The Aging Enteric Nervous System
Abstract
:1. Introduction
1.1. The ENS Structure
1.2. The ENS Function
2. The ENS during Aging
2.1. Morphological Changes of the Aging ENS
2.2. Aging ENS Leads to Age-Related GI Innervation Changes
3. Pathophysiology of the Aging ENS
3.1. Aging Phenotypes of the ENS
3.2. Changes of Neurogenesis of the ENS with Aging
3.3. Effect of Dysbiosis on the Aging ENS
3.4. Interactions between Different Cell Types and the ENS in Aging
3.4.1. Enteric Immune System
3.4.2. Enteroendocrine Cells
3.4.3. Tuft Cells
3.5. Neurotrophic Factors as Protectors of Enteric Neurons along Aging
3.6. Modulation of Enteric Populations by Dietary Supplements
4. Potential Disease-Related Pathology of the ENS
4.1. Involvement of the ENS in Parkinson’s Disease
4.2. Involvement of the ENS in Alzheimer’s Disease
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grundmann, D.; Loris, E.; Maas-Omlor, S.; Schäfer, K.H. Enteric Neurogenesis During Life Span Under Physiological and Pathophysiological Conditions. Anat. Rec. 2019, 302, 1345–1353. [Google Scholar] [CrossRef] [PubMed]
- Tobias, A.; Sadiq, N.M. Physiology, Gastrointestinal Nervous Control; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Annahazi, A.; Schemann, M. The enteric nervous system: “A little brain in the gut”. Neuroforum 2020, 26, 31–42. [Google Scholar] [CrossRef]
- Fleming, M.A., II; Ehsan, L.; Moore, S.R.; Levin, D.E. The Enteric Nervous System and Its Emerging Role as a Therapeutic Target. Gastroenterol. Res. Pract. 2020, 2020, 8024171. [Google Scholar] [CrossRef] [PubMed]
- Furness, J.B.; Callaghan, B.P.; Rivera, L.R.; Cho, H.J. The enteric nervous system and gastrointestinal innervation: Integrated local and central control. Adv. Exp. Med. Biol. 2014, 817, 39–71. [Google Scholar] [CrossRef] [PubMed]
- McCausland, C.; Sajjad, H. Anatomy, Back, Splanchnic Nerve; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Sasselli, V.; Pachnis, V.; Burns, A.J. The enteric nervous system. Dev. Biol. 2012, 366, 64–73. [Google Scholar] [CrossRef]
- Baj, A.; Moro, E.; Bistoletti, M.; Orlandi, V.; Crema, F.; Giaroni, C. Glutamatergic Signaling Along The Microbiota-Gut-Brain Axis. Int. J. Mol. Sci. 2019, 20, 1482. [Google Scholar] [CrossRef]
- May-Zhang, A.A.; Tycksen, E.; Southard-Smith, A.N.; Deal, K.K.; Benthal, J.T.; Buehler, D.P.; Adam, M.; Simmons, A.J.; Monaghan, J.R.; Matlock, B.K.; et al. Combinatorial Transcriptional Profiling of Mouse and Human Enteric Neurons Identifies Shared and Disparate Subtypes In Situ. Gastroenterology 2021, 160, 755–770.e726. [Google Scholar] [CrossRef]
- Drokhlyansky, E.; Smillie, C.S.; Van Wittenberghe, N.; Ericsson, M.; Griffin, G.K.; Eraslan, G.; Dionne, D.; Cuoco, M.S.; Goder-Reiser, M.N.; Sharova, T.; et al. The Human and Mouse Enteric Nervous System at Single-Cell Resolution. Cell 2020, 182, 1606–1622.e1623. [Google Scholar] [CrossRef]
- Spencer, N.J.; Hu, H. Enteric nervous system: Sensory transduction, neural circuits and gastrointestinal motility. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 338–351. [Google Scholar] [CrossRef]
- Lopez-Otin, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. Hallmarks of aging: An expanding universe. Cell 2023, 186, 243–278. [Google Scholar] [CrossRef]
- Deb, B.; Prichard, D.O.; Bharucha, A.E. Constipation and Fecal Incontinence in the Elderly. Curr. Gastroenterol. Rep. 2020, 22, 54. [Google Scholar] [CrossRef] [PubMed]
- Wade, P.R. Aging and neural control of the GI tract. I. Age-related changes in the enteric nervous system. Am. J. Physiol. Gastrointest. Liver Physiol. 2002, 283, G489–G495. [Google Scholar] [CrossRef] [PubMed]
- Szymaszkiewicz, A.; Szymaszkiewicz, K.; Fichna, J.; Zielińska, M. The age-related alerations in the enteric nervous system and their impact on peristalsis of the gastrointestinal tract. Postepy Biochem. 2021, 67, 34–43. [Google Scholar] [CrossRef]
- Camilleri, M.; Cowen, T.; Koch, T.R. Enteric neurodegeneration in ageing. Neurogastroenterol. Motil. 2008, 20, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Saffrey, M.J. Cellular changes in the enteric nervous system during ageing. Dev. Biol. 2013, 382, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.; Gershon, M.D. Enteric nervous system development: What could possibly go wrong? Nat. Rev. Neurosci. 2018, 19, 552–565. [Google Scholar] [CrossRef]
- Abalo, R.; José Rivera, A.; Vera, G.; Isabel Martín, M. Ileal myenteric plexus in aged guinea-pigs: Loss of structure and calretinin-immunoreactive neurones. Neurogastroenterol. Motil. 2005, 17, 123–132. [Google Scholar] [CrossRef]
- Sun, T.; Li, D.; Hu, S.; Huang, L.; Sun, H.; Yang, S.; Wu, B.; Ji, F.; Zhou, D. Aging-dependent decrease in the numbers of enteric neurons, interstitial cells of Cajal and expression of connexin43 in various regions of gastrointestinal tract. Aging 2018, 10, 3851–3865. [Google Scholar] [CrossRef]
- Hanani, M.; Fellig, Y.; Udassin, R.; Freund, H.R. Age-related changes in the morphology of the myenteric plexus of the human colon. Auton. Neurosci. 2004, 113, 71–78. [Google Scholar] [CrossRef]
- Mandic, P.; Lestarevic, S.; Filipovic, T.; Savic, S.; Stevic, S.; Kostic, M. Age-related changes in the myenteric plexus of the human jejunum. Folia Morphol. 2016, 75, 188–195. [Google Scholar] [CrossRef]
