
Citation: Dolgalev, G.; Poverennaya, E.

Quantitative Analysis of Isoform

Switching in Cancer. Int. J. Mol. Sci.

2023, 24, 10065. https://doi.org/

10.3390/ijms241210065

Academic Editors: Christos K. Kontos

and David Mu

Received: 19 April 2023

Revised: 26 May 2023

Accepted: 11 June 2023

Published: 13 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Article

Quantitative Analysis of Isoform Switching in Cancer
Georgii Dolgalev and Ekaterina Poverennaya *

Institute of Biomedical Chemistry, Moscow 119281, Russia; dynev.aw@gmail.com
* Correspondence: k.poverennaya@gmail.com

Abstract: Over the past 8 years, multiple studies examined the phenomenon of isoform switching in
human cancers and discovered that isoform switching is widespread, with hundreds to thousands
of such events per cancer type. Although all of these studies used slightly different definitions of
isoform switching, which in part led to a rather poor overlap of their results, they all leveraged
transcript usage, a proportion of the transcript’s expression in the total expression level of the parent
gene, to detect isoform switching. However, how changes in transcript usage correlate with changes
in transcript expression is not sufficiently explored. In this article, we adopt the most common
definition of isoform switching and use a state-of-the-art tool for the analysis of differential transcript
usage, SatuRn, to detect isoform switching events in 12 cancer types. We analyze the detected
events in terms of changes in transcript usage and the relationship between transcript usage and
transcript expression on a global scale. The results of our analysis suggest that the relationship
between changes in transcript usage and changes in transcript expression is far from straightforward,
and that such quantitative information can be effectively used for prioritizing isoform switching
events for downstream analyses.

Keywords: isoform switching; cancer; differential transcript usage; differential transcript expression;
alternative splicing; SatuRn; transcriptomics

1. Introduction

Dysregulation of alternative splicing and other RNA-level processes is one of the
signature features of cancer [1–3]. Ultimately, this dysregulation results in altered levels of
individual transcripts, some of which may exert disease-relevant functions. It is now well
known that transcripts originating from the same gene can serve different and sometimes
even antagonistic biological roles [4,5]. A prominent example of the latter is a human gene
BCL2L1, which encodes two proteins, BCL-XL and BCL-XS, that differ due to the presence
of alternative 5′ splice sites in the second exon of the gene [6]. While BCL-XL has an
antiapoptotic function and is frequently upregulated in cancer [7], the shorter isoform BCL-
XS promotes cell death [8,9]. Accordingly, transcript-level information can yield important
insights into cancer biology that might have otherwise been missed in gene-level analyses.

One particularly interesting approach to leveraging this information is concerned with
detecting so-called isoform switching events, in which one transcript is upregulated and
another transcript from the same gene is downregulated in tumor tissue in comparison
to normal tissue. The first study of this phenomenon, which essentially introduced the
concept of isoform switching, was published in 2015 by Sebestyén et al. [10]. The definition
of isoform switching in that study was primarily based on the frequency of the switch,
requiring two transcript isoforms to reverse the order of prevalence in a sufficient pro-
portion of tumor samples to be considered as an isoform switch. Additionally, the last
stage of their analysis required that the two transcripts involved in a switch had an inverse
correlation between their transcript usage values, which is a proportion of the transcript’s
expression in the overall expression of the parent gene (also known as isoform fraction,
IF [11], or percent spliced in, PSI [10,12]). Two years later, a very different approach to
detecting isoform switching was presented by Climente-Gonzalez et al., who focused on

Int. J. Mol. Sci. 2023, 24, 10065. https://doi.org/10.3390/ijms241210065 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms241210065
https://doi.org/10.3390/ijms241210065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-7854-6279
https://orcid.org/0000-0003-1838-3604
https://doi.org/10.3390/ijms241210065
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms241210065?type=check_update&version=1


Int. J. Mol. Sci. 2023, 24, 10065 2 of 13

individual tumor samples where a change in a transcript’s usage in cancer was larger
than the variation of the transcript’s usage in normal samples [12]. This strategy led to
the detection of a very high number of mostly lowly recurrent switches. Another study,
published in the same year by Vitting-Seerup et al., offered a simple but powerful strategy
for detecting recurrent isoform switches [11]. Briefly, isoform switching was defined as an
event in which one transcript isoform had a mean change in transcript usage between two
conditions higher than 0.1, and this change was statistically significant (as measured by Mann–
Whitney U-test), while another transcript from the same gene had a statistically significant
mean change in transcript usage of −0.1 and less. As multiple transcripts from the same gene
could be upregulated and downregulated in this manner at the same time, each gene could
theoretically have multiple switches per cancer type, and one transcript could be involved
in multiple switches as well. With this approach, the authors identified 4446 switches with
predicted functional consequences in 12 cancer types. In addition to identifying switches,
this study presented an R library, IsoformSwitchAnalyzeR, which was used to identify global
changes in features between upregulated and downregulated transcripts.

Although several alternative approaches to analyzing isoform switching in cancer
have been presented [13,14], the general strategy proposed by Vitting-Seerup et al. and
implemented as part of IsoformSwitchAnalyzeR remains the most popular approach to
identifying isoform switching events. For example, it has been used to detect isoform
switching in sepsis [15], in esophageal adenocarcinoma [16], and in Alzheimer’s disease-
affected human brains [17]. Since the initial study, the part of IsoformSwitchAnalyzeR
responsible for assessing differential transcript usage has been upgraded several times with
more accurate and performant DTU tests implemented in DEXSeq [18] or DRIMSeq [19],
but the general strategy remained the same.

It is interesting that most of the studies of isoform switching relied, at least in part, on
transcript usage, rather than transcript expression, to identify isoform switching events.
The relationship between changes in transcript usage and changes in transcript expression
is not straightforward; for example, a differentially expressed transcript might not be
differentially used and vice versa [20]. Since expression is a much more biologically
relevant quantity than transcript usage, we reasoned that examining isoform switching
from the quantitative point of view can provide additional information to rank switching
events and decrease the number of potentially interesting switches from several thousand
to a much more manageable number.

To this end, we adopted the definition of isoform switching as proposed by Vitting-
Seerup et al. and used a novel algorithm for the analysis of differential transcript usage,
SatuRn [21], to identify isoform switches in 12 cancer types on the basis of RNA-Seq data
from TCGA project. After identifying the switches, we analyzed how detected changes in
transcript usage correlate with changes in expression for the affected transcripts and how
often these pairs of transcripts changed the order of prevalence between cancer and normal
tissue. Our results surprisingly revealed that only in a third of the identified switches both
transcripts had the same direction of change in transcript usage as in transcript expression,
and that switches where one transcript almost always had a higher expression than the
other transcript were common. These observations detail the landscape and mechanisms of
transcriptional dysregulation in cancer by uncovering a new dimension of the phenomenon
of isoform switching, which could additionally be used to improve functional inferences
from differential transcript usage-based isoform switching analyses.

2. Results
2.1. Detection of Isoform Switching in Cancer Using SatuRn

Similar to other investigations of isoform switching in cancer, we relied on RNA-Seq
data from TCGA project, which, in our case, was acquired from the recent reanalysis
performed as part of the UCSC Toil Recompute project [22]. For our study, we selected
12 cancer types that had data for at least 25 normal samples (Table S1).
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We adopted the general definition of isoform switching as proposed by Vitting-
Seerup et al. [11] and first analyzed differential transcript usage in each cancer type with
the help of SatuRn. Unique features of SatuRn include good control of false discovery
rate and speed [21], which was necessary as most of the selected cancer types had sev-
eral hundreds of samples. After testing for differential transcript usage and extracting
transcripts with significant changes in usage, we analyzed whether these transcripts were
sufficiently upregulated or downregulated by comparing their mean usage values between
cancer and normal samples. If the mean change in transcript’s usage value was higher
than 0.1, the transcript was considered upregulated; if less than −0.1, it was considered
downregulated. The results of testing for differential transcript usage and other quanti-
tative data for individual transcripts can be found in Table S2. Lastly, for a given gene
in a given cancer type, isoform switching events were identified by pairing statistically
significant upregulated transcripts with statistically significant downregulated transcripts
in all possible combinations. To prevent ambiguity, since regulation can be formulated
in terms of both usage and expression, from here on, we call transcripts upregulated in
terms of usage as “cancer” transcripts and transcripts downregulated in terms of usage as
“normal” transcripts.

In total, we identified 2217 isoform switches (Table S3), with numbers varying consid-
erably across different cancer types (Figure 1A). Identified switches affected 1364 unique
genes and included 1605 unique pairs of transcripts.

To find out how our results compared to the previous investigations of recurrent
isoform switching in cancer, we analyzed the overlap of our results, the Sebestyén et al.
study, and the Vitting-Seerup study in terms of unique genes affected by isoform switching
(note that Vitting-Seerup et al. considered the same 12 cancer types as in this study, while
Sebestyén et al. considered three fewer cancer types) (Figure 1B). The overlap of our study
and the studies of Sebestyén et al. and Vitting-Seerup et al. was low; only 44 genes were
shared across all three (Figure 1B). What was more surprising was that the overlap of the
present study and the Vitting-Seerup et al. study was small despite overall similar strategies;
only 293 genes were shared between the studies (less than 23% of unique genes identified in
the present study). Due to the fact that not only strategies for isoform switching detection
differed between the studies, but also details of RNA-Seq analysis and annotation databases
used, it was hard to pinpoint the exact reason for the discrepancy. In an attempt to at least
partially resolve this question, we managed to fully reconstruct the analysis pipeline used
by Sebestyén et al. (see Section 4) and applied it to our dataset. The share of unique genes
identified using the reconstructed algorithm and also identified in our analysis increased
from 38% to 60% in comparison with the initial study (Figure 1C). Remarkably, overlap
between the original results of Sebetyen et al. and the results obtained after applying their
pipeline to our dataset was also quite low; only 40 unique genes were shared between them
(approximately 17% of each result in terms of unique genes). Therefore, we cautiously
argue that the choice of annotation and RNA-Seq analysis strategy might in fact account
for a significant portion of discrepancy between studies investigating isoform switching,
something that has been suggested before [23]. However, due to the large differences
between studies in terms of methodology and technical aspects, proving this statement for
certain is a tough task outside of the scope of the present work.
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Figure 1. General results. (A) The number of identified isoform switches per cancer type. (B) Overlap
of unique genes identified in the present study, Sebestyén et al. study [10], and Vitting-Seerup et al.
study [11]. (C) Overlap of unique genes identified in the present study and Sebestyén et al. [10]
approach applied to the same dataset.

2.2. Relationship between Changes in Transcript Usage and Changes in Transcript Expression

Before we could move to analyze the interplay between transcript usage and transcript
expression for the identified isoform switches, an understanding of the distribution of
changes in isoform usage was required to set a background for our analysis. A scatterplot
of mean changes in transcript usage did not point to any particular anomalies (Figure 2A).
However, it was clear that most of the identified isoform switches were composed of
transcripts with only a modest change in usage; approximately 50% of switches had a mean
change in usage from −0.1 to −0.24 for the normal transcript and a mean change in usage
from 0.1 to 0.24 for the cancer transcript. Additionally, while a statistically significant differ-
ence was observed between mean changes in transcript usage between cancer types (cancer
transcripts: adj. p < 1.47 × 10−21; normal transcripts: adj. p < 3.24 × 10−38, Kruskal–Wallis
H-test), these differences were not extreme in magnitude (Figure S1). Furthermore, only
six cancer types (KIRC, LUAD, LUSC, LIHC, COAD, and KIRP) out of 12 had statistically
significant differences in absolute mean changes in transcript usage between cancer and
normal transcripts (adj. p < 0.05, Wilcoxon signed-rank test). These observations justified
further inference from all identified switches as a single population.
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Figure 2. Relationship between change in transcript usage and change in transcript expression for
the identified isoform switches. (A) Scatterplot of mean changes in usage of transcripts participating
in isoform switching. (B) Relationship between mean change in transcript usage and fold change of
expression for cancer (upregulated in terms of usage) and normal (downregulated in terms of usage)
transcripts separately. Transcripts that are not differentially expressed are colored gray. (C) Scatterplot
of fold changes of expression of transcripts participating in isoform switching. The color scheme
is inherited from (A,B). (D) Comparison of fold changes of expression between normal and cancer
transcripts from isoform switches in which both transcripts either decreased or increased their
expression levels.

Having established the overall pattern of changes in transcript usage, we moved on to
explore how changes in transcript usage were connected to changes in transcript expression
for the affected transcripts. To this end, we calculated log2-transformed fold changes in
expression and performed differential expression testing for all transcripts which were
initially considered for differential transcript usage (Table S2). Note that we did not take
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fold change into account when considering whether a transcript is differentially expressed
or not, and only considered the results of the statistical testing. A plot of mean changes in
transcript usage versus log2-transformed fold changes of expression levels of individual
transcripts revealed interesting results (Figure 2B). First, a significant number of transcripts,
515 (24.6%) cancer transcripts and 76 (3.6%) normal transcripts that were differentially used,
were in fact not differentially expressed. This means that changes in the usage of these
transcripts were caused by changes in the expression of other transcripts from the same
gene, most likely the second transcript in the switch. Interestingly, while normal transcripts
that were not differentially expressed had a lower mean change in usage than differentially
expressed normal transcripts (adj. p < 0.0019, one-sided Mann–Whitney U-test), there was
no difference in terms of mean changes in usage between differentially expressed and not
differentially expressed cancer transcripts (adj. p = 0.52, two-sided Mann–Whitney U-test).
We did not observe any isoform switches in which both transcripts were not differentially
expressed, which is consistent with the definition of transcript usage (if expression levels of
two transcripts from the same gene stay the same across conditions, their change in usage
will be equal and cannot be opposite). Secondly, a large number of transcripts that were
differentially expressed had an opposite direction of change in expression relative to change
in usage. This phenomenon was much more pronounced in the case of cancer transcripts;
more than half (53.4%) of differentially expressed cancer transcripts were upregulated
in terms of usage, but downregulated in terms of expression, while the inverse was true
for only 1.4% of normal transcripts. Note that, since we analyzed normal and cancer
transcripts separately, each transcript was counted only once per cancer type for calculating
the percentages. As with transcript usage, there were cancer type-specific differences in
terms of the average change in expression levels (cancer transcripts: adj. p < 6.51 × 10−17,
normal transcripts: adj. p < 6.84 × 10−78, Kruskal–Wallis H-test), but the overall pattern
was shared across all types; each cancer type had switches where one of the transcripts
was not differentially expressed and switches where one of the transcripts had changes in
expression opposite to changes in usage (Figure S2). Thus, the distributions of both cancer-
specific changes in transcript usage and changes in transcript expression for switch-affected
transcripts support pooling all the identified switches for our analysis.

Summarizing these results, out of 2217 initially identified switches, only 1602 of
them (72.3%) had both transcripts that were differentially expressed (Figure 2C). The
remaining switches were composed of pairs of transcripts in which one of them had no
statistically significant change in expression between normal and cancer samples. Out
of 1602 switches where both transcripts were differentially expressed, only 802 (36.2% of
the total number of switches) had changes in expression consistent with the direction of
changes in usage. The majority of the remaining switches, 771 (34.8% of the total number
of switches) had both transcripts decreasing their expression in cancer samples, and the
29 (1.3%) remaining switches had both transcripts increasing their expression. Although
this seemed counterintuitive, a closer inspection provided an explanation; in the case where
both transcripts in a switch decreased their expression in cancer samples, normal transcripts
on average had a more significant decrease in expression (adj. p < 8.58 × 10−127, one-sided
Wilcoxon signed-rank test), which compensated for the decrease in expression of cancer
transcripts (Figure 2D). The same logic was true for switches in which both transcripts
increased their expression; in these cases, normal transcripts on average had a significantly
smaller increase in expression than cancer transcripts (adj. p < 1.28 × 10−6, one-sided
Wilcoxon signed-rank test). No isoform switches had a cancer transcript that decreased its
expression level and a normal transcript that increased its expression level in cancer cells.

