In Cis Effect of DMPK Expanded Alleles in Myotonic Dystrophy Type 1 Patients Carrying Variant Repeats at 5′ and 3′ Ends of the CTG Array
Abstract
:1. Introduction
2. Results
2.1. Description of Study Participants
2.2. Identification of DM1 Alleles Containing Variant Non-CTG Repeats
2.3. Characterization of DM1 Alleles Containing Variant Non-CTG Repeats
2.4. CpG Methylation Analysis of DMPK Gene by Pyrosequencing Analysis
3. Discussion
4. Materials and Methods
4.1. Patients Recruitment
4.2. Bidirectional Triplet Repeated Primed PCR (TP-PCR)
4.3. Sanger Sequencing of LR-PCR and TP-PCR Products
4.4. Methylation Profile of DMPK Regions Flanking the CTG Repeated Array
4.5. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashizawa, T.; Epstein, H.F. Ethnic Distribution of Myotonic Dystrophy Gene. Lancet 1991, 338, 642–643. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, O.J.; Aagaard, L.; Jensen, T.G.; Damgaard, C.K. Molecular Mechanisms in DM1—A Focus on Foci. Nucleic Acids Res. 2015, 43, 2433–2441. [Google Scholar] [CrossRef] [PubMed]
- Mahadevan, M.; Tsilfidis, C.; Sabourin, L.; Shutler, G.; Amemiya, C.; Jansen, G.; Neville, C.; Narang, M.; Barceló, J.; O’Hoy, K. Myotonic Dystrophy Mutation: An Unstable CTG Repeat in the 3′ Untranslated Region of the Gene. Science 1992, 255, 1253–1255. [Google Scholar] [CrossRef] [PubMed]
- Tomé, S.; Gourdon, G. DM1 Phenotype Variability and Triplet Repeat Instability: Challenges in the Development of New Therapies. Int. J. Mol. Sci. 2020, 21, 457. [Google Scholar] [CrossRef] [Green Version]
- Botta, A.; Rinaldi, F.; Catalli, C.; Vergani, L.; Bonifazi, E.; Romeo, V.; Loro, E.; Viola, A.; Angelini, C.; Novelli, G. The CTG Repeat Expansion Size Correlates with the Splicing Defects Observed in Muscles from Myotonic Dystrophy Type 1 Patients. J. Med. Genet. 2008, 45, 639–646. [Google Scholar] [CrossRef]
- Wenninger, S.; Montagnese, F.; Schoser, B. Core Clinical Phenotypes in Myotonic Dystrophies. Front. Neurol 2018, 9, 303. [Google Scholar] [CrossRef] [Green Version]
- De Antonio, M.; Dogan, C.; Hamroun, D.; Mati, M.; Zerrouki, S.; Eymard, B.; Katsahian, S.; Bassez, G. Unravelling the Myotonic Dystrophy Type 1 Clinical Spectrum: A Systematic Registry-Based Study with Implications for Disease Classification. Rev. Neurol 2016, 172, 572–580. [Google Scholar] [CrossRef]
- Lanni, S.; Pearson, C.E. Molecular Genetics of Congenital Myotonic Dystrophy. Neurobiol. Dis. 2019, 132, 104533. [Google Scholar] [CrossRef]
- Kumar, A.; Agarwal, S.; Pradhan, S. Assessment of Premutation in Myotonic Dystrophy Type 1 Affected Family Members by TP-PCR and Genetic Counseling. Case Rep. Med. 2014, 2014, 289643. [Google Scholar] [CrossRef] [Green Version]
- Overend, G.; Legare, C.; Mathieu, J.; Bouchard, L.; Gagnon, C.; Monckton, D.G. Allele Length of the DMPK CTG Repeat Is a Predictor of Progressive Myotonic Dystrophy Type 1 Phenotypes. Hum. Mol. Genet. 2019, 28, 2245–2254. [Google Scholar] [CrossRef] [Green Version]
- Morales, F.; Couto, J.M.; Higham, C.F.; Hogg, G.; Cuenca, P.; Braida, C.; Wilson, R.H.; Adam, B.; Del Valle, G.; Brian, R.; et al. Somatic Instability of the Expanded CTG Triplet Repeat in Myotonic Dystrophy Type 1 Is a Heritable Quantitative Trait and Modifier of Disease Severity. Hum. Mol. Genet. 2012, 21, 3558–3567. [Google Scholar] [CrossRef] [Green Version]