- Mandić, P.; Lestarević, S.; Filipović, T.; Dukić-Macut, N.; Saranović, M. Age-related structural changes in the myenteric nervous plexus ganglion along the anterior wall of the proximal human duodenum—A morphometric analysis. Vojnosanit. Pregl. 2013, 70, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Meciano Filho, J.; Carvalho, V.C.; de Souza, R.R. Nerve cell loss in the myenteric plexus of the human esophagus in relation to age: A preliminary investigation. Gerontology 1995, 41, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Phillips, R.J.; Kieffer, E.J.; Powley, T.L. Aging of the myenteric plexus: Neuronal loss is specific to cholinergic neurons. Auton. Neurosci. 2003, 106, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Gamage, P.P.; Ranson, R.N.; Patel, B.A.; Yeoman, M.S.; Saffrey, M.J. Myenteric neuron numbers are maintained in aging mouse distal colon. Neurogastroenterol. Motil. 2013, 25, e495–e505. [Google Scholar] [CrossRef]
- Coulombe, J.; Gamage, P.; Gray, M.T.; Zhang, M.; Tang, M.Y.; Woulfe, J.; Saffrey, M.J.; Gray, D.A. Loss of UCHL1 promotes age-related degenerative changes in the enteric nervous system. Front. Aging Neurosci. 2014, 6, 129. [Google Scholar] [CrossRef]
- Phillips, R.J.; Hudson, C.N.; Powley, T.L. Sympathetic axonopathies and hyperinnervation in the small intestine smooth muscle of aged Fischer 344 rats. Auton. Neurosci. 2013, 179, 108–121. [Google Scholar] [CrossRef]
- Phillips, R.J.; Pairitz, J.C.; Powley, T.L. Age-related neuronal loss in the submucosal plexus of the colon of Fischer 344 rats. Neurobiol. Aging 2007, 28, 1124–1137. [Google Scholar] [CrossRef]
- Abalo, R.; Vera, G.; Rivera, A.J.; Martín, M.I. Age-related changes in the gastrointestinal tract: A functional and immunohistochemical study in guinea-pig ileum. Life Sci. 2007, 80, 2436–2445. [Google Scholar] [CrossRef]
- Peck, C.J.; Samsuria, S.D.; Harrington, A.M.; King, S.K.; Hutson, J.M.; Southwell, B.R. Fall in density, but not number of myenteric neurons and circular muscle nerve fibres in guinea-pig colon with ageing. Neurogastroent. Motil. 2009, 21, 1075-e90. [Google Scholar] [CrossRef]
- Wu, M.; Van Nassauw, L.; Kroese, A.B.; Adriaensen, D.; Timmermans, J.P. Myenteric nitrergic neurons along the rat esophagus: Evidence for regional and strain differences in age-related changes. Histochem. Cell Biol. 2003, 119, 395–403. [Google Scholar] [CrossRef]
- Phillips, R.J.; Powley, T.L. As the gut ages: Timetables for aging of innervation vary by organ in the Fischer 344 rat. J. Comp. Neurol. 2001, 434, 358–377. [Google Scholar] [CrossRef] [PubMed]
- Marese, A.C.; de Freitas, P.; Natali, M.R. Alterations of the number and the profile of myenteric neurons of Wistar rats promoted by age. Auton. Neurosci. 2007, 137, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Porto, G.D.; Pereira, J.N.B.; Tiburcio, V.G.; Stabille, S.R.; de Faria, H.G.; Germano, R.D.; Mari, R.D. Effect of caloric restriction on myenteric neuroplasticity in the rat duodenum during aging. Auton. Neurosci.-Basic Clin. 2012, 168, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Thrasivoulou, C.; Soubeyre, V.; Ridha, H.; Giuliani, D.; Giaroni, C.; Michael, G.J.; Saffrey, M.J.; Cowen, T. Reactive oxygen species, dietary restriction and neurotrophic factors in age-related loss of myenteric neurons. Aging Cell 2006, 5, 247–257. [Google Scholar] [CrossRef]
- Santer, R.M. Survival of the Population of Nadph-Diaphorase Stained Myenteric Neurons in the Small-Intestine of Aged Rats. J. Autonom. Nerv. Syst. 1994, 49, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Cowen, T.; Johnson, R.J.R.; Soubeyre, V.; Santer, R.M. Restricted diet rescues rat enteric motor neurones from age related cell death. Gut 2000, 47, 653–660. [Google Scholar] [CrossRef]
- Johnson, R.J.; Schemann, M.; Santer, R.M.; Cowen, T. The effects of age on the overall population and on sub-populations of myenteric neurons in the rat small intestine. J. Anat. 1998, 192 Pt 4, 479–488. [Google Scholar] [CrossRef]
- Corns, R.A.; Hidaka, H.; Santer, R.M. Neurocalcin-alpha immunoreactivity in the enteric nervous system of young and aged rats. Cell Calcium 2002, 31, 53–58. [Google Scholar] [CrossRef]
- Phillips, R.J.; Kieffer, E.J.; Powley, T.L. Loss of glia and neurons in the myenteric plexus of the aged Fischer 344 rat. Anat. Embryol. 2004, 209, 19–30. [Google Scholar] [CrossRef]
- Belai, A.; Cooper, S.; Burnstock, G. Effect of age on NADPH-diaphorase-containing myenteric neurones of rat ileum and proximal colon. Cell Tissue Res. 1995, 279, 379–383. [Google Scholar] [CrossRef]
- Jo, H.J.; Kim, N.; Nam, R.H.; Kang, J.M.; Kim, J.H.; Choe, G.; Lee, H.S.; Park, J.H.; Chang, H.; Kim, H.; et al. Fat deposition in the tunica muscularis and decrease of interstitial cells of Cajal and nNOS-positive neuronal cells in the aged rat colon. Am. J. Physiol. Gastrointest. Liver Physiol. 2014, 306, G659–G669. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Qoubaitary, A.; Chung, O.Y.; Wiley, J.W. Decreased expression of nitric oxide synthase in the colonic myenteric plexus of aged rats. Brain Res. 2000, 883, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Belai, A.; Wheeler, H.; Burnstock, G. Innervation of the rat gastrointestinal sphincters: Changes during development and aging. Int. J. Dev. Neurosci. 1995, 13, 81–95. [Google Scholar] [CrossRef]
- El-Salhy, M.; Sandström, O.; Holmlund, F. Age-induced changes in the enteric nervous system in the mouse. Mech. Ageing Dev. 1999, 107, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Van Ginneken, C.; Schäfer, K.H.; Van Dam, D.; Huygelen, V.; De Deyn, P.P. Morphological changes in the enteric nervous system of aging and APP23 transgenic mice. Brain Res. 2011, 1378, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Houghton, M.J.; Gamage, P.P.; Collins, H.E.; Patel, B.A.; Yeoman, M.S.; Ranson, R.N.; Saffrey, M.J. Changes in the innervation of the mouse internal anal sphincter during aging. Neurogastroenterol. Motil. 2013, 25, e469–e477. [Google Scholar] [CrossRef] [PubMed]