2.3. Influence of the Level of Transcript Expression on the Magnitude of Changes in Usage or Expression

Considering these rather unintuitive results, we wondered if some of them could have
been caused by transcripts or genes with a low baseline expression level, for which even
a small change in expression would cause a significant change in transcript usage or a
large fold change in expression. To answer this question, we first simply analyzed the
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distribution of mean expression of normal and cancer transcripts versus all transcripts
considered for differential usage per cancer type. A brief look at the resulting plots revealed
that both normal and cancer transcripts did not belong to transcripts with extremely
low expression levels in both normal and cancer samples (Figure 3A). To assess these
relationships statistically, we compared the expression levels of both normal and cancer
transcripts against the expression levels of all transcripts considered for DTU in both normal
and cancer samples. For almost all cancer types, both normal and cancer transcripts had an
expression level in normal samples that was greater than all transcripts per cancer type
(adj. p < 0.05, one-sided Mann–Whitney U-test) with the exception of cancer transcripts in
KICH (adj. p = 0.32). The results become less predictable when considering the expression
of switch-affected transcripts in cancer samples. Six cancer types (BRCA, THCA, LUAD,
LUSC, LIHC, and COAD) out of 12 had switch-affected cancer transcripts with a generally
higher expression level than all transcripts in the respective cancer samples (adj. p < 0.05,
one-sided Mann–Whitney U-test), while only three cancer types (LUAD, LUSC, and LIHC)
had switch-affected normal transcripts with a higher expression level than all transcripts in
the respective cancer samples (adj. p < 0.05, one-sided Mann–Whitney U-test).
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Figure 3. Relationship of changes in transcript usage, transcript expression, and baseline expression
level of transcripts affected by isoform switching. (A) Expression of transcripts participating in
isoform switching in contrast to all transcripts considered per cancer type. (B) Comparison of changes
in usage and fold changes of expression between lowly and highly expressed transcripts for all the
identified isoform switches.

These results were generally consistent with our previous observations; half of the
cancer transcripts demonstrated a decrease, rather than an increase, in expression, which
led to them being expressed at least not higher than all transcripts in cancer samples in
several cancer types.

Nevertheless, in all cancer types, there were some switch-affected transcripts that had
a lower expression level than the median expression level for all transcripts. As such, it
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might be possible that these transcripts contributed to the anomalous results. To test this
hypothesis, we first calculated the Spearman correlation between transcript expression
levels in normal samples (as all changes happen relative to them) and changes in transcript
usage or fold changes in expression for normal and cancer transcripts separately. No
apparent strong correlation was observed in all cases (absolute Spearman’s ρ < 0.29). We
then separated all normal and cancer transcripts into two groups each on the basis of
whether their expression in normal samples was lower or higher than a threshold. We set
the threshold to 1 TPM, which is a common value for separating lowly and highly expressed
transcripts [10]. Next, we tested whether there were differences between levels of change
in mean transcript usage and log2-transformed fold changes in expression (Figure 3B). A
statistically significant difference was detected only between changes in mean transcript
usage between lowly and highly expressed cancer transcripts (adj. p < 0.05, Mann–Whitney
U-test), but the difference was small (difference between medians of highly and lowly
expressed transcripts = −0.04). Therefore, there was no significant evidence that lowly
expressed transcripts could have skewed the results.

2.4. Frequency of the Detected Switches

In contrast to the algorithm used by Sebestyén et al. [10], two transcripts do not necessarily
have to switch the order of prevalence between normal and cancer samples for them to be
considered switching in the present analysis. However, it was still interesting to see how the
identified switches are ranked in terms of this parameter, as such behavior is more intuitively
associated with the concept of “switching”, and it can be argued that pairs of transcripts with
a high rate of prevalence switching are more interesting for further analysis.

Each isoform switching event could be characterized by two sub-frequencies—the
“cancer” frequency, which measures the proportion of cancer samples in which the cancer
transcript has a higher expression than the normal transcript, and the “normal” frequency,
which measures the proportion of normal samples where the normal transcript has a
higher expression than the cancer transcript (Table S3). Note that the definition of these
frequencies is not influenced by the use of either transcript expression or transcript usage
for calculations, as the resulting frequencies would be the same. We were interested in the
proportion of identified isoform switches that had each of these sub-frequencies higher
than a certain percentage, e.g., 50% or 75% (which is equal to transcripts appropriately
switching the order of prevalence in 50% or 75% of samples, respectively) (Figure 4A).
The resulting curves indicated that transcripts from roughly 75% of isoform switches
appropriately switched the order of prevalence in at least 50% of either cancer or normal
samples. However, the proportion of switches with one of the frequencies higher than a
given value started to fall more quickly with the increase in the given frequency.

Since each isoform switching event had two characteristic frequencies, the interplay
between them was found to be complicated (Figure 4B). While 51% of switches had both
sub-frequencies higher than 0.5, and as 16% of switches had both sub-frequencies higher
than 0.75, we identified 50 cases in which isoform switches had one of the frequencies equal
to 1.0 and the other equal to 0, meaning that one of the involved transcripts had a higher
expression than the other in all samples in both normal and cancer samples.

Accordingly, a combined score based on these two frequencies is needed to unambigu-
ously rank the identified isoform switches. Sebestyén et al. used a sum of the characteristic
frequencies minus one. However, such a sum would be equal for a switch with frequencies
(1.0, 0.0) and a switch with frequencies (0.5, 0.5). Thus, we reasoned that a score that favors
switches like the latter rather than the former would be more appropriate. As such, we cal-
culated a combined frequency for each switch as a product of its two sub-frequencies. The
resulting curve indicates that approximately 40% of switches had a combined frequency of
0.5 and higher, which roughly corresponds to isoform switches with both sub-frequencies
equal to 0.7 or similar and higher (Figure 4A).
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2.5. Ranking Isoform Switching Events Using Expression and Frequency Data

Our quantitative analysis gave us the information required to further prioritize the
identified isoform switches. While the exact value of assayed parameters for prioritizing
switches is a subject for discussion, and while individual cases must be treated in an
individual manner, for our global analysis, we reasoned that a switch is more likely to
include transcript isoforms with opposite behavior and, thus, probably functionality, if it
abides by several rules. First, both transcripts in a switch must be differentially expressed;
second, the direction of the change in the expression must be codirectional with the change
in usage for each transcript. The resulting list of 802 switches (36.2% of the initial result)
can be further filtered by a combined frequency of the switch. For instance, we might
want to remove switches with a combined frequency of 0, representing switches where one
transcript always has a higher expression than the other transcript. After removing such
cases, we were left with 776 switches (35.0% of the initial list of switches). Finally, switches
in the resulting list can be ranked by combined frequency. Additional filtering, for example,
by requiring the combined frequency to be higher than 0.5 would further shorten the list,
leaving only 375 switches (16.9%). Alternatively, the switches could be filtered in terms of
log2 fold changes of expression of the affected transcripts by, for instance, requiring that
absolute log2 fold changes of expression must be higher than 1 (meaning twofold increase
or decrease) for each transcript, as commonly required by differential expression workflows.
However, even without applying such filters, the reduction in switch numbers was already
quite pronounced. Therefore, even the most basic filtering criteria could effectively reduce
the number of interesting switches threefold, significantly decreasing the burden of further
functional analysis of the switching consequences.