- Mangin, A.; de Pontual, L.; Tsai, Y.C.; Monteil, L.; Nizon, M.; Boisseau, P.; Mercier, S.; Ziegle, J.; Harting, J.; Heiner, C.; et al. Robust Detection of Somatic Mosaicism and Repeat Interruptions by Long-Read Targeted Sequencing in Myotonic Dystrophy Type 1. Int. J. Mol. Sci. 2021, 22, 2616. [Google Scholar] [CrossRef]
- Rasmussen, A.; Hildonen, M.; Vissing, J.; Duno, M.; Tümer, Z.; Birkedal, U. High Resolution Analysis of DMPK Hypermethylation and Repeat Interruptions in Myotonic Dystrophy Type 1. Genes 2022, 13, 970. [Google Scholar] [CrossRef]
- Tsai, Y.C.; de Pontual, L.; Heiner, C.; Stojkovic, T.; Furling, D.; Bassez, G.; Gourdon, G.; Tomé, S. Identification of a CCG-Enriched Expanded Allele in Patients with Myotonic Dystrophy Type 1 Using Amplification-Free Long-Read Sequencing. J. Mol. Diagn. 2022, 24, 1143–1154. [Google Scholar] [CrossRef]
- Peric, S.; Pesovic, J.; Savic-Pavicevic, D.; Stojanovic, V.R.; Meola, G. Molecular and Clinical Implications of Variant Repeats in Myotonic Dystrophy Type 1. Int. J. Mol. Sci. 2021, 23, 354. [Google Scholar] [CrossRef]
- Cumming, S.A.; Jimenez-Moreno, C.; Okkersen, K.; Wenninger, S.; Daidj, F.; Hogarth, F.; Littleford, R.; Gorman, G.; Bassez, G.; Schoser, B.; et al. Genetic Determinants of Disease Severity in the Myotonic Dystrophy Type 1 OPTIMISTIC Cohort. Neurology 2019, 93, E995–E1009. [Google Scholar] [CrossRef] [Green Version]
- Braida, C.; Stefanatos, R.K.A.; Adam, B.; Mahajan, N.; Smeets, H.J.M.; Niel, F.; Goizet, C.; Arveiler, B.; Koenig, M.; Lagier-Tourenne, C.; et al. Variant CCG and GGC Repeats within the CTG Expansion Dramatically Modify Mutational Dynamics and Likely Contribute toward Unusual Symptoms in Some Myotonic Dystrophy Type 1 Patients. Hum. Mol. Genet. 2010, 19, 1399–1412. [Google Scholar] [CrossRef] [Green Version]
- Musova, Z.; Mazanec, R.; Krepelova, A.; Ehler, E.; Vales, J.; Jaklova, R.; Prochazka, T.; Koukal, P.; Marikova, T.; Kraus, J.; et al. Highly Unstable Sequence Interruptions of the CTG Repeat in the Myotonic Dystrophy Gene. Am. J. Med. Genet. A 2009, 149, 1365–1374. [Google Scholar] [CrossRef]
- Kim, S.; Yu, N.K.; Kaang, B.K. CTCF as a Multifunctional Protein in Genome Regulation and Gene Expression. Exp. Mol. Med. 2015, 47, e166. [Google Scholar] [CrossRef] [Green Version]
- Santoro, M.; Fontana, L.; Masciullo, M.; Bianchi, M.L.E.; Rossi, S.; Leoncini, E.; Novelli, G.; Botta, A.; Silvestri, G. Expansion Size and Presence of CCG/CTC/CGG Sequence Interruptions in the Expanded CTG Array Are Independently Associated to Hypermethylation at the DMPK Locus in Myotonic Dystrophy Type 1 (DM1). Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2015, 1852, 2645–2652. [Google Scholar] [CrossRef]
- Filippova, G.N.; Thienes, C.P.; Penn, B.H.; Cho, D.H.; Hu, Y.J.; Moore, J.M.; Klesert, T.R.; Lobanenkov, V.V.; Tapscott, S.J. CTCF-Binding Sites Flank CTG/CAG Repeats and Form a Methylation-Sensitive Insulator at the DM1 Locus. Nat. Genet. 2001, 28, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Hildonen, M.; Knak, K.L.; Dunø, M.; Vissing, J.; Tümer, Z. Stable Longitudinal Methylation Levels at the CpG Sites Flanking the CTG Repeat of DMPK in Patients with Myotonic Dystrophy Type 1. Genes 2020, 11, 936. [Google Scholar] [CrossRef] [PubMed]
- Légaré, C.; Overend, G.; Guay, S.P.; Monckton, D.G.; Mathieu, J.; Gagnon, C.; Bouchard, L. DMPK Gene DNA Methylation Levels Are Associated with Muscular and Respiratory Profiles in DM1. Neurol Genet. 2019, 5, e338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breton, É.; Légaré, C.; Overend, G.; Guay, S.P.; Monckton, D.; Mathieu, J.; Gagnon, C.; Richer, L.; Gallais, B.; Bouