Antioxidant Properties of Selected Flavonoids in Binary Mixtures—Considerations on Myricetin, Kaempferol and Quercetin
Abstract
:1. Introduction
2. Results
- Point “a” refers to the inhibition percent in the measuring system containing 20 μL of myricetin methanolic solution and 80 μL of MeOH in a 100 μL sample (system no 1 in Table 1);
- Point “b” refers to the inhibition percent in the system containing 80 μL of kaempferol methanolic solution and 20 μL of MeOH in a 100 μL sample (system no 6 in Table 1);
- Point “c” refers to the inhibition percent in the system containing 20 μL of myricetin and 80 μL of kaempferol (both dissolved in MeOH) (system no 10);
- Point “d” is the so-called “theoretical” point representing the inhibition percent expected for the mixture containing 20 μL of myricetin and 80 μL of kaempferol, assuming the additive antioxidant effects. Hence, the value at point “d” was calculated by summing up the inhibition percent obtained for the sample contained 20 μL of myricetin with 80 μL of MeOH (the value at point “a”) and 80 μL of kaempferol with 20 μL of MeOH (the value at point “b”).
3. Discussion
3.1. Antioxidant Activity of Single-Component Solutions
3.2. Resultant Antioxidant Effects in Mixtures
4. Materials and Methods
4.1. Chemicals
4.2. Measurements of Antioxidant Properties
4.2.1. ABTS Method
4.2.2. DPPH Method
4.3. Statistical Analysis
5. Conclusions
- The dominant resultant effect in the mixtures is antioxidant antagonism;
- The magnitude of the observed antagonism depends on the mutual relationships of individual components, their concentrations and the method used to assess antioxidant properties, and, more importantly;
- The observed effect results from the formation of intramolecular hydrogen bonds between phenolic groups of the antioxidant molecule.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mikulec, A.; Zborowski, M.; Klimczak, A. Functional food in the primary prevention of cardiovascular diseases. J. Educ. Health Sport 2022, 12, 848–863. [Google Scholar] [CrossRef]
- Cena, H.; Calder, P.C. Defining a Healthy Diet: Evidence for the Role of Contemporary Dietary Patterns in Health and Disease. Nutrients 2020, 12, 334. [Google Scholar] [CrossRef] [Green Version]
- Temple, N.J. A rational definition for functional foods: A perspective. Front. Nutr. 2022, 9, 957516. [Google Scholar] [CrossRef] [PubMed]
- Galanakis, C.M. Functionality of Food Components and Emerging Technologies. Foods 2021, 10, 128. [Google Scholar] [CrossRef]
- Zehiroglu, C.; Sarikaya, S.B.O. The importance of antioxidants and place in today’s scientific and technological studies. J. Food Sci. Technol. 2019, 56, 4757–4774. [Google Scholar] [CrossRef]
- Olszowy-Tomczyk, M.; Paprotny, Ł.; Celejewska, A.; Szewczak, D.; Wianowska, D. Comparison of the antioxidant properties of serum and plasma samples as well as glutathione under environmental and pharmacological stress factors involving different classes of drugs. Environ. Toxicol. Pharmacol. 2022, 94, 103936. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, N.; Roy, Z.; Bansal, R.; Siddiqui, L. Understanding the Role of Free Radicals and Antioxidant Enzymes in Human Diseases. Curr. Pharm. Biotechnol. 2022, 24, 1265–1276. [Google Scholar] [CrossRef] [PubMed]
- Dabeek, W.M.; Marra, M.V. Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients 2019, 11, 2288. [Google Scholar] [CrossRef] [Green Version]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.-H.; Jaremko, M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Olszowy-Tomczyk, M.; Garbaczewska, S.; Wianowska, D. Correlation Study of Biological Activity with Quercetin and Phenolics Content in Onion Extracts. Molecules 2022, 27, 8164. [Google Scholar] [CrossRef]
- Wianowska, D.; Olszowy-Tomczyk, M.; Garbaczewska, S. A Central Composite Design in increasing the quercetin content in the aqueous onion waste isolates with antifungal and antioxidant properties. Eur. Food Res. Technol. 2021, 248, 497–505. [Google Scholar] [CrossRef]
- Olszowy, M. What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol. Biochem. 2019, 144, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Olszowy-Tomczyk, M. Synergistic, antagonistic and additive antioxidant effects in the binary mixtures. Phytochem. Rev. 2020, 19, 63–103. [Google Scholar] [CrossRef]
- Prieto, M.; Curran, T.P.; Gowen, A.; Vázquez, J. An efficient methodology for quantification of synergy and antagonism in single electron transfer antioxidant assays. Food Res. Int. 2015, 67, 284–298. [Google Scholar] [CrossRef] [Green Version]
- Olszowy, M.; Dawidowicz, A.L.; Jóźwik-Dolęba, M. Are mutual interactions between antioxidants the only factors responsible for antagonistic antioxidant effect of their mixtures? Additive and antagonistic antioxidant effects in mixtures of gallic, ferulic and caffeic acids. Eur. Food Res. Technol. 2019, 245, 1473–1485. [Google Scholar] [CrossRef] [Green Version]
- Dawidowicz, A.L.; Olszowy-Tomczyk, M.; Typek, R. Synergistic and antagonistic antioxidant effects in the binary cannabinoids mixtures. Fitoterapia 2021, 153, 104992. [Google Scholar] [CrossRef]
- Rúa, J.; De Arriaga, D.; García-Armesto, M.R.; Busto, F.; Valle, M.D.P.D. Binary combinations of natural phenolic compounds with gallic acid or with its alkyl esters: An approach to understand the antioxidant interactions. Eur. Food Res. Technol. 2016, 243, 1211–1217. [Google Scholar] [CrossRef]
- Hidalgo, M.; Sanchez-Moreno, C.; de Pascual-Teresa, S. Flavonoid–flavonoid interaction and its effect on their antioxidant activity. Food Chem. 2010, 121, 691–696. [Google Scholar] [CrossRef]
- Platzer, M.; Kiese, S.; Herfellner, T.; Schweiggert-Weisz, U.; Miesbauer, O.; Eisner, P. Common Trends and Differences in Antioxidant Activity Analysis of Phenolic Substances Using Single Electron Transfer Based Assays. Molecules 2021, 26, 1244. [Google Scholar] [CrossRef]
- Arroyo-Currás, N.; Rosas-García, V.M.; Videa, M. Substituent Inductive Effects on the Electrochemical Oxidation of Flavonoids Studied by Square Wave Voltammetry and Ab Initio Calculations. Molecules 2016, 21, 1422. [Google Scholar] [CrossRef] [Green Version]
- Ronsisvalle, S.; Panarello, F.; Longhitano, G.; Siciliano, E.A.; Montenegro, L.; Panico, A. Natural Flavones and Flavonols: Relationships among Antioxidant Activity, Glycation, and Metalloproteinase Inhibition. Cosmetics 2020, 7, 71. [Google Scholar] [CrossRef]
- Leopoldini, M.; Marino, T.; Russo, N.; Toscano, M. Antioxidant Properties of Phenolic Compounds: H-Atom versus Electron Transfer Mechanism. J. Phys. Chem. A 2004, 108, 4916–4922. [Google Scholar] [CrossRef]
- Christodoulou, M.C.; Palacios, J.C.O.; Hesami, G.; Jafarzadeh, S.; Lorenzo, J.M.; Domínguez, R.; Moreno, A.; Hadidi, M. Spectrophotometric Methods for Measurement of Antioxidant Activity in Food and Pharmaceuticals. Antioxidants 2022, 11, 2213. [Google Scholar] [CrossRef]
- Nwachukwu, I.D.; Sarteshnizi, R.A.; Udenigwe, C.C.; Aluko, R.E. A Concise Review of Current In Vitro Chemical and Cell-Based Antioxidant Assay Methods. Molecules 2021, 26, 4865. [Google Scholar] [CrossRef]
- Neunert, G.; Górnaś, P.; Dwiecki, K.; Siger, A.; Polewski, K. Synergistic and antagonistic effects between alpha-tocopherol and phenolic acids in liposome system: Spectroscopic study. Eur. Food Res. Technol. 2015, 241, 749–757. [Google Scholar] [CrossRef]
- Heo, H.J.; Kim, Y.J.; Chung, D.; Kim, D.-O. Antioxidant capacities of individual and combined phenolics in a model system. Food Chem. 2007, 104, 87–92. [Google Scholar] [CrossRef]
- Skroza, D.; Šimat, V.; Vrdoljak, L.; Jolić, N.; Skelin, A.; Čagalj, M.; Frleta, R.; Mekinić, I.G. Investigation of Antioxidant Synergisms and Antagonisms among Phenolic Acids in the Model Matrices Using FRAP and ORAC Methods. Antioxidants 2022, 11, 1784. [Google Scholar] [CrossRef] [PubMed]
- Hajimehdipoor, H.; Shahrestani, R.; Shekarchi, M. Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds. Res. J. Pharm. 2014, 1, 35–40. [Google Scholar]
- Pereira, R.B.; Sousa, C.; Costa, A.; Andrade, P.B.; Valentão, P. Glutathione and the Antioxidant Potential of Binary Mixtures with Flavonoids: Synergisms and Antagonisms. Molecules 2013, 18, 8858–8872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chittasupho, C.; Manthaisong, A.; Okonogi, S.; Tadtong, S.; Samee, W. Effects of Quercetin and Curcumin Combination on Antibacterial, Antioxidant, In Vitro Wound Healing and Migration of Human Dermal Fibroblast Cells. Int. J. Mol. Sci. 2021, 23, 142. [Google Scholar] [CrossRef] [PubMed]
- Murakami, Y.; Kawata, A.; Ito, S.; Katayama, T.; Fujisawa, S. Radical-scavenging and Anti-inflammatory Activity of Quercetin and Related Compounds and Their Combinations Against RAW264.7 Cells Stimulated with Porphyromonas gingivalis Fimbriae. Relationships between Anti-inflammatory Activity and Quantum Chemical Parameters. In Vivo 2015, 29, 701–710. [Google Scholar]
- Zheng, Y.-Z.; Fu, Z.-M.; Deng, G.; Guo, R.; Chen, D.-F. Free radical scavenging potency of ellagic acid and its derivatives in multiple H+/e− processes. Phytochemistry 2020, 180, 112517. [Google Scholar] [CrossRef]
- Amorati, R.; Lucarini, M.; Mugnaini, V.; Pedulli, G.F. Antioxidant Activity of o-Bisphenols: The Role of Intramolecular Hydrogen Bonding. J. Org. Chem. 2003, 68, 5198–5204. [Google Scholar] [CrossRef] [PubMed]
- Nenadis, N.; Wang, L.-F.; Tsimidou, M.; Zhang, H.-Y. Estimation of Scavenging Activity of Phenolic Compounds Using the ABTS•+ Assay. J. Agric. Food Chem. 2004, 52, 4669–4674. [Google Scholar] [CrossRef] [PubMed]
- Garcia, E.J.; Oldoni, T.; de Alencar, S.M.; Reis, A.; Loguercio, A.D.; Grande, R.H.M. Antioxidant activity by DPPH assay of potential solutions to be applied on bleached teeth. Braz. Dent. J. 2012, 23, 22–27. [Google Scholar] [CrossRef] [PubMed]
Components Volumes in μL | System Number | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |
Myricetin in MeOH | 20 | 50 | 80 | - | - | - | - | - | - | 20 | 50 | 80 | - | - | - | 20 | 50 | 80 |
Kaempferol in MeOH | - | - | - | 20 | 50 | 80 | - | - | - | 80 | 50 | 20 | 20 | 50 | 80 | - | - | - |
Quercetin in MeOH | - | - | - | - | - | - | 20 | 50 | 80 | - | - | - | 80 | 50 | 20 | 80 | 50 | 20 |
MeOH | 80 | 50 | 20 | 80 | 50 | 20 | 80 | 50 | 20 | - | - | - | - | - | - | - | - | - |
Total volume | 100 |
Compound Pairs | Concentration (mmol/L) | Volume Ratios (v/v) | ABTS | (Ie-Ic)-Values | Observed Effect | |
---|---|---|---|---|---|---|
F-Values | p-Values | |||||
Myricetin/Kaempferol | 0.03 | 20/80 | 32.49 | 0.0046 | negative | antagonism |
50/50 | 55.51 | 0.0017 | negative | antagonism | ||
80/20 | 15.35 | 0.0173 | negative | antagonism | ||
0.1 | 20/80 | 19.02 | 0.0121 | negative | antagonism | |
50/50 | 13.03 | 0.0225 | negative | antagonism | ||
80/20 | 12.55 | 0.0239 | negative | antagonism | ||
0.2 | 20/80 | 0.09 | 0.7716 | negative | antagonism | |
50/50 | 23.76 | 0.0082 | positive | synergism | ||