3. Discussion

The present work serves as both an original inquiry into the phenomenon of isoform
switching in cancer and a reflection of previous work in this area of research. Unfortunately,
there is currently no universally accepted definition of isoform switching as different studies
introduce different methodologies tailored to answering specific biological questions. In
the present study, we focused on a more commonly used definition of isoform switching
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that is based on differential transcript usage; however, as we already mentioned, multiple
studies also used transcript usage in a different capacity to identify switches.

Although there are plenty of tools for detecting differential transcript usage, this
concept is frequently confusing for researchers new to this topic, primarily because of the
complicated relationship of differential transcript usage, differential transcript expression,
and differential gene expression [24–26]. In the present study, we demonstrated that this
confusion is justified, and significant implications arise with respect to the interpretation of
the results of differential transcript usage analysis and isoform switching in particular, as it
has been one of the most insightful applications of DTU.

Using SatuRn to perform robust and accurate testing for differential transcript usage
in 12 human cancer types, we confirmed previous reports of a high number of isoform
switches in human cancers. However, our subsequent analysis showed that only one-third
of the identified switches were composed of transcripts which both have the same direction
of change in their usage compared to the change in expression, and the magnitude of these
changes was not correlated. In approximately half of the rest of the identified switches,
one of the transcripts did not change its expression across conditions, implying that these
events are better described as single-transcript differential expression events, which has im-
plications for functional analysis of their consequences. The final third of isoform switches
was composed of transcripts that both decreased (or increased) their expression, despite
having opposite changes in usage. As such, these transcripts were both downregulated
(or upregulated) in terms of expression, providing evidence for their hypothetical joint,
and not alternative, regulation. We additionally made an observation that, while most of
the normal transcripts in the identified isoform switches were downregulated in terms
of both usage and expression, cancer transcripts on the other hand were predominantly
either not differentially expressed or also downregulated (in terms of expression), meaning
that isoform switches were closely associated with the overall downregulation in gene
expression in cancer.

Do these observations invalidate transcript usage as a measure of alternative regulation
of transcripts? Certainly not, as several lines of evidence suggest that a mere change in
transcript ratios can trigger important biological processes [27–29], and this phenomenon
is particularly pronounced in apoptosis, in which many of the associated genes encode
protein isoforms with distinct or opposite functions [30–33]. This means that differential
expression of both transcripts is not required for these changes to take place. However,
such changes quite often depend on the actual switching of the order of prevalence between
the major and the minor transcript [34]. As we also showed in this article, this does not
happen consistently for a significant portion of the identified switches; for example, we
discovered cases where the normal transcript always had a higher expression than the
cancer transcript despite the former being downregulated and the latter upregulated.

Summarizing the results, our analysis indicates that the pronounced transcriptional
dysregulation in cancer, previously phrased in terms of opposite changes in proportions of
transcripts, i.e., isoform switching, is for the large part caused by the overall downregu-
lation of the switch-affected transcripts in terms of expression. From the methodological
standpoint, we recommend always supplementing differential transcript usage-based
workflows such as isoform switching analysis with transcript expression data. While the
interpretation of all of these data and their relative value depends on the specific pair
of transcripts and the biological question addressed, these quantitative data can provide
additional information to prioritize isoform switches and conduct an adequate assessment
of the functional consequences of the switch.

4. Materials and Methods
4.1. General

DTU and DTE analyses were performed in R v.3.2.4. General data analysis and
plotting were performed in Python v.3.11. Correction for multiple testing was performed
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with the Benjamini–Hochberg procedure as implemented in the statsmodels Python library.
FDR-adjusted p-values < 0.05 were considered significant.

4.2. Data

TCGA RNA-Seq data were quantified as part of the UCSC Toil RNA-Seq Recompute
project [22] using kallisto [35] and GENCODE human release 23 annotation (GRCh38) [36].
Transcript-level counts, TPM values, and sample metadata were downloaded from TCGA Pan-
Cancer (PANCAN) dataset page (https://xenabrowser.net/datapages/?cohort=TCGA%20Pan-
Cancer%20(PANCAN), accessed on 11 December 2022) using Xena Browser [37]. Only cancer
types with at least 25 normal samples were selected for further analysis. The GENCODE human
release 23 Comprehensive gene annotation file was downloaded from the GENCODE archive.