- McClain, J.; Grubisic, V.; Fried, D.; Gomez-Suarez, R.A.; Leinninger, G.M.; Sevigny, J.; Parpura, V.; Gulbransen, B.D. Ca2+ responses in enteric glia are mediated by connexin-43 hemichannels and modulate colonic transit in mice. Gastroenterology 2014, 146, 497–507.E1. [Google Scholar] [CrossRef]
- Belai, A.; Burnstock, G. Distribution and colocalization of nitric oxide synthase and calretinin in myenteric neurons of developing, aging, and Crohn’s disease human small intestine. Dig. Dis. Sci. 1999, 44, 1579–1587. [Google Scholar] [CrossRef]
- De Souza, R.R.; Moratelli, H.B.; Borges, N.; Liberti, E.A. Age-induced nerve cell loss in the myenteric plexus of the small intestine in man. Gerontology 1993, 39, 183–188. [Google Scholar] [CrossRef]
- Gomes, O.A.; de Souza, R.R.; Liberti, E.A. A preliminary investigation of the effects of aging on the nerve cell number in the myenteric ganglia of the human colon. Gerontology 1997, 43, 210–217. [Google Scholar] [CrossRef]
- Bassotti, G.; Villanacci, V.; Maurer, C.A.; Fisogni, S.; Di Fabio, F.; Cadei, M.; Morelli, A.; Panagiotis, T.; Cathomas, G.; Salemi, B. The role of glial cells and apoptosis of enteric neurones in the neuropathology of intractable slow transit constipation. Gut 2006, 55, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Bernard, C.E.; Gibbons, S.J.; Gomez-Pinilla, P.J.; Lurken, M.S.; Schmalz, P.F.; Roeder, J.L.; Linden, D.; Cima, R.R.; Dozois, E.J.; Larson, D.W.; et al. Effect of age on the enteric nervous system of the human colon. Neurogastroenterol. Motil. 2009, 21, 746-e46. [Google Scholar] [CrossRef] [PubMed]
- Zizzo, M.G.; Cicio, A.; Raimondo, S.; Alessandro, R.; Serio, R. Age-related differences of γ-aminobutyric acid (GABA)ergic transmission in human colonic smooth muscle. Neurogastroenterol. Motil. 2022, 34, e14248. [Google Scholar] [CrossRef] [PubMed]
- Hetz, S.; Acikgoez, A.; Moll, C.; Jahnke, H.G.; Robitzki, A.A.; Metzger, R.; Metzger, M. Age-related gene expression analysis in enteric ganglia of human colon after laser microdissection. Front. Aging Neurosci. 2014, 6, 276. [Google Scholar] [CrossRef] [PubMed]
- Baidoo, N.; Sanger, G.J.; Belai, A. Effect of old age on the subpopulations of enteric glial cells in human descending colon. Glia 2023, 71, 305–316. [Google Scholar] [CrossRef]
- Dutta, S.; Sengupta, P. Men and mice: Relating their ages. Life Sci. 2016, 152, 244–248. [Google Scholar] [CrossRef]
- Ranson, R.N.; Saffrey, M.J. Neurogenic mechanisms in bladder and bowel ageing. Biogerontology 2015, 16, 265–284. [Google Scholar] [CrossRef]
- Jurk, D.; Wang, C.; Miwa, S.; Maddick, M.; Korolchuk, V.; Tsolou, A.; Gonos, E.S.; Thrasivoulou, C.; Saffrey, M.J.; Cameron, K.; et al. Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell 2012, 11, 996–1004. [Google Scholar] [CrossRef]
- Phillips, R.J.; Walter, G.C.; Ringer, B.E.; Higgs, K.M.; Powley, T.L. Alpha-synuclein immunopositive aggregates in the myenteric plexus of the aging Fischer 344 rat. Exp. Neurol. 2009, 220, 109–119. [Google Scholar] [CrossRef]
- Guo, J.; Huang, X.Q.; Dou, L.; Yan, M.J.; Shen, T.; Tang, W.Q.; Li, J. Aging and aging-related diseases: From molecular mechanisms to interventions and treatments. Signal. Transduct. Target. Ther. 2022, 7, 391. [Google Scholar] [CrossRef]
- Wiley, J.W. Aging and neural control of the GI tract—III. Senescent enteric nervous system: Lessons from extraintestinal sites and nonmammalian species. Am. J. Physiol. Gastrointest. Liver Physiol. 2002, 283, G1020–G1026. [Google Scholar] [CrossRef] [PubMed]
- Saffrey, M.J. Aging of the mammalian gastrointestinal tract: A complex organ system. Age 2014, 36, 1019–1032. [Google Scholar] [CrossRef] [PubMed]
- Bhutto, A.; Morley, J.E. The clinical significance of gastrointestinal changes with aging. Curr. Opin. Clin. Nutr. 2008, 11, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Heanue, T.A.; Pachnis, V. Enteric nervous system development and Hirschsprung’s disease: Advances in genetic and stem cell studies. Nat. Rev. Neurosci. 2007, 8, 466–479. [Google Scholar] [CrossRef] [PubMed]
- Uesaka, T.; Nagashimada, M.; Enomoto, H. Neuronal Differentiation in Schwann Cell Lineage Underlies Postnatal Neurogenesis in the Enteric Nervous System. J. Neurosci. 2015, 35, 9879–9888. [Google Scholar] [CrossRef]
- Brokhman, I.; Xu, J.; Coles, B.L.K.; Razavi, R.; Engert, S.; Lickert, H.; Babona-Pilipos, R.; Morshead, C.M.; Sibley, E.; Chen, C.; et al. Dual embryonic origin of the mammalian enteric nervous system. Dev. Biol. 2019, 445, 256–270. [Google Scholar] [CrossRef] [PubMed]
- Kruger, G.M.; Mosher, J.T.; Bixby, S.; Joseph, N.; Iwashita, T.; Morrison, S.J. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron 2002, 35, 657–669. [Google Scholar] [CrossRef]
- Laranjeira, C.; Sandgren, K.; Kessaris, N.; Richardson, W.; Potocnik, A.; Vanden Berghe, P.; Pachnis, V. Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. J. Clin. Investig. 2011, 121, 3412–3424. [Google Scholar] [CrossRef]
- Joseph, N.M.; He, S.H.; Quintana, E.; Kim, Y.G.; Nunez, G.; Morrison, S.J. Enteric glia are multipotent in culture but primarily form glia in the adult rodent gut. J. Clin. Investig. 2011, 121, 3398–3411. [Google Scholar] [CrossRef]
- Gershon, M.D. Behind an enteric neuron there may lie a glial cell. J. Clin. Investig. 2011, 121, 3386–3389. [Google Scholar] [CrossRef]
- Kulkarni, S.; Micci, M.A.; Leser, J.; Shin, C.; Tang, S.C.; Fu, Y.Y.; Liu, L.S.; Li, Q.; Saha, M.; Li, C.P.; et al. Adult enteric nervous system in health is maintained by a dynamic balance between neuronal apoptosis and neurogenesis. Proc. Natl. Acad. Sci. USA 2017, 114, E3709–E3718. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, S.; Saha, M.; Becker, L.; Wang, Z.; Liu, G.; Leser, J.; Kumar, M.; Bakhshi, S.; Anderson, M.; Lewandoski, M.; et al. Neural crest-derived neurons are replaced by a newly identified mesodermal lineage in the post-natal and aging enteric nervous system. bioRxiv 2020. [Google Scholar] [CrossRef]
- Gianino, S.; Grider, J.R.; Cresswell, J.; Enomoto, H.; Heuckeroth, R.O. GDNF availability determines enteric neuron number by controlling precursor proliferation. Development 2003, 130, 2187–2198. [Google Scholar] [CrossRef] [PubMed]
- Rayner, C.K.; Horowitz, M. Physiology of the ageing gut. Curr. Opin. Clin. Nutr. 2013, 16, 33–38. [Google Scholar] [CrossRef]
- Collins, J.; Borojevic, R.; Verdu, E.F.; Huizinga, J.D.; Ratcliffe, E.M. Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterol. Motil. 2014, 26, 98–107. [Google Scholar] [CrossRef]
- Hayashi, H.; Takahashi, R.; Nishi, T.; Sakamoto, M.; Benno, Y. Molecular analysis of jejunal, ileal, caecal and recto-sigmoidal human colonic microbiota using 16S rRNA gene libraries and terminal restriction fragment length polymorphism. J. Med. Microbiol. 2005, 54, 1093–1101. [Google Scholar] [CrossRef]
- Liu, Y.H.; Ding, Y.; Gao, C.C.; Li, L.S.; Wang, Y.X.; Xu, J.D. Functional macrophages and gastrointestinal disorders. World J. Gastroenterol. 2018, 24, 1181–1195. [Google Scholar] [CrossRef]
- Kabouridis, P.S.; Lasrado, R.; McCallum, S.; Chng, S.H.; Snippert, H.J.; Clevers, H.; Pettersson, S.; Pachnis, V. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron 2015, 85, 289–295. [Google Scholar] [CrossRef]
- De Vadder, F.; Grasset, E.; Manneras Holm, L.; Karsenty, G.; Macpherson, A.J.; Olofsson, L.E.; Backhed, F. Gut microbiota regulates maturation of the adult enteric nervous system via enteric serotonin networks. Proc. Natl. Acad. Sci. USA 2018, 115, 6458–6463. [Google Scholar] [CrossRef]
- Vicentini, F.A.; Keenan, C.M.; Wallace, L.E.; Woods, C.; Cavin, J.B.; Flockton, A.R.; Macklin, W.B.; Belkind-Gerson, J.; Hirota, S.A.; Sharkey, K.A. Intestinal microbiota shapes gut physiology and regulates enteric neurons and glia. Microbiome 2021, 9, 210. [Google Scholar] [CrossRef]
- Becker, L.; Peterson, J.; Kulkarni, S.; Pasricha, P.J. Ex Vivo Neurogenesis within Enteric Ganglia Occurs in a PTEN Dependent Manner. PLoS ONE 2013, 8, e59452. [Google Scholar] [CrossRef] [PubMed]
- Baker, J.M.; Al-Nakkash, L.; Herbst-Kralovetz, M.M. Estrogen-gut microbiome axis: Physiological and clinical implications. Maturitas 2017, 103, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Bodogai, M.; O’Connell, J.; Kim, K.; Kim, Y.; Moritoh, K.; Chen, C.; Gusev, F.; Vaughan, K.; Shulzhenko, N.; Mattison, J.A.; et al. Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Sci. Transl. Med. 2018, 10, eaat4271. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Hu, H.Z.; Liu, S.; Pothoulakis, C.; Wood, J.D. Clostridium difficile toxin A excites enteric neurones and suppresses sympathetic neurotransmission in the guinea pig. Gut 2000, 46, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Geng, Z.-H.; Zhu, Y.; Li, Q.-L.; Zhao, C.; Zhou, P.-H. Enteric Nervous System: The Bridge Between the Gut Microbiota and Neurological Disorders. Front. Aging Neurosci. 2022, 14, 810483. [Google Scholar] [CrossRef] [PubMed]
- Metta, V.; Leta, V.; Mrudula, K.R.; Prashanth, L.K.; Goyal, V.; Borgohain, R.; Chung-Faye, G.; Chaudhuri, K.R. Gastrointestinal dysfunction in Parkinson’s disease: Molecular pathology and implications of gut microbiome, probiotics, and fecal microbiota transplantation. J. Neurol. 2022, 269, 1154–1163. [Google Scholar] [CrossRef]
- Paredes, S.; Cantillo, S.; Candido, K.D.; Knezevic, N.N. An Association of Serotonin with Pain Disorders and Its Modulation by Estrogens. Int. J. Mol. Sci. 2019, 20, 5729. [Google Scholar] [CrossRef]
- Rybaczyk, L.A.; Bashaw, M.J.; Pathak, D.R.; Moody, S.M.; Gilders, R.M.; Holzschu, D.L. An overlooked connection: Serotonergic mediation of estrogen-related physiology and pathology. BMC Womens Health 2005, 5, 12. [Google Scholar] [CrossRef]
- D’Errico, F.; Goverse, G.; Dai, Y.; Wu, W.; Stakenborg, M.; Labeeuw, E.; De Simone, V.; Verstockt, B.; Gomez-Pinilla, P.J.; Warner, M.; et al. Estrogen receptor beta controls proliferation of enteric glia and differentiation of neurons in the myenteric plexus after damage. Proc. Natl. Acad. Sci. USA 2018, 115, 5798–5803. [Google Scholar] [CrossRef]
- Wang, H.Z.; Foong, J.P.P.; Harris, N.L.; Bornstein, J.C. Correction to: Enteric neuroimmune interactions coordinate intestinal responses in health and disease. Mucosal Immunol. 2022, 15, 188. [Google Scholar] [CrossRef]
- Tough, I.R.; Forbes, S.; Tolhurst, R.; Ellis, M.; Herzog, H.; Bornstein, J.C.; Cox, H.M. Endogenous peptide YY and neuropeptide Y inhibit colonic ion transport, contractility and transit differentially via Y-1 and Y-2 receptors. Br. J. Pharmacol. 2011, 164, 471–484. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.V.; Hao, L.M.; Offermanns, S.; Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. USA 2014, 111, 2247–2252. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Li, Y. Involvement of Intestinal Enteroendocrine Cells in Neurological and Psychiatric Disorders. Biomedicines 2022, 10, 2577. [Google Scholar] [CrossRef]
- Matthes, S.; Bader, M. Peripheral Serotonin Synthesis as a New Drug Target. Trends Pharmacol. Sci. 2018, 39, 560–572. [Google Scholar] [CrossRef] [PubMed]
- Voss, U.; Malipatlolla, D.K.; Patel, P.; Devarakonda, S.; Sjoberg, F.; Grander, R.; Rascon, A.; Nyman, M.; Steineck, G.; Bull, C. Irradiation Induces Tuft Cell Hyperplasia and Myenteric Neuronal Loss in the Absence of Dietary Fiber in a Mouse Model of Pelvic Radiotherapy. Gastroenterol. Insights 2022, 13, 87–102. [Google Scholar] [CrossRef]
- Chen, Z.J.; Luo, J.L.; Li, J.; Kim, G.; Stewart, A.; Urban, J.F.; Huang, Y.F.; Chen, S.; Wu, L.G.; Chesler, A.; et al. Interleukin-33 Promotes Serotonin Release from Enterochromaffin Cells for Intestinal Homeostasis. Immunity 2021, 54, 151–163. [Google Scholar] [CrossRef]
- Sandstrom, O.; Mahdavi, J.; El-Salhy, M. Effect of ageing on colonic endocrine cell population in mouse. Gerontology 1998, 44, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Middelhoff, M.; Westphalen, C.B.; Hayakawa, Y.; Yan, K.S.; Gershon, M.D.; Wang, T.C.; Quante, M. Dclk1-expressing tuft cells: Critical modulators of the intestinal niche? Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 313, G285–G299. [Google Scholar] [CrossRef]
- Bezencon, C.; Furholz, A.; Raymond, F.; Mansourian, R.; Metairon, S.; Le Coutre, J.; Damak, S. Murine intestinal cells expressing Trpm5 are mostly brush cells and express markers of neuronal and inflammatory cells. J. Comp. Neurol. 2008, 509, 514–525. [Google Scholar] [CrossRef]
- Middelhoff, M.; Nienhuser, H.; Valenti, G.; Maurer, H.C.; Hayakawa, Y.; Takahashi, R.; Kim, W.; Jiang, Z.Y.; Malagola, E.; Cuti, K.; et al. Prox1-positive cells monitor and sustain the murine intestinal epithelial cholinergic niche. Nat. Commun. 2020, 11, 111. [Google Scholar] [CrossRef]
- Schutz, B.; Jurastow, I.; Bader, S.; Ringer, C.; von Engelhardt, J.; Chubanov, V.; Gudermann, T.; Diener, M.; Kummer, W.; Krasteva-Christ, G.; et al. Chemical coding and chemosensory properties of cholinergic brush cells in the mouse gastrointestinal and biliary tract. Front. Physiol. 2015, 6, 87. [Google Scholar] [CrossRef] [PubMed]
- Korsak, K.; Dolatshad, N.F.; Silva, A.T.; Saffrey, M.J. Ageing of enteric neurons: Oxidative stress, neurotrophic factors and antioxidant enzymes. Chem. Cent. J. 2012, 6, 80. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A.; Shultz, J.M. Impact of aging on eating behaviors, food choices, nutrition, and health status. J. Nutr. Health Aging 2001, 5, 75–79. [Google Scholar] [PubMed]
- Narukawa, M.; Misaka, T. Change in Taste Preference to Capsaicin and Catechin Due to Aging in Mice. J. Nutr. Sci. Vitaminol. 2021, 67, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Nagahama, T.; Abe, R.; Enomoto, Y.; Kashima, A. Effects of aging on the food intake in the feeding behavior of Aplysia kurodai. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2016, 202, 803–811. [Google Scholar] [CrossRef]
- Ameku, T.; Beckwith, H.; Blackie, L.; Miguel-Aliaga, I. Food, microbes, sex and old age: On the plasticity of gastrointestinal innervation. Curr. Opin. Neurobiol. 2020, 62, 83–91. [Google Scholar] [CrossRef]
- Zanoni, J.N.; Freitas, P. Effects of ascorbic acid on the vasoactive intestinal peptide synthesis in the ileum submucous plexus of normal rats. Arq. Gastroenterol. 2005, 42, 186–190. [Google Scholar] [CrossRef]
- Mello, S.A.; Marese, A.C.M.; Brancalhao, R.M.C.; Zanoni, J.N.; Natali, M.R.M. Administering ascorbic acid to rats undergoing ageing processes: Effects on myosin-V immunoreactive myenteric neurons. An. Acad. Bras. Cienc. 2013, 85, 337–347. [Google Scholar] [CrossRef]
- Sprenger, N.; Julita, M.; Donnicola, D.; Jann, A. Sialic acid feeding aged rats rejuvenates stimulated salivation and colon enteric neuron chemotypes. Glycobiology 2009, 19, 1492–1502. [Google Scholar] [CrossRef]
- Almeida, P.P.; Valdetaro, L.; Thomasi, B.B.D.; Stockler-Pinto, M.B.; Tavares-Gomes, A.L. High-fat diets on the enteric nervous system: Possible interactions and mechanisms underlying dysmotility. Obes. Rev. 2022, 23, e13404. [Google Scholar] [CrossRef]
- Stenkamp-Strahm, C.; Patterson, S.; Boren, J.; Gericke, M.; Balemba, O. High-fat diet and age-dependent effects on enteric glial cell populations of mouse small intestine. Auton. Neurosci.-Basic Clin. 2013, 177, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.N.B.; Mari, R.B.; Stabille, S.R.; de Faria, H.G.; Mota, T.F.M.; Ferreira, W.M. Benefits of caloric restriction in the myenteric neuronal plasticity in aging rats. An. Acad. Bras. Cienc. 2014, 86, 1471–1481. [Google Scholar] [CrossRef] [PubMed]
- Mari, R.B.; Stabille, S.R.; de Faria, H.G.; Pereira, J.N.B.; Guimaraes, J.P.; Marinsek, G.P.; de Souza, R.R. Balanced Caloric Restriction Minimizes Changes Caused by Aging on the Colonic Myenteric Plexus. J. Diet. Suppl. 2018, 15, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kwon, S.H.; Kam, T.I.; Panicker, N.; Karuppagounder, S.S.; Lee, S.; Lee, J.H.; Kim, W.R.; Kook, M.; Foss, C.A.; et al. Transneuronal Propagation of Pathologic alpha-Synuclein from the Gut to the Brain Models Parkinson’s Disease. Neuron 2019, 103, 627–641.e7. [Google Scholar] [CrossRef]
- Endres, K.; Schafer, K.H. Influence of Commensal Microbiota on the Enteric Nervous System and Its Role in Neurodegenerative Diseases. J. Innate Immun. 2018, 10, 172–180. [Google Scholar] [CrossRef]
- Marino, B.L.B.; de Souza, L.R.; Sousa, K.P.A.; Ferreira, J.V.; Padilha, E.C.; da Silva, C.; Taft, C.A.; Hage-Melim, L.I.S. Parkinson’s Disease: A Review from Pathophysiology to Treatment. Mini Rev. Med. Chem. 2020, 20, 754–767. [Google Scholar] [CrossRef]
- Elmentaite, R.; Kumasaka, N.; Roberts, K.; Fleming, A.; Dann, E.; King, H.W.; Kleshchevnikov, V.; Dabrowska, M.; Pritchard, S.; Bolt, L.; et al. Cells of the human intestinal tract mapped across space and time. Nature 2021, 597, 250–255. [Google Scholar] [CrossRef]
- Chalazonitis, A.; Rao, M.A.; Sulzer, D. Similarities and differences between nigral and enteric dopaminergic neurons unravel distinctive involvement in Parkinson’s disease. npj Parkinsons Dis. 2022, 8, 50. [Google Scholar] [CrossRef]
- Braak, H.; Del Tredici, K. Invited Article: Nervous system pathology in sporadic Parkinson disease. Neurology 2008, 70, 1916–1925. [Google Scholar] [CrossRef]
- Svensson, E.; Horvath-Puho, E.; Thomsen, R.W.; Djurhuus, J.C.; Pedersen, L.; Borghammer, P.; Sorensen, H.T. Vagotomy and subsequent risk of Parkinson’s disease. Mov. Disord. 2015, 30, S445–S446. [Google Scholar] [CrossRef]
- Noorian, A.R.; Rha, J.; Annerino, D.M.; Bernhard, D.; Taylor, G.M.; Greene, J.G. Alpha-synuclein transgenic mice display age-related slowing of gastrointestinal motility associated with transgene expression in the vagal system. Neurobiol. Dis. 2012, 48, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Challis, C.; Hori, A.; Sampson, T.R.; Yoo, B.B.; Challis, R.C.; Hamilton, A.M.; Mazmanian, S.K.; Volpicelli-Daley, L.A.; Gradinaru, V. Gut-seeded alpha-synuclein fibrils promote gut dysfunction and brain pathology specifically in aged mice. Nat. Neurosci. 2020, 23, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Van den Berge, N.; Ferreira, N.; Mikkelsen, T.W.; Alstrup, A.K.O.; Tamguney, G.; Karlsson, P.; Terkelsen, A.J.; Nyengaard, J.R.; Jensen, P.H.; Borghammer, P. Ageing promotes pathological alpha-synuclein propagation and autonomic dysfunction in wild-type rats. Brain 2021, 144, 1853–1868. [Google Scholar] [CrossRef] [PubMed]
- Isonaka, R.; Sullivan, P.; Goldstein, D.S. Pathophysiological significance of increased alpha-synuclein deposition in sympathetic nerves in Parkinson’s disease: A post-mortem observational study. Transl. Neurodegener. 2022, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, M.B.; Sanusi, K.O.; Ugusman, A.; Mohamed, W.; Kamal, H.; Ibrahim, N.H.; Khoo, C.S.; Kumar, J. Alzheimer’s Disease: An Update and Insights Into Pathophysiology. Front. Aging Neurosci. 2022, 14, 742408. [Google Scholar] [CrossRef]
- Joachim, C.L.; Mori, H.; Selkoe, D.J. Amyloid beta-protein deposition in tissues other than brain in Alzheimer’s disease. Nature 1989, 341, 226–230. [Google Scholar] [CrossRef]
- Chiocchetti, R.; Hitrec, T.; Giancola, F.; Sadeghinezhad, J.; Squarcio, F.; Galiazzo, G.; Piscitiello, E.; De Silva, M.; Cerri, M.; Amici, R.; et al. Phosphorylated Tau protein in the myenteric plexus of the ileum and colon of normothermic rats and during synthetic torpor. Cell Tissue Res. 2021, 384, 287–299. [Google Scholar] [CrossRef]
- Brandscheid, C.; Schuck, F.; Reinhardt, S.; Schafer, K.H.; Pietrzik, C.U.; Grimm, M.; Hartmann, T.; Schwiertz, A.; Endres, K. Altered Gut Microbiome Composition and Tryptic Activity of the 5xFAD Alzheimer’s Mouse Model. J. Alzheimers Dis. 2017, 56, 775–788. [Google Scholar] [CrossRef]
- Puig, K.L.; Lutz, B.M.; Urquhart, S.A.; Rebel, A.A.; Zhou, X.D.; Manocha, G.D.; Sens, M.; Tuteja, A.K.; Foster, N.L.; Combs, C.K. Overexpression of Mutant Amyloid-beta Protein Precursor and Presenilin 1 Modulates Enteric Nervous System. J. Alzheimers Dis. 2015, 44, 1263–1278. [Google Scholar] [CrossRef]
- Yelleswarapu, N.K.; Masino, M.; Henderson, S.; Fernandes, R.; Swain, G.; Galligan, J.J.; Xu, H. 5xFAD mice do not have myenteric amyloidosis, dysregulation of neuromuscular transmission or gastrointestinal dysmotility. Neurogastroent. Motil. 2022, 34, e14439. [Google Scholar] [CrossRef]
- Stoye, N.M.; Guilherme, M.D.; Endres, K. Alzheimer’s disease in the gut-Major changes in the gut of 5xFAD model mice with ApoA1 as potential key player. FASEB J. 2020, 34, 11883–11899. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.T.T.; Bruecker, L.; Volz, A.K.; Baumgaertner, J.C.; Guilherme, M.D.; Valeri, F.; May-Simera, H.; Endres, K. Primary Cilia Structure Is Prolonged in Enteric Neurons of 5xFAD Alzheimer’s Disease Model Mice. Int. J. Mol. Sci. 2021, 22, 13564. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhou, Y.Z.; Wang, H.L.; Alam, A.; Kang, S.S.; Ahn, E.H.; Liu, X.; Jia, J.P.; Ye, K.Q. Gut inflammation triggers C/EBP beta/delta-secretase-dependent gut-to-brain propagation of A beta and Tau fibrils in Alzheimer’s disease. EMBO J. 2021, 40, e106320. [Google Scholar] [CrossRef] [PubMed]
Species and Strains | Regions | Age | Parameters for Identification of ENS Populations | Changes | Ref. |
---|---|---|---|---|---|
Guinea-pig | |||||
♀ | Distal ileum (MP) | 1–3 m (n = 7), 8–10 m (n = 5), 22–26 m (n = 5) | Total (HuC/D), calretinin/ganglionic area and /area | ~30% loss of total neurons ~50% loss calretinin-IR neurons | [19] |
Dunkin-Hartley ♀ | Distal ileum (MP) | 2–3, 8–10, 22–26 m (n = 4–6 per age) | Total (HuC/D), nNOS, calbindin, calretinin, neurofilament/ganglionic area | Total neurons: decreased in 22–26 m, not changed in 8–10 m. Calbindin, calretinin, neurofilament alone: no change at 22–26 m. Co-localized calretinin and neurofilament and NOS alone: loss in 22–26 m. | [30] |
Tri-color strain | Mid-colon (MP) | 2 weeks (n = 7), 6–8 m (n = 30), 24–32 m (n = 30) | Total (HuC/D), nerve fibers (nNOS and substance P)/area and ganglionic area, nNOS and substance P | Significant loss of 56% neurons between 6 m and 24 m but 19% non-significant loss after corrected. Significant reductions in percentage area for NOS- and substance P-IR nerve fibers in circular muscle but no change after corrected. Increase in percentage area of NOS-and substance P-IR between 6 m and 24 m. (Corrected for increasing area of the colon wall) | [31] |
Rat | |||||
Sprague-Dawley and Wistar | Esophagus (MP) | 3–4.5 m (n = 10), 18–20 m (n = 8) | Total (PGP 9.5), nitrergic (NADPH-d and nNOS)/ganglion | Total neuronal loss ~27% in both strains. Nitrergic neuron reduction in Sprague-Dawley, not in Wistar. | [32] |
Fischer 344 ♂ | Stomach, small intestine, colon, rectum (MP) | 3, 12, 21, 24, 27 m (n = 108) | Total (Cuprolinic Blue)/area | No loss in antrum and corpus at 24 m, 38% loss in fore stomach at 27 m; loss of 17–31% in small intestine, 38–39% in colon and rectum at 27 m. (Correction for differences in intestinal size) | [33] |
Fischer 344 ♂ | Stomach, duodenum, jejunum, ileum, colon, rectum (MP) | 3 and 24 m (n = 40) | Total (Cuprolinic Blue), nitrergic (NADPH-d)/area | Total: 3–7% loss in stomach, 10–27% loss in small intestine regions, 37–41% loss in colon and rectum. No age-related changes in the density of NADPH-d-labeled neurons in all regions. (Correction for differences in the circumference of the tissue) | [25] |
Wistar ♂ | Duodenum (MP) | 21, 60, 90, 210, 345, 428 days (n = 60) | Total (Geimsa and myosin V-IR)/area | Reduction in neuronal density and number over time. (No correction for changes in intestinal dimensions) | [34] |
Wistar ♂ | Duodenum (MP) | 6, 18 m (n = 30) | Total (Geimsa), nitrergic (NADPH-d)/area | 29% total loss, an increase of 20.4% in density of nitrergic neurons. (No correction factors applied because intestinal area did not differ with age) | [35] |
Sprague-Dawley ♂ | Ileum (MP) | 6, 12, 13, 17, 24 m (n = 105) | Total (PGP9.5, HuC/D), calretinin, calbindin/area | PGP9.5 (24 m): 51% loss, HuC/D (17 m): 50% loss, calretinin (17 m): non-significant loss (~30%), calbindin (17 m): 62% loss. | [36] |
Wistar ♂ | Ileum (MP) | 4, 24, 30 m (n = 5 each group) | Nitrergic (NADPH-d) | 15% loss at 24 m and 30 m (Length of the intestine was considered) | [37] |
Sprague-Dawley ♂ | Ileum (MP) | 4–6 (n = 16), 16 (n = 4), 24 m (n = 9) | Total (PGP 9.5), ChAT-IR, NADPH-d/area | 52% total loss of total at 24 m, 64% loss of ChAT-IR neurons, 16% loss of nitrergic neurons at 24 m. (Correction factors of length and circumference of the ileum) | [38] |
Sprague-Dawley | Small intestine (MP) | 4 m (n = 8) and 24 m (n = 9) | PGP 9.5, NADPH-d, ChAT, and VIP | Reduction by 15% number of nitrergic neurons in old rats. No reduction in PGP 9.5-IR neurons. No significant reductions with age in other neuronal markers. (Correction for growth of the intestine) | [39] |
Wistar ♂ | Esophagus to distal colon (MP, SP) | 3 m (n = 6) and 24 m (n = 6) | Neurocalcin-α-IR | No changes in the esophagus and stomach, increase in the pylorus and slight decreases in the small intestine and colon, no decrease in the distal colon. | [40] |
Fischer 344 ♂ | Duodenum, jejunum, ileum, colon, rectum (MP) | 5–6 m (n = 8), 26 m (n = 8) | Total (HuC/D) neurons/ganglionic area, glia S100/ganglionic area, and/neuron | Significant reductions in numbers of glia and neurons in all regions of aged rats, but non-significant decrease in rectum. (Normalizing with the “dilution” effects of experimental stretch) | [41] |
Wistar ♂ | Ileum, proximal colon (MP) | E-d19, P-d4, 6 m, 26 m (n = 6 per age) | Nitrergic (NADPH-d), PGP 9.5/ganglion | Increased proportion of nitrergic neurons per PGP9.5-IR neurons in colon, but not in ileum at 26 m. | [42] |
Specific pathogen-free Fischer 344 ♂ | Proximal colon (MP, SP) | 6, 31, 74 weeks, 2 y (n = 5 per age) | nNOS-IR, PGP 9.5-IR | Significant decline in nNOS mRNA, protein level, and nNOS-IR nerve fiber with age. Decrease in the relative ratio of nNOS/PGP 9.5-IR and the percent of nNOS-IR neurons. (Exclude the dilution effect by growth) | [43] |
Fisher (F344XBN)F1 | Mid-colon (MP) | 4–8 m (n = 24), 22–28 m (n = 24) | PGP 9.5 protein levels, NOS protein and mRNA, nNOS/ganglion | No change in PGP9.5 levels. Significant reduction in number of nNOS-IR neurons per ganglion. Reduction in NOS protein (54 ± 14%) and mRNA (35 ± 15%). | [44] |
Fischer 344 ♂ | Proximal and distal colon (MP, SP) | 6, 12, 18, 24, 27 m (n = 48) | Cuprolinic Blue/Nissl staining, Neurons/mm2,/ganglia, TH-IR, CGRP-IR | Neuron density: 38% loss of the SP neurons and 32% loss of the MP neurons at 27 m. Total neuron number: 24% loss of SP neurons and 31% MP neurons at 27 m. The density of the TH-IR swellings was a 3-fold increase by 16 m and a dramatic 12-fold increase by 24 m. The swollen CGRP-IR fibers occurred less frequently, were not found until 16 m, and were rare even at median age. (Correction factor for gut growth) | [29] |
Sprague-Dawley ♂ | Esophageal, pyloric and ileocecal sphincters (MP) | 2–3 days, 6 weeks, 3 m, 25 m (n = 10 per age) | PGP9.5, VIP, CGRP, substance P, and dopamine-β-hydroxylase | All three regions: increase in the density of dopamine-β-hydroxylase- and substance P-IR nerve fibers. Decrease in density of CGRP-IR nerve fibers in the lower and ileocecal sphincters and VIP-IR nerve fibers in the pylorus. | [45] |
Mouse | |||||
NMRI/Bom ♂♀ | Antrum, duodenum, colon (MP, SP) | 1, 3, 12, 24 m (n = 36) | PGP9.5/ganglion | Loss of numbers of neurons per ganglion started at 12 m: MP: 40% loss in antrum, 60% loss in duodenum, 33% loss in colon. SP: 28% loss in antrum, 50% loss in duodenum, 40% loss in colon. | [46] |
C57BL/6 ♂♀ | Stomach, jejunum and colon (MP) | 2, 12, 16, 20, 24 m (n = 60) | Interstitial cells of Cajal, PGP9.5, HuC/D, ChAT and NOS neurons | Reduction in total PGP9.5 and HuC/D protein at 20 m in colon. Decrease in ChAT-IR ganglia area and nerve fibers in the stomach from 16 m and starting at 20 m in the intestine. Reduction in NOS-IR neuron number per area in stomach between 12 m and 16 m and in the intestine at 20 m. Decreased interstitial cells of Cajal density over time from 16 m in stomach, 20 m in jejunum and 24 m in colon. | [20] |