80/20 | 0 | 1 | - | additivism | ||
Kaempferol/Quercetin | 0.03 | 20/80 | 11.28 | 0.0283 | negative | antagonism |
50/50 | 20.67 | 0.0104 | negative | antagonism | ||
80/20 | 28.22 | 0.0060 | negative | antagonism | ||
0.1 | 20/80 | 0.04 | 0.5700 | - | additivism | |
50/50 | 6.95 | 0.0577 | - | additivism | ||
80/20 | 2.32 | 0.2017 | - | additivism | ||
0.2 | 20/80 | 0.28 | 0.6246 | - | additivism | |
50/50 | 5.99 | 0.0706 | - | additivism | ||
80/20 | 2.06 | 0.2244 | - | additivism | ||
Myricetin/Quercetin | 0.03 | 20/80 | 38.06 | 0.0035 | negative | antagonism |
50/50 | 58.19 | 0.0016 | negative | antagonism | ||
80/20 | 35.90 | 0.0039 | negative | antagonism | ||
0.1 | 20/80 | 17.06 | 0.0144 | negative | antagonism | |
50/50 | 33.70 | 0.0040 | negative | antagonism | ||
80/20 | 20.33 | 0.0110 | negative | antagonism | ||
0.2 | 20/80 | 8.03 | 0.0472 | negative | antagonism | |
50/50 | 20.48 | 0.0106 | negative | antagonism | ||
80/20 | 7.24 | 0.0546 | - | additivism |
Compound Pairs | Concentration (mmol/L) | Volume Ratios [v/v] | DPPH | (Ie-Ic)-Values | Observed Effect | |
---|---|---|---|---|---|---|
F-Values | p-Values | |||||
Myricetin/Kaempferol | 0.03 | 20/80 | 162.79 | 0.0002 | negative | antagonism |
50/50 | 159.36 | 0.0002 | negative | antagonism | ||
80/20 | 16.27 | 0.0157 | negative | antagonism | ||
0.1 | 20/80 | 10.56 | 0.0314 | negative | antagonism | |
50/50 | 8.36 | 0.0445 | negative | antagonism | ||
80/20 | 19.88 | 0.0112 | negative | antagonism | ||
0.2 | 20/80 | 18.83 | 0.0261 | negative | antagonism | |
50/50 | 54.95 | 0.0021 | negative | antagonism | ||
80/20 | 20.31 | 0.0011 | negative | antagonism | ||
Kaempferol/Quercetin | 0.03 | 20/80 | 11.89 | 0.0985 | negative | antagonism |
50/50 | 49.84 | 0.0021 | negative | antagonism | ||
80/20 | 69.86 | 0.0011 | negative | antagonism | ||
0.1 | 20/80 | 4.59 | 0.0985 | - | additivism | |
50/50 | 4.83 | 0.0927 | - | additivism | ||
80/20 | 7.05 | 0.0566 | - | additivism | ||
0.2 | 20/80 | 2.75 | 0.1723 | - | additivism | |
50/50 | 2.74 | 0.1732 | - | additivism | ||
80/20 | 6.01 | 0.0018 | - | additivism | ||
Myricetin/Quercetin | 0.03 | 20/80 | 72.05 | 0.0011 | negative | antagonism |
50/50 | 101.02 | 0.0006 | negative | antagonism | ||
80/20 | 38.95 | 0.0034 | negative | antagonism | ||
0.1 | 20/80 | 5.91 | 0.0717 | - | additivism | |
50/50 | 0.97 | 0.3790 | - | additivism | ||
80/20 | 3.29 | 0.144 | - | additivism | ||
0.2 | 20/80 | 2.93 | 0.1620 | - | additivism | |
50/50 | 0.41 | 0.5571 | - | additivism | ||
80/20 | 0.81 | 0.4187 | - | additivism |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olszowy-Tomczyk, M.; Wianowska, D. Antioxidant Properties of Selected Flavonoids in Binary Mixtures—Considerations on Myricetin, Kaempferol and Quercetin. Int. J. Mol. Sci. 2023, 24, 10070. https://doi.org/10.3390/ijms241210070
Olszowy-Tomczyk M, Wianowska D. Antioxidant Properties of Selected Flavonoids in Binary Mixtures—Considerations on Myricetin, Kaempferol and Quercetin. International Journal of Molecular Sciences. 2023; 24(12):10070. https://doi.org/10.3390/ijms241210070
Chicago/Turabian StyleOlszowy-Tomczyk, Małgorzata, and Dorota Wianowska. 2023. "Antioxidant Properties of Selected Flavonoids in Binary Mixtures—Considerations on Myricetin, Kaempferol and Quercetin" International Journal of Molecular Sciences 24, no. 12: 10070. https://doi.org/10.3390/ijms241210070
APA StyleOlszowy-Tomczyk, M., & Wianowska, D. (2023). Antioxidant Properties of Selected Flavonoids in Binary Mixtures—Considerations on Myricetin, Kaempferol and Quercetin. International Journal of Molecular Sciences, 24(12), 10070. https://doi.org/10.3390/ijms241210070