4.3. Analysis of Differential Transcript Usage

SatuRn v.1.7.3 [21] was used to test for differential transcript usage. Briefly, count-level
data were filtered using edgeR’s [38] expression filter with default parameters. Differential
transcript usage was calculated using SatuRn’s fitDTU and testDTU functions with the
same parameters as in the tool’s manual. The results for each cancer type were aggregated
in one table, and global correction for multiple testing was performed on empirical p-values
produced by SatuRn.

4.4. Identification of Isoform Switches

Transcript usage values were calculated from TPM values by dividing the expression
level of each transcript by the expression level of its parent gene in each sample. In
samples where the gene was not expressed, transcript usage values were set equal to 0. The
mean change in transcript usage was calculated for each transcript in each cancer type by
subtracting mean transcript usage in normal samples from mean transcript usage in cancer
samples. For a particular gene in a particular cancer type, isoform switches were composed
of all possible combinations between upregulated (mean transcript usage > 0.1, DTU adj.
p < 0.05) and downregulated (mean transcript usage < −0.1, DTU adj. p < 0.05) transcripts.

4.5. Analysis of Differential Transcript Expression

edgeR v.3.40.2 [38] was used for differential expression testing. Briefly, count-level
data were filtered using edgeR’s expression filter with default parameters (essentially, the
same transcripts were tested for both DTU and DTE). Scaling for library size was performed
with edgeR’s default algorithm, TMM. Dispersions were estimated using the estimateCom-
monDisp function, and differential expression testing was performed using the glmQLFit
and glmQLFTest functions with default parameters. The results for each cancer type were
aggregated in one table, and global correction for multiple testing was performed.

4.6. Reconstruction of Sebestyén et al.’s Approach to Isoform Switching Detection

The iso-kTSP v.1.0.3 tool [10] was downloaded from Bitbucket (https://bitbucket.
org/regulatorygenomicsupf/iso-ktsp/downloads/, accessed on 21 December 2022), and
Java v.8.361 was used to run the package. Expression data were formatted accordingly to
the format used by the authors of the study, and the example datasets were downloaded
from figshare (https://bitbucket.org/regulatorygenomicsupf/iso-ktsp/downloads/, files
with the suffix “iso_iktsptpm_paired-normal-tumor-filtered”, accessed on 21 December
2022). Identification of isoform switches was performed with the iso-kTSP tool using the
following parameters: -i (for transcript-level analysis), -k = 50, and -n set equal to the
number of normal samples in the supplied dataset. A permutation test for each cancer type
was performed on the same dataset as used for the previous step with the parameters -i
and -l = 1000. Significant isoform switches were derived from the ranking step by requiring
that score1 and information gain (IG) of the significant switches must be higher than
the maximum values of these quantities obtained in the permutation step. The resulting
list of significant switches was further filtered by expression levels of the switch-affected

https://xenabrowser.net/datapages/?cohort=TCGA%20Pan-Cancer%20(PANCAN)
https://xenabrowser.net/datapages/?cohort=TCGA%20Pan-Cancer%20(PANCAN)
https://bitbucket.org/regulatorygenomicsupf/iso-ktsp/downloads/
https://bitbucket.org/regulatorygenomicsupf/iso-ktsp/downloads/
https://bitbucket.org/regulatorygenomicsupf/iso-ktsp/downloads/
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transcripts, requiring both transcripts in the switch to have a mean expression of 1 TPM
in either cancer or normal samples. Lastly, only switches in which the transcripts had a
negative correlation between their transcript usage values (Spearman’s ρ < −0.8) were
left. The resulting pipeline was tested on three randomly chosen cancer types (KICH,
COAD, and PRAD) using the datasets provided by the authors (see above). The results
of applying this reconstructed pipeline to the subset of cancer types produced exactly the
same results as reported by Sebestyén et al. (Supplementary File S4 in the original study,
file “tcga_isoform_switches”).

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/ijms241210065/s1.
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