C57BL/6 ♂ | Small intestine and colon (MP, SP, tunica mucosa) | 6, 12, 18 m (n = 21) | βIII-tubulin, substance P, NOS GFAP-IR, and S100-IR (relative to βIII-tubulin-IR) | Decrease with age in the volume density of βIII-tubulin-IR at the MP and tunica mucosa of colon. No age-related differences in volume density of substance P-IR and GFAP-IR EGCs. Highest volume density of S100-IR at 18 m in both regions. | [47] |
C57BL/6 ♂ | Distal colon (MP) | 3–4, 12–13, 18–19, 24–25 m (n = 18) | Total (HuC/D), calbindin, and nNOS neurons per area | No change in numbers of total neurons or subpopulations after correction but the density of MP neurons decreased between 3–4 m and 12–13 m. The density of nNOS-IR fibers in the MP increased remarkably with age, up to 18–19 m. Increased swollen processes of calbindin- and nNOS-IR neurons at 18–19 m and 24–25 m. (Correction for gut growth and stretch) | [26] |
C57BL/6 ♂ | Internal anal sphincter (circular muscle and mucosa) | 3, 12–13, 18, 24–25 m (n = 12) | PGP9.5, nNOS, VIP, substance P, CGRP, and calretinin | No significant reduction in density of PGP9.5- and calretinin-IR neurons with age. Reduction in nNOS- and substance P-IR neurons with age in the circular muscle. Reduction in nNOS-, VIP-, and substance P-IR neurons in the anal mucosa with age. Increase in CGRP-neurons in both layers at 18 m. | [48] |
C57BL/6 ♂♀ | Colon (MP) | 2, 5, 12 or 15 m (n = 4 per age) | Connexin-43 mRNA and staining, Western blot | Reduction in connexin-43-IR intensity within the MP and protein level in 15 m compared to 2 m but increasing in 5 m. Connexin-43 mRNA expression is double at 12 m compared to 2 m. | [49] |
Human | |||||
Esophagus (MP) | 20–40 y (n = 5), >70 y (n = 5) | Total (Geimsa stain)/area | 22–62% loss | [24] | |
♂♀ | Proximal duodenum (MP) | 20–44, 45–64, 65–84 y (n = 30) | Silver nitrate and crystal-violet staining | Decreased by 16.26% and 16.46% in neural number in oldest group relative to middle-aged and youngest group, respectively. | [23] |
♂♀ | Jejunum (MP) | 20–44, 45–64, 65–84 y (n = 30) | Silver nitrate and crystal-violet, H&E staining | Decrease in number of MP neurons of 25.93% in oldest compared to the youngest and of 23.32% in relation to the middle-aged. | [22] |
♂♀ | Ileum (MP) | 42–71 y (n = 7), 78–86 y (n = 8) | PGP9.5, nitrergic (NADPH-d staining), calretinin neurons | Increased by 36% in nitrergic-IR and by 19% in calretinin-IR of PGP9.5-IR neurons in aged samples. | [50] |
♂♀ | Ileum, colon (MP) | 10 days–92 y (n = 168) | Nitrergic (NADPH-d staining) /ganglion | Non-significant increase in proportion NADPH-d/ganglion with age. | [21] |
♂♀ | Small intestine (MP) | 20–40, 69–76 y (n =12) | Giemsa staining | 34% neuronal loss in the ganglia in whole small intestine, decreased by over 38% neuronal number in the duodenum. | [51] |
♂♀ | Colon (MP) | 20–35 y (n = 6), >65 y (n = 6) | Total (Geimsa stain)/area | 37% loss | [52] |
♂♀ | Colon (MP, SP) | Control 43–75 y (1♂, 9♀), STC patients 24–78 y (1♂, 25♀) | Neuron specific enolase, S100, CD34, and Bcl-2 immunostaining | Decreased significantly in neuron specific enolase-, S100-, Bcl-2-IR density in STC patients compared to controls in MP, SP but no differences in CD34-IR density. Increase significantly in the number of apoptotic enteric neurons in the MP of STC patients, whereas no differences in the SP. | [53] |
♂♀ | Colon (MP, SP) | 33–99 y (9♂, 7♀) | PGP9.5, HuC/D, ChAT, and NOS neurons/ganglion and/mm length | No change in the total volume of PGP9.5-IR with age. Declined HuC/D- and ChAT-IR neuronal number in the MP but no change in the SP with increasing age. Increased nitrergic neurons in the MP but no change in the SP. 38% total loss in number of MP neurons between 30 and 60 y. | [54] |
♂♀ | Colonic muscle strips | 37–65, 66–93 y (n = 22) | Gene expression of GABAAR | Decrease in the mRNA expression of the GABAARα3 subunit. Increase in α2 and γ2 subunit but not statistical significance. | [55] |
♂♀ | Colon (MP) | 4–12 m (3♂, 1♀), 48–58 y (1♂, 3♀), 70–95 y (4♂, 7♀) | Neural key genes, NADPH-d staining (NOS) | Decrease in relative gene expression of neural key genes, such as NGFR, RET, NOS1, and increase in CHAT. 16.6% loss of NOS-IR cell number in the aged donors compared to the babies. Regional differences in RET, CHAT, TH, and S100B gene expression in aged proximal and distal colon. No change in SNCA, CASP3, CAT, SOD2, and TERT expression. Decrease in gene expression of encoding sodium channel Nav1.1 and 1.5 with aging. | [56] |
♂♀ | Descending colon (MP, SP) | 23–63 y (6♂, 7♀), elderly (66–81 y; 6♂, 4♀) | SOX-10, S100, and GFAP staining | Unaltered number of SOX-10-IR EGCs with age in MP and SP and no differences between adult males and females. Declined density in S100-IR EGCs among the elderly in the circular muscle and within the MP per ganglionic area. Little or no GFAP-IR EGCs in adult and elderly colon. | [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.T.; Baumann, P.; Tüscher, O.; Schick, S.; Endres, K. The Aging Enteric Nervous System. Int. J. Mol. Sci. 2023, 24, 9471. https://doi.org/10.3390/ijms24119471
Nguyen TT, Baumann P, Tüscher O, Schick S, Endres K. The Aging Enteric Nervous System. International Journal of Molecular Sciences. 2023; 24(11):9471. https://doi.org/10.3390/ijms24119471
Chicago/Turabian StyleNguyen, Tinh Thi, Peter Baumann, Oliver Tüscher, Sandra Schick, and Kristina Endres. 2023. "The Aging Enteric Nervous System" International Journal of Molecular Sciences 24, no. 11: 9471. https://doi.org/10.3390/ijms24119471
APA StyleNguyen, T. T., Baumann, P., Tüscher, O., Schick, S., & Endres, K. (2023). The Aging Enteric Nervous System. International Journal of Molecular Sciences, 24(11), 9471. https://doi.org/10.3390/ijms24119471