High-Quality Chromosome-Level Genome Assembly of the Corsac Fox (Vulpes corsac) Reveals Adaptation to Semiarid and Harsh Environments
Abstract
:1. Introduction
2. Results
2.1. Genome Sequencing and Assembly
2.2. Genome Annotation
2.3. Unique Genes and Molecular Phylogenetic Analysis
2.4. Gene Family Analysis
2.5. Positive Selection of Genes
3. Discussion
4. Materials and Methods
4.1. Sample, Library Construction, and Sequencing
4.2. Genome Survey
4.3. RNA Extraction and Sequencing
4.4. De Novo Assembly and Assembly Results Assessment
4.5. Chromosome Assembly Using Hi-C Technology
4.6. Genome Annotation
4.7. Comparative Genomic Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polade, S.D.; Pierce, D.W.; Cayan, D.R.; Gershunov, A.; Dettinger, M.D. The key role of dry days in changing regional climate and precipitation regimes. Sci. Rep. 2014, 4, 4364. [Google Scholar] [CrossRef] [PubMed]
- Rocha, J.L.; Godinho, R.; Brito, J.C.; Nielsen, R. Life in Deserts: The Genetic Basis of Mammalian Desert Adaptation. Trends Ecol. Evol. 2021, 36, 637–650. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Guang, X.; Al-Fageeh, M.B.; Cao, J.; Pan, S.; Zhou, H.; Zhang, L.; Abutarboush, M.H.; Xing, Y.; Xie, Z.; et al. Camelid genomes reveal evolution and adaptation to desert environments. Nat. Commun. 2014, 5, 5188. [Google Scholar] [CrossRef]
- Tigano, A.; Colella, J.P.; MacManes, M.D. Comparative and population genomics approaches reveal the basis of adaptation to deserts in a small rodent. Mol. Ecol. 2020, 29, 1300–1314. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, M.; Kunz, E.; Sandoval-Castellanos, E.; Hauser, A.; Krebs, S.; Graf, A.; Blum, H.; Dotsev, A.; Okhlopkov, I.; Shakhin, A.; et al. Whole genome sequencing reveals a complex introgression history and the basis of adaptation to subarctic climate in wild sheep. Mol. Ecol. 2021, 30, 6701–6717. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, F.; Pei, H.; Li, M.; Bai, F.; Lei, C.; Dang, R. Genome-Wide analysis reveals selection signatures for body size and drought adaptation in Liangzhou donkey. Genomics 2022, 114, 110476. [Google Scholar] [CrossRef]
- Schwimmer, H.; Haim, A. Physiological adaptations of small mammals to desert ecosystems. Integr. Zool. 2009, 4, 357–366. [Google Scholar] [CrossRef]
- Imani Harsini, J.; Rezaei, H.-R.; Naderi, S.; Varasteh Moradi, H. Phylogenetic status and genetic diversity of corsac fox(Vulpes corsac) in Golestan Province, Iran. Turk. J. Zool. 2017, 41, 250–258. [Google Scholar] [CrossRef]
- Solari, S.; Baker, R.J. Mammal Species of the World: A Taxonomic and Geographic Reference by D. E. Wilson; D. M. Reeder. J. Mammal. 2007, 88, 824–830. [Google Scholar] [CrossRef]
- Murdoch, J.D. Vulpes corsac. The IUCN Red List of Threatened Species 2014. Available online: https://www.iucnredlist.org/species/23051/59049446 (accessed on 10 September 2022).
- Wang, X.; Shang, Y.; Wei, Q.; Wu, X.; Dou, H.; Zhang, H.; Zhou, S.; Sha, W.; Sun, G.; Ma, S.; et al. Comparative Analyses of the Gut Microbiome of Two Fox Species, the Red Fox (Vulpes Vulpes) and Corsac Fox (Vulpes Corsac), that Occupy Different Ecological Niches. Microb. Ecol. 2021, 83, 753–765. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, J.; Zhang, H.; Yang, X.; Chen, L.; Sha, W.; Liu, G. The complete mitochondrial genome sequence of the corsac fox (Vulpes corsac). Mitochondrial DNA Part A DNA Mapp. Seq. Anal. 2016, 27, 304–305. [Google Scholar] [CrossRef]
- Yang, X.; Sun, G.; Xia, T.; Cha, M.; Zhang, L.; Pang, B.; Tang, Q.; Dou, H.; Zhang, H. Transcriptome analysis provides new insights into cold adaptation of corsac fox (Vulpes Corsac). Ecol. Evol. 2022, 12, e8866. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, J.D.; Munkhzul, T.; Buyandelger, S.; Reading, R.P.; Sillero-Zubiri, C. The Endangered Siberian marmot Marmota sibirica as a keystone species? Observations and implications of burrow use by corsac foxes Vulpes corsac in Mongolia. Oryx 2009, 43, 431–434. [Google Scholar] [CrossRef]
- Murdoch, J.D.; Munkhzul, T.; Buyandelger, S.; Reading, R.P.; Sillero-Zubiri, C. Seasonal food habits of corsac and red foxes in Mongolia and the potential for competition. Mamm. Biol. 2010, 75, 36–44. [Google Scholar] [CrossRef]
- Murdoch, J.D.; Munkhzul, T.; Buyandelger, S.; Reading, R.P. Body size and sexual dimorphism among a population of corsac and red foxes in central Mongolia. Mammalia 2009, 73, 72–75. [Google Scholar] [CrossRef]
- Murdoch, J.D.; Buyandelger, S.; Cypher, B.L. Patterns of seed occurrence in corsac and red fox diets in Mongolia. J. Arid. Environ. 2009, 73, 381–384. [Google Scholar] [CrossRef]
- Yong, T.S.; Lee, K.J.; Shin, M.H.; Yu, H.S.; Suvonkulov, U.; Sergeevich, T.B.; Shamsiev, A.; Park, G.M. Prevalence of Intestinal Helminth Infections in Dogs and Two Species of Wild Animals from Samarkand Region of Uzbekistan. Korean J. Parasitol. 2019, 57, 549–552. [Google Scholar] [CrossRef]
- Ulziijargal, G.; Yeruult, C.; Khulan, J.; Gantsetseg, C.; Wandra, T.; Yamasaki, H.; Narankhajid, M. Molecular identification of Taenia hydatigena and Mesocestoides species based on copro-DNA analysis of wild carnivores in Mongolia. Int. J. Parasitol. Parasites Wildl. 2020, 11, 72–82. [Google Scholar] [CrossRef]
- Tang, C.T.; Wang, Y.H.; Peng, W.F.; Tang, L.; Chen, D. Alveolar Echinococcus species from Vulpes corsac in Hulunbeier, Inner Mongolia, China, and differential development of the metacestodes in experimental rodents. J. Parasitol. 2006, 92, 719–724. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Yan, X.; Guo, X.; Song, Y.; Wu, B.; Bao, S.; Cao, G.; Guo, J.; Sun, Q. Establishment and biological characteristics of fibroblast cell lines obtained from wild corsac fox. Vitr. Cell Dev. Biol. Anim. 2020, 56, 837–841. [Google Scholar] [CrossRef]
- Seppey, M.; Manni, M.; Zdobnov, E.M. BUSCO: Assessing Genome Assembly and Annotation Completeness. Methods Mol. Biol. 2019, 1962, 227–245. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Li, H.; Liu, Z.; Zhang, C.; Li, K.; Gong, Y.; Geng, L.; Su, J.; Guan, X.; Liu, L.; et al. Chromosome-level genome assembly of the Arctic fox (Vulpes lagopus) using PacBio sequencing and Hi-C technology. Mol. Ecol. Resour. 2021, 21, 2093–2108. [Google Scholar] [CrossRef] [PubMed]
- Derezanin, L.; Blazyte, A.; Dobrynin, P.; Duchene, D.A.; Grau, J.H.; Jeon, S.; Kliver, S.; Koepfli, K.P.; Meneghini, D.; Preick, M.; et al. Multiple types of genomic variation contribute to adaptive traits in the mustelid subfamily Guloninae. Mol. Ecol. 2022, 31, 2898–2919. [Google Scholar] [CrossRef] [PubMed]
- Mendes, F.K.; Vanderpool, D.; Fulton, B.; Hahn, M.W. CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics 2020, 36, 5516–5518. [Google Scholar] [CrossRef]
- Sharma, V.; Hecker, N.; Roscito, J.G.; Foerster, L.; Langer, B.E.; Hiller, M. A genomics approach reveals insights into the importance of gene losses for mammalian adaptations. Nat. Commun. 2018, 9, 1215. [Google Scholar] [CrossRef]
- Kukekova, A.V.; Johnson, J.L.; Xiang, X.; Feng, S.; Liu, S.; Rando, H.M.; Kharlamova, A.V.; Herbeck, Y.; Serdyukova, N.A.; Xiong, Z.; et al. Red fox genome assembly identifies genomic regions associated with tame and aggressive behaviours. Nat. Ecol. Evol. 2018, 2, 1479–1491. [Google Scholar] [CrossRef]
- Humphreys, A.M.; Barraclough, T.G. The evolutionary reality of higher taxa in mammals. Proc. Biol. Sci. 2014, 281, 20132750. [Google Scholar] [CrossRef]
- Graphodatsky, A.S.; Perelman, P.L.; Sokolovskaya, N.V.; Beklemisheva, V.R.; Serdukova, N.A.; Dobigny, G.; O’Brien, S.J.; Ferguson-Smith, M.A.; Yang, F. Phylogenomics of the dog and fox family (Canidae, Carnivora) revealed by chromosome painting. Chromosome Res. 2008, 16, 129–143. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, H.H.; Liu, G.S.; Yang, X.F.; Zhang, J. The complete mitochondrial genome of the Tibetan fox (Vulpes ferrilata) and implications for the phylogeny of Canidae. Comptes Rendus Biol. 2016, 339, 68–77. [Google Scholar] [CrossRef]
- Perini, F.A.; Russo, C.A.; Schrago, C.G. The evolution of South American endemic canids: A history of rapid diversification and morphological parallelism. J. Evol. Biol. 2010, 23, 311–322. [Google Scholar] [CrossRef]
- Werner, T. Promoters can contribute to the elucidation of protein function. Trends Biotechnol. 2003, 21, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Rowles, A.; Blow, J.J. Chromatin proteins involved in the initiation of DNA replication. Curr. Opin. Genet. Dev. 1997, 7, 152–157. [Google Scholar] [CrossRef]
- de la Cruz, J.; Karbstein, K.; Woolford, J.L., Jr. Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo. Annu. Rev. Biochem. 2015, 84, 93–129. [Google Scholar] [CrossRef] [PubMed]
- Green, R.; Noller, H.F. Ribosomes and translation. Annu. Rev. Biochem. 1997, 66, 679–716. [Google Scholar] [CrossRef]
- Zheng, N.; Shabek, N. Ubiquitin Ligases: Structure, Function, and Regulation. Annu. Rev. Biochem. 2017, 86, 129–157. [Google Scholar] [CrossRef]
- Zininga, T.; Ramatsui, L.; Shonhai, A. Heat Shock Proteins as Immunomodulants. Molecules 2018, 23, 2846. [Google Scholar] [CrossRef]
- Basu, N.; Todgham, A.E.; Ackerman, P.A.; Bibeau, M.R.; Nakano, K.; Schulte, P.M.; Iwama, G.K. Heat shock protein genes and their functional significance in fish. Gene 2002, 295, 173–183. [Google Scholar] [CrossRef]
- Chen, B.; Feder, M.E.; Kang, L. Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. Mol. Ecol. 2018, 27, 3040–3054. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Fernandez, M.R.; Valpuesta, J.M. Hsp70 chaperone: A master player in protein homeostasis. F1000Res 2018, 7, F1000. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef]
- Belhadj Slimen, I.; Najar, T.; Ghram, A.; Abdrrabba, M. Heat stress effects on livestock: Molecular, cellular and metabolic aspects, a review. J. Anim. Physiol. Anim. Nutr. 2016, 100, 401–412. [Google Scholar] [CrossRef]
- Porcelli, D.; Butlin, R.K.; Gaston, K.J.; Joly, D.; Snook, R.R. The environmental genomics of metazoan thermal adaptation. Heredity 2015, 114, 502–514. [Google Scholar] [CrossRef]
- Khan, S.; Waliullah, S.; Godfrey, V.; Khan, M.A.W.; Ramachandran, R.A.; Cantarel, B.L.; Behrendt, C.; Peng, L.; Hooper, L.V.; Zaki, H. Dietary simple sugars alter microbial ecology in the gut and promote colitis in mice. Sci. Transl. Med. 2020, 12, eaay6218. [Google Scholar] [CrossRef] [PubMed]
- Kawano, Y.; Edwards, M.; Huang, Y.; Bilate, A.M.; Araujo, L.P.; Tanoue, T.; Atarashi, K.; Ladinsky, M.S.; Reiner, S.L.; Wang, H.H.; et al. Microbiota imbalance induced by dietary sugar disrupts immune-mediated protection from metabolic syndrome. Cell 2022, 185, 3501–3519.e3520. [Google Scholar] [CrossRef]
- Han, H.S.; Kang, G.; Kim, J.S.; Choi, B.H.; Koo, S.H. Regulation of glucose metabolism from a liver-centric perspective. Exp. Mol. Med. 2016, 48, e218. [Google Scholar] [CrossRef] [PubMed]
- Costa-Leonardo, A.M.; Laranjo, L.T.; Janei, V.; Haifig, I. The fat body of termites: Functions and stored materials. J. Insect Physiol. 2013, 59, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Guo, C.; Zhang, J.; Ning, X.; Yan, H. The protective mechanism of Grx2 in ultraviolet-B (UVB)-induced cataract formation. Biochem. Biophys. Res. Commun. 2022, 613, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Weihbrecht, K.; Goar, W.A.; Pak, T.; Garrison, J.E.; DeLuca, A.P.; Stone, E.M.; Scheetz, T.E.; Sheffield, V.C. Keeping an Eye on Bardet-Biedl Syndrome: A Comprehensive Review of the Role of Bardet-Biedl Syndrome Genes in the Eye. Med. Res. Arch. 2017, 5. [Google Scholar] [CrossRef]
- Grudzinska Pechhacker, M.K.; Jacobson, S.G.; Drack, A.V.; Scipio, M.D.; Strubbe, I.; Pfeifer, W.; Duncan, J.L.; Dollfus, H.; Goetz, N.; Muller, J.; et al. Comparative Natural History of Visual Function from Patients with Biallelic Variants in BBS1 and BBS10. Investig. Ophthalmol. Vis. Sci. 2021, 62, 26. [Google Scholar] [CrossRef]
- Zhong, J.W.; You, B.; Xu, K.; Zhang, X.H.; Xie, Y.; Li, Y. GPR143 genotypic and ocular phenotypic characterisation in a Chinese cohort with ocular albinism. Ophthalmic Genet. 2021, 42, 717–724. [Google Scholar] [CrossRef]
- Xu, H.; Qu, C.; Gan, L.; Sun, K.; Tan, J.; Liu, X.; Jiang, Z.; Tian, W.; Liu, W.; Zhang, S.; et al. Deletion of the Impg2 gene causes the degeneration of rod and cone cells in mice. Hum. Mol. Genet. 2020, 29, 1624–1634. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.P.; Artemyev, N.O. AIPL1: A specialized chaperone for the phototransduction effector. Cell Signal 2017, 40, 183–189. [Google Scholar] [CrossRef]
- Kroeger, H.; Grandjean, J.M.D.; Chiang, W.J.; Bindels, D.D.; Mastey, R.; Okalova, J.; Nguyen, A.; Powers, E.T.; Kelly, J.W.; Grimsey, N.J.; et al. ATF6 is essential for human cone photoreceptor development. Proc. Natl. Acad. Sci. USA 2021, 118, e2103196118. [Google Scholar] [CrossRef] [PubMed]
- Polok, B.; Escher, P.; Ambresin, A.; Chouery, E.; Bolay, S.; Meunier, I.; Nan, F.; Hamel, C.; Munier, F.L.; Thilo, B.; et al. Mutations in CNNM4 cause recessive cone-rod dystrophy with amelogenesis imperfecta. Am. J. Hum. Genet. 2009, 84, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Alshamrani, A.A.; Raddadi, O.; Schatz, P.; Lenzner, S.; Neuhaus, C.; Azzam, E.; Abdelkader, E. Severe retinitis pigmentosa phenotype associated with novel CNGB1 variants. Am. J. Ophthalmol. Case Rep. 2020, 19, 100780. [Google Scholar] [CrossRef]
- Leahy, K.E.; Wright, T.; Grudzinska Pechhacker, M.K.; Audo, I.; Tumber, A.; Tavares, E.; MacDonald, H.; Locke, J.; VandenHoven, C.; Zeitz, C.; et al. Optic Atrophy and Inner Retinal Thinning in CACNA1F-related Congenital Stationary Night Blindness. Genes 2021, 12, 330. [Google Scholar] [CrossRef]
- Shaham, O.; Menuchin, Y.; Farhy, C.; Ashery-Padan, R. Pax6: A multi-level regulator of ocular development. Prog. Retin. Eye Res. 2012, 31, 351–376. [Google Scholar] [CrossRef]
- De Silva, S.R.; Arno, G.; Robson, A.G.; Fakin, A.; Pontikos, N.; Mohamed, M.D.; Bird, A.C.; Moore, A.T.; Michaelides, M.; Webster, A.R.; et al. The X-linked retinopathies: Physiological insights, pathogenic mechanisms, phenotypic features and novel therapies. Prog. Retin. Eye Res. 2021, 82, 100898. [Google Scholar] [CrossRef]
- Hasan, N.; Pangeni, G.; Ray, T.A.; Fransen, K.M.; Noel, J.; Borghuis, B.G.; McCall, M.A.; Gregg, R.G. LRIT3 is Required for Nyctalopin Expression and Normal ON and OFF Pathway Signaling in the Retina. eNeuro 2020, 7. [Google Scholar] [CrossRef]
- Yuan, D.; Yan, T.; Luo, S.; Huang, J.; Tan, J.; Zhang, J.; Zhang, V.W.; Lan, Y.; Hu, T.; Guo, J.; et al. Identification and Functional Characterization of a Novel Nonsense Variant in ARR3 in a Southern Chinese Family with High Myopia. Front. Genet. 2021, 12, 765503. [Google Scholar] [CrossRef]
- Haeseleer, F. Interaction and colocalization of CaBP4 and Unc119 (MRG4) in photoreceptors. Investig. Ophthalmol. Vis. Sci. 2008, 49, 2366–2375. [Google Scholar] [CrossRef]
- Lan, T.; Li, H.; Yang, S.; Shi, M.; Han, L.; Sahu, S.K.; Lu, Y.; Wang, J.; Zhou, M.; Liu, H.; et al. The chromosome-scale genome of the raccoon dog: Insights into its evolutionary characteristics. iScience 2022, 25, 105117. [Google Scholar] [CrossRef]
- Widayati, K.A.; Yan, X.; Suzuki-Hashido, N.; Itoigawa, A.; Purba, L.; Fahri, F.; Terai, Y.; Suryobroto, B.; Imai, H. Functional divergence of the bitter receptor TAS2R38 in Sulawesi macaques. Ecol. Evol. 2019, 9, 10387–10403. [Google Scholar] [CrossRef]
- Lalueza-Fox, C.; Gigli, E.; de la Rasilla, M.; Fortea, J.; Rosas, A. Bitter taste perception in Neanderthals through the analysis of the TAS2R38 gene. Biol. Lett. 2009, 5, 809–811. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, S.; Yang, R.; Ishimaru, Y.; Matsunami, H.; Sevigny, J.; Kinnamon, J.C.; Finger, T.E. The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse. Chem. Senses 2008, 33, 243–254. [Google Scholar] [CrossRef]
- Liu, Q.; Li, S.; Lu, C.; Yu, C.R.; Huang, L. G protein gamma subunit Ggamma13 is essential for olfactory function and aggressive behavior in mice. Neuroreport 2018, 29, 1333–1339. [Google Scholar] [CrossRef] [PubMed]
- Damak, S.; Rong, M.; Yasumatsu, K.; Kokrashvili, Z.; Perez, C.A.; Shigemura, N.; Yoshida, R.; Mosinger, B., Jr.; Glendinning, J.I.; Ninomiya, Y.; et al. Trpm5 null mice respond to bitter, sweet, and umami compounds. Chem. Senses 2006, 31, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Wagner, G.P.; Erkenbrack, E.M.; Love, A.C. Stress-Induced Evolutionary Innovation: A Mechanism for the Origin of Cell Types. BioEssays News Rev. Mol. Cell. Dev. Biol. 2019, 41, e1800188. [Google Scholar] [CrossRef]
- Godwin, J.; Farrona, S. Plant Epigenetic Stress Memory Induced by Drought: A Physiological and Molecular Perspective. Methods Mol. Biol. 2020, 2093, 243–259. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, N.; Walker, G.C. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen. 2017, 58, 235–263. [Google Scholar] [CrossRef]
- van der Rest, M.; Garrone, R. Collagen family of proteins. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 1991, 5, 2814–2823. [Google Scholar] [CrossRef]
