained
at 200 nL/min at a column temperature of 40 ◦C, and the electrospray voltage of 2 kV
versus the inlet of the mass spectrometer was used. The mass spectrometer was run under
a data-independent acquisition mode and automatically switched between MS and MS/MS
mode. These experimental procedures and data analysis were performed by Gene Denovo
Biotechnology Co., (Guangzhou, China).

4.9. Identification of Ca2+ Metabolism-Related Targets

With hypocalcemia as the keywords, Ca2+ metabolism-related targets were obtained
from the GeneCards database (https://www.genecards.org/ accessed on 20 May 2022),
Online Mendelian Inheritance in Man (OMIM) database (https://omim.org/ accessed on
20 May 2022), Therapeutic Target Database (TTD) (http://db.idrblab.net/ttd/ accessed on
20 May 2022), and DisGeNET database (https://www.disgenet.org/ accessed on 20 May
2022). The core targets of Ca2+ metabolism were obtained from transcriptome, proteome,
and network pharmacology analyses.

4.10. Real-Time Polymerase Chain Reaction (RT-PCR)

Total RNA was extracted from Sr-treated cells using TRIzol reagent, and its concentra-
tion and purity were measured by an ultra-micro ultraviolet spectrophotometer (NanoDrop
one, Thermo, Waltham, MA, USA). Then, cDNA was synthesized from total RNA by using
reverse transcriptase. RT-PCR was performed with SYBR® Premix Ex Taq™ (Perfect Real
Time) Kit using CFX Connect Real-Time PCR System (Bio-Rad, Hercules, CA, USA). All
primers were designed to span an exon-exon junction to avoid genomic DNA. The primers
information is shown in Table 1. The 2−∆∆CT method was used to analyze the relative
expression levels of genes.

Table 1. Primers used for RT-PCR.

Gene Symbol a Accession No. Product Size Primer Sequence (5′ → 3′)

CYP11A1 NM_176644.2 219 bp F: CTTGGAGGGACCATGTAGCC
R: GCAATGTCATGGATGTCGTGT

AHCYL2 XM_005205707.4 279 bp
F: GCACAGTCAAGAAGATC-

CAATTTGC
R: GTGCTGGCATTTCTTGCTCA

UPK1B NM_174482.2 181 bp F: GAGGAGAGGGTAAGCTTGGG
R: TGGCTTCAAGCAGTGGGTAG

WWC2 XM_024986463.1 190 bp F: CGCCCGGTTCCCCTATG
R: GCTTGGTCAACCTGTCCC

TGF-β2 NM_
001113252.1 264 bp F: TCATGCGCAAGAGGATCGAG

R: GCGGGATGGCATTTTCCGAG

SEMA3A NM_001276701.2 224 bp F: TCTTCCGAACTCTTGGGCAC
R: GCCCCCAAAGTCATTCTTGC

CA2 NM_178572.2 201 bp F: TCGCGGAGAATGGTCAACAA
R: GTGAACCAGGTGTAGCTCGG

TGFBI NM_001205402.1 273 bp F: GAGCTCTGTGAAACTAGCCCC
R: TGGGCTAACCGCCATGTTTA

PTHLH NM_174753.1 132 bp F: GGTTATTATTTCGGAGGAGGCG
R: CTCTCGCTCTGGGGACTTAT

GAPDH NM_001034034 117 bp F: CCTGCCAAGTATGATGAGAT
R: AGTGTCGCTGTTGAAGTC

18S NR_036642.1 130 bp F: ACCCATTCGAACGTCTGCCCTATT
R: TCCTTGGATGTGGTAGCCGTTTCT

a CYP11A1, Cholesterol side-chain cleavage enzyme; AHCYL2, adenosylhomocysteinase such as 2; UPK1B,
uroplakin 1B; WWC2, WW, and C2 domain containing 2; TGF-β2, Transforming growth factor β2; SEMA3A,
Semaphoring 3A; CA2, Carbonic anhydrase II; TGFBI, transforming growth factor beta-induced; PTHLH, parathy-
roid hormone-related protein.

https://www.genecards.org/
https://omim.org/
http://db.idrblab.net/ttd/
https://www.disgenet.org/
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4.11. Statistical Analysis

Differential expression for gene and protein obtained: clean data (clean reads) were
obtained by fastp (version 0.18.0), and aligned with the reference genome mapped to the
Bos taurus reference genome (Ensembl_release104) using HISAT2. 2.4 software (http://
www.ccb.jhu.edu/software/hisat/ accessed on 15 August 2021). The mapped reads of each
sample were assembled using StringTie v1.3.1 (https://ccb.jhu.edu/software/stringtie/
accessed on 15 August 2021) in a reference-based approach. For each transcription region, a
fragment per kilobase of transcript per million mapped reads (FPKM) value was calculated
to quantify its expression abundance and variations, using RSEM software [56]. RNA
differential expression analysis was performed with DESeq2 (version 1.40. 1) software
between the 0 mmol/L (Sr-0) and 20 mmol/L (Sr-20) Sr treatment groups. DEGs were
identified with a false discovery rate (FDR, q-value) < 0.05 and log2 fold change (FC)
(|log2FC| > 1). Statistically significant DEGs were illustrated using volcano plot analysis
and visualized by hierarchical clustering analysis.

Raw DIA-MS data were processed and analyzed by Spectronaut X software (Biognosys
AG, Switzerland) with default parameters. The retention time prediction type was set to
dynamic iRT. The protein was qualitatively analyzed using a 1% q-value (FDR) cutoff on
precursor and protein levels, and quantitative analyzed using the 1% q-value cutoff on
the average top three filtered peptides. DEPs were analyzed by the Student’s t-test and
Benjamini–Hochberg (BH), according to an absolute FC > 1.5 and q-value < 0.05 (Student’s
t-test) as the screening criteria. The R package was used to generate Venn, heatmaps, and
hierarchically clustered differential proteins based on normalized values.

GO and KEGG pathway enrichment analyses: gene function enrichment analysis
(http://www.omicshare.com/ accessed on 23 August 2021) was performed using GO and
Kyoto Encyclopedia of KEGG by the cluster Profiler R package, and q-value < 0.05 was
used to indicate significantly enriched GO functions and KEGG pathways.

Enrichment analysis of DEPs was based on KEGG and GO databases (http://www.
omicshare.com/ accessed on 10 September 2021), and a q-value < 0.05 indicated significantly
enriched GO functions and KEGG pathways. The Rich factor in gene function enrichment
analysis was calculated according to the number of genes in each category divided by the
total number of genes in the category.

A PPI was generated using STRING (https://cn.string-db.org/ accessed on 10 Septem-
ber 2022) and Cytoscape software (version 3.8.2) to present the core and the biological
interaction of hub genes.

Quantitative data analysis: statistical analyses were performed using one-way analysis
of variance (ANOVA). The Shapiro–Wilk test was used for the normality test. All data
are presented as the mean ± standard error of means (SEM). p < 0.05 was considered
statistically significant. Each experiment was independently repeated at least thrice.

5. Conclusions

This study found the underlying targets of Sr-mediated Ca2+ metabolism regulation,
namely, AHCYL2, SEMA3A, PTHLH, TGF-β2, and CYP11A1. These results will improve
the current understanding of the regulatory effect of Sr on Ca2+ metabolism and provide a
theoretical basis for Sr application in bovine hypocalcemia.
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