Synergy by Ristocetin and CXCL12 in Human Platelet Activation: Divergent Regulation by Rho/Rho-Kinase and Rac
Abstract
:1. Introduction
2. Results
2.1. Effect of Simultaneous Stimulation of Ristocetin and CXCL12 in Low Doses on Human Platelet Aggregation
2.2. Effect of Anti-CXCR4 or Anti-CXCR7 Monoclonal Antibody on the Human Platelet Aggregation Induced by Simultaneous Stimulation of Ristocetin and CXCL12
2.3. Effect of Simultaneous Stimulation of Ristocetin and CXCL12 on Rho/Rho-Kinase and Rac Activation in Human Platelets
2.4. Effect of Y27632 on Platelet Aggregation Induced by Simultaneous Stimulation of Ristocetin and CXCL12
2.5. Effect of NSC23766 on Platelet Aggregation Induced by Simultaneous Stimulation of Ristocetin and CXCL12
2.6. Effects of Y27632 or NSC23766 on the Release of sCD40 Ligand from Platelets Induced by the Simultaneous Stimulation of Ristocetin and CXCL12
3. Discussion
4. Material and Methods
4.1. Materials
4.2. Preparation of Platelets
4.3. Platelet Aggregation
4.4. Protein Preparation after Stimulation
4.5. Analysis of Rho or Rac Activity
4.6. Western Blotting
4.7. ELISA for sCD40L
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Charo, I.F.; Ransohoff, R.M. The many roles of chemokines and chemokine receptor in inflammation. N. Eng. J. Med. 2006, 354, 610–621. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, M.; Gawaz, M. Platelet-derived CXCL12 (SDF-1α): Basic mechanisms and clinical implications. J. Thromb. Haemost. 2013, 11, 1954–1967. [Google Scholar] [CrossRef] [PubMed]
- Janssens, R.; Struyf, S.; Proost, P. Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor. Rev. 2018, 44, 51–68. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Knaut, H. Chemokine signaling in development and disease. Development 2014, 141, 4199–4205. [Google Scholar] [CrossRef] [Green Version]
- Mehta, N.N.; Matthews, G.J.; Krishnamoorthy, P.; Shah, R.; McLaughlin, C.; Patel, P.; Budoff, M.; Chen, J.; Wolman, M.; Go, A.; et al. Higher plasma CXCL12 levels predict incident myocardial infarction and death in chronic kidney disease: Findings from the Chronic Renal Insufficiency Cohort study. Eur. Heart J. 2014, 35, 2115–2122. [Google Scholar] [CrossRef] [Green Version]
- Sjaarda, J.; Gerstein, H.; Chong, M.; Yusuf, S.; Meyre, D.; Anand, S.S.; Hess, S.; Paré, G. Blood CSF1 and CXCL12 as Causal Media- tors of coronary artery disease. J. Am. Coll. Cardiol. 2018, 72, 300–310. [Google Scholar] [CrossRef]
- Schutt, R.C.; Burdick, M.D.; Strieter, R.M.; Mehrad, B.; Keeley, E.C. Plasma CXCL12 levels as a predictor of future stroke. Stroke 2012, 43, 3382–3386. [Google Scholar] [CrossRef] [Green Version]
- Hla, T.; Galvani, S.; Rafii, S.; Nachman, R. S1P and the birth of platelets. J. Exp. Med. 2012, 209, 2137–2140. [Google Scholar] [CrossRef] [Green Version]
- Davi, G.; Patrono, C. Platelet activation and atherothrombosis. N. Engl. J. Med. 2007, 357, 2482–2494. [Google Scholar] [CrossRef]
- Furie, B.; Furie, B.C. Mechanisms of thrombus formation. N. Engl. J. Med. 2008, 359, 938–949. [Google Scholar] [CrossRef]
- Berndt, M.C.; Shen, Y.; Dopheide, S.M.; Gardiner, E.E.; Andrews, R.K. The vascular biology of the glycoprotein Ib-IX–V complex. Thromb. Haemost. 2001, 86, 178–188. [Google Scholar]
- Garcia, A.; Quinton, T.M.; Dorsam, R.T.; Kunapuli, S.P. Src family kinase-mediated and Erk-mediated thromboxane A2 generation are essential for VWF/GPIb-induced fibrinogen receptor activation in human platelets. Blood 2005, 106, 3410–3414. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, D.; Onuma, T.; Tanabe, K.; Kito, Y.; Uematsu, K.; Mizutani, D.; Enomoto, Y.; Tsujimoto, M.; Doi, T.; Matsushima-Nishiwaki, R.; et al. Synergistic effect of collagen and CXCL12 in the low doses on human platelet activation. PLoS ONE 2020, 15, e0241139. [Google Scholar] [CrossRef] [PubMed]
- Takai, Y.; Sasaki, T.; Matozaki, T. Small GTP-binding proteins. Physiol. Rev. 2001, 81, 153–208. [Google Scholar] [CrossRef]
- Iida, Y.; Doi, T.; Tokuda, H.; Matsushima-Nishiwaki, R.; Tsujimoto, M.; Kuroyanagi, G.; Yamamoto, N.; Enomoto, Y.; Tanabe, K.; Otsuka, T.; et al. Rho-kinase regulates human platelet activation induced by thromboxane A2 independently of p38 MAP kinase. Prostaglandins Leukot. Essent. Fat. Acids 2015, 94, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Kageyama, Y.; Doi, T.; Matsushima-Nishiwaki, R.; Iida, Y.; Akamatsu, S.; Kondo, A.; Kuroyanagi, G.; Yamamoto, N.; Mizutani, J.; Otsuka, T.; et al. Involvment of Rac in thromboxane A2-induced human platelet activation: Regulation of sCD40 ligand release and PDGF-AB secretion. Mol. Med. Rep. 2014, 10, 107–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iida, H.; Onuma, T.; Nakashima, D.; Mizutani, D.; Hori, T.; Ueda, K.; Hioki, T.; Kim, W.; Enomoto, Y.; Doi, T.; et al. Tramadol regulates the activation of human platelets via Rac but not Rho/Rho-kinase. PLoS ONE 2023, 18, e0279011. [Google Scholar] [CrossRef]
- Dong, J.F.; Berndt, M.C.; Schade, A.; McIntire, L.V.; Andrews, R.K.; López, J.A. Ristocetin-dependent, but not botrocetin-dependent, binding of von Willebrand factor to the platelet glycoprotein Ib-IX–V complex correlates with shear-dependent interactions. Blood 2001, 97, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Enomoto, Y.; Adachi, S.; Matsushima-Nishiwaki, R.; Doi, T.; Niwa, M.; Akamatsu, S.; Tokuda, H.; Yoshimura, S.; Iwama, T.; Kozawa, O. Thromboxane A2 promotes soluble CD40 ligand release from platelets in atherosclerotic patients. Athelosclerosis 2010, 209, 415–421. [Google Scholar] [CrossRef]
- Kato, K.; Ito, H.; Hasegawa, K.; Inaguma, Y.; Kozawa, O.; Asano, T. Modulation of the stress-induced synthe- sis of hsp27 and alpha B-crystallin by cyclic AMP in C6 rat glioma cells. J. Neurochem. 1996, 66, 946–950. [Google Scholar] [CrossRef]
- Shimokawa, H.; Rashid, M. Development of Rho-kinase inhibitors for cardiovascular medicine. Trends Pharmacol. Sci. 2007, 28, 296–302. [Google Scholar] [CrossRef] [PubMed]
- Arber, S.; Barbayannis, F.A.; Hanser, H.; Schneider, C.; Stanyon, C.A.; Bernard, O.; Caroni, P. Regulation of Actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 1998, 393, 805–809. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Dickerson, J.B.; Guo, F.; Zheng, J.; Zheng, Y. Rational design, and characterization of a Rac GTPase-specific small molecule inhibitor. Proc. Natl. Acad. Sci. USA 2004, 101, 7618–7623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abi-Younes, S.; Sauty, A.; Mach, F.; Sukhova, G.K.; Libby, P.; Luster, A.D. The stromal cell-derived factor-1 chemo- kine is a potent platelet agonist highly expressed in atherosclerotic plaques. Circ. Res. 2000, 86, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Maruhashi, T.; Higashi, Y. An overview of pharmacotherapy for cerebral vasospasm and delayed cerebral ischemia after subarachnoid hemorrhage. Expert. Opin. Pharm. 2021, 12, 1601–1614. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–6855. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enomoto, Y.; Onuma, T.; Hori, T.; Tanabe, K.; Ueda, K.; Mizutani, D.; Doi, T.; Matsushima-Nishiwaki, R.; Ogura, S.; Iida, H.; et al. Synergy by Ristocetin and CXCL12 in Human Platelet Activation: Divergent Regulation by Rho/Rho-Kinase and Rac. Int. J. Mol. Sci. 2023, 24, 9716. https://doi.org/10.3390/ijms24119716
Enomoto Y, Onuma T, Hori T, Tanabe K, Ueda K, Mizutani D, Doi T, Matsushima-Nishiwaki R, Ogura S, Iida H, et al. Synergy by Ristocetin and CXCL12 in Human Platelet Activation: Divergent Regulation by Rho/Rho-Kinase and Rac. International Journal of Molecular Sciences. 2023; 24(11):9716. https://doi.org/10.3390/ijms24119716
Chicago/Turabian StyleEnomoto, Yukiko, Takashi Onuma, Takamitsu Hori, Kumiko Tanabe, Kyohei Ueda, Daisuke Mizutani, Tomoaki Doi, Rie Matsushima-Nishiwaki, Shinji Ogura, Hiroki Iida, and et al. 2023. "Synergy by Ristocetin and CXCL12 in Human Platelet Activation: Divergent Regulation by Rho/Rho-Kinase and Rac" International Journal of Molecular Sciences 24, no. 11: 9716. https://doi.org/10.3390/ijms24119716
APA StyleEnomoto, Y., Onuma, T., Hori, T., Tanabe, K., Ueda, K., Mizutani, D., Doi, T., Matsushima-Nishiwaki, R., Ogura, S., Iida, H., Iwama, T., Kozawa, O., & Tokuda, H. (2023). Synergy by Ristocetin and CXCL12 in Human Platelet Activation: Divergent Regulation by Rho/Rho-Kinase and Rac. International Journal of Molecular Sciences, 24(11), 9716. https://doi.org/10.3390/ijms24119716