- Chiquet, M.; Birk, D.E.; Bönnemann, C.G.; Koch, M. Collagen XII: Protecting bone and muscle integrity by organizing collagen fibrils. Int. J. Biochem. Cell Biol. 2014, 53, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Modi, A.; Vai, S.; Caramelli, D.; Lari, M. The Illumina Sequencing Protocol and the NovaSeq 6000 System. Methods Mol. Biol. 2021, 2242, 15–42. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.D.; Brenner, S.E.; Dudoit, S. Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res. 2010, 38, e131. [Google Scholar] [CrossRef] [PubMed]
- De Coster, W.; De Rijk, P.; De Roeck, A.; De Pooter, T.; D’Hert, S.; Strazisar, M.; Sleegers, K.; Van Broeckhoven, C. Structural variants identified by Oxford Nanopore PromethION sequencing of the human genome. Genome Res. 2019, 29, 1178–1187. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.L.; Yi, S.K.; Li, Y.H. Genome survey sequencing of red swamp crayfish Procambarus clarkii. Mol. Biol. Rep. 2018, 45, 799–806. [Google Scholar] [CrossRef]
- Li, R.; Zhu, H.; Ruan, J.; Qian, W.; Fang, X.; Shi, Z.; Li, Y.; Li, S.; Shan, G.; Kristiansen, K.; et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2010, 20, 265–272. [Google Scholar] [CrossRef]
- Jiang, L.C.; Schlesinger, F.; Davis, C.A.; Zhang, Y.; Li, R.H.; Salit, M.; Gingeras, T.R.; Oliver, B. Synthetic spike-in standards for RNA-seq experiments. Genome Res. 2011, 21, 1543–1551. [Google Scholar] [CrossRef]
- Liu, N.; Liu, L.; Pan, X.H. Single-cell analysis of the transcriptome and its application in the characterization of stem cells and early embryos. Cell. Mol. Life Sci. 2014, 71, 2707–2715. [Google Scholar] [CrossRef]
- Magi, A.; Semeraro, R.; Mingrino, A.; Giusti, B.; D’Aurizio, R. Nanopore sequencing data analysis: State of the art, applications and challenges. Brief. Bioinform. 2018, 19, 1256–1272. [Google Scholar] [CrossRef]
- Mgwatyu, Y.; Cornelissen, S.; van Heusden, P.; Stander, A.; Ranketse, M.; Hesse, U. Establishing MinION Sequencing and Genome Assembly Procedures for the Analysis of the Rooibos (Aspalathus linearis) Genome. Plants-Basel 2022, 11, 2156. [Google Scholar] [CrossRef]
- Parra, G.; Bradnam, K.; Korf, I. CEGMA: A pipeline to accurately annotate core genes in eukaryotic genornes. Bioinformatics 2007, 23, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; Subgroup, G.P.D.P. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- van Berkum, N.L.; Lieberman-Aiden, E.; Williams, L.; Imakaev, M.; Gnirke, A.; Mirny, L.A.; Dekker, J.; Lander, E.S. Hi-C: A method to study the three-dimensional architecture of genomes. J. Vis. Exp. 2010, 39, e1869. [Google Scholar] [CrossRef]
- Belaghzal, H.; Dekker, J.; Gibcus, J.H. Hi-C 2.0: An optimized Hi-C procedure for high-resolution genome-wide mapping of chromosome conformation. Methods 2017, 123, 56–65. [Google Scholar] [CrossRef]
- Rao, S.S.; Huntley, M.H.; Durand, N.C.; Stamenova, E.K.; Bochkov, I.D.; Robinson, J.T.; Sanborn, A.L.; Machol, I.; Omer, A.D.; Lander, E.S.; et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 2014, 159, 1665–1680. [Google Scholar] [CrossRef]
- Burton, J.N.; Adey, A.; Patwardhan, R.P.; Qiu, R.L.; Kitzman, J.O.; Shendure, J. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat. Biotechnol. 2013, 31, 1119. [Google Scholar] [CrossRef]
- Price, A.L.; Jones, N.C.; Pevzner, P.A. De novo identification of repeat families in large genomes. Bioinformatics 2005, 21 (Suppl. 1), i351–i358. [Google Scholar] [CrossRef]
- Bao, W.; Kojima, K.K.; Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 2015, 6, 11. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, H. LTR_FINDER: An efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007, 35, W265–W268. [Google Scholar] [CrossRef]
- Griffiths-Jones, S.; Moxon, S.; Marshall, M.; Khanna, A.; Eddy, S.R.; Bateman, A. Rfam: Annotating non-coding RNAs in complete genomes. Nucleic Acids Res. 2005, 33, D121–D124. [Google Scholar] [CrossRef]
- Birney, E.; Clamp, M.; Durbin, R. GeneWise and Genomewise. Genome Res. 2004, 14, 988–995. [Google Scholar] [CrossRef] [PubMed]
- Field, M.A.; Rosen, B.D.; Dudchenko, O.; Chan, E.K.F.; Minoche, A.E.; Edwards, R.J.; Barton, K.; Lyons, R.J.; Tuipulotu, D.E.; Hayes, V.M.; et al. Canfam_GSD: De novo chromosome-length genome assembly of the German Shepherd Dog (Canis lupus familiaris) using a combination of long reads, optical mapping, and Hi-C. Gigascience 2020, 9, giaa027. [Google Scholar] [CrossRef] [PubMed]
- Korf, I. Gene finding in novel genomes. BMC Bioinform. 2004, 5, 59. [Google Scholar] [CrossRef] [PubMed]
- Majoros, W.H.; Pertea, M.; Salzberg, S.L. TigrScan and GlimmerHMM: Two open source ab initio eukaryotic gene-finders. Bioinformatics 2004, 20, 2878–2879. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25, 1105–1111. [Google Scholar] [CrossRef]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef]
- Haas, B.J.; Salzberg, S.L.; Zhu, W.; Pertea, M.; Allen, J.E.; Orvis, J.; White, O.; Buell, C.R.; Wortman, J.R. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 2008, 9, R7. [Google Scholar] [CrossRef]
- Bairoch, A.; Apweiler, R. The SWISS-PROT protein sequence data bank and its supplement TrEMBL in 1999. Nucleic Acids Res. 1999, 27, 49–54. [Google Scholar] [CrossRef]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 1999, 27, 29–34. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic orthology inference for comparative genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef] [PubMed]
- Emms, D.M.; Kelly, S. STRIDE: Species Tree Root Inference from Gene Duplication Events. Mol. Biol. Evol. 2017, 34, 3267–3278. [Google Scholar] [CrossRef] [PubMed]
Feature | Vulpes corsac | Vulpes vulpes | Vulpes lagopus |
---|---|---|---|
Assembly level | Chromosome | Scaffold | Chromosome |
Total length (bp) | 2,348,292,563 | 2,421,568,072 | 2,345,550,353 |
Number of scaffolds | 202 | 82,424 | 929 |
Scaffold N50 (bp) | 132,204,642 | 12,472,085 | 131,537,142 |
Number of contigs | 309 | 183,898 | 1456 |
Contig N50 (bp) | 41,624,634 | 55,450 | 33,460,300 |
GC content (%) | 41.24 | 41.3 | 41.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Xia, T.; Zhou, S.; Yang, X.; Lyu, T.; Wang, L.; Fang, J.; Wang, Q.; Dou, H.; Zhang, H. High-Quality Chromosome-Level Genome Assembly of the Corsac Fox (Vulpes corsac) Reveals Adaptation to Semiarid and Harsh Environments. Int. J. Mol. Sci. 2023, 24, 9599. https://doi.org/10.3390/ijms24119599
Zhang Z, Xia T, Zhou S, Yang X, Lyu T, Wang L, Fang J, Wang Q, Dou H, Zhang H. High-Quality Chromosome-Level Genome Assembly of the Corsac Fox (Vulpes corsac) Reveals Adaptation to Semiarid and Harsh Environments. International Journal of Molecular Sciences. 2023; 24(11):9599. https://doi.org/10.3390/ijms24119599
Chicago/Turabian StyleZhang, Zhihao, Tian Xia, Shengyang Zhou, Xiufeng Yang, Tianshu Lyu, Lidong Wang, Jiaohui Fang, Qi Wang, Huashan Dou, and Honghai Zhang. 2023. "High-Quality Chromosome-Level Genome Assembly of the Corsac Fox (Vulpes corsac) Reveals Adaptation to Semiarid and Harsh Environments" International Journal of Molecular Sciences 24, no. 11: 9599. https://doi.org/10.3390/ijms24119599
APA StyleZhang, Z., Xia, T., Zhou, S., Yang, X., Lyu, T., Wang, L., Fang, J., Wang, Q., Dou, H., & Zhang, H. (2023). High-Quality Chromosome-Level Genome Assembly of the Corsac Fox (Vulpes corsac) Reveals Adaptation to Semiarid and Harsh Environments. International Journal of Molecular Sciences, 24(11), 9599. https://doi.org/10.3390/ijms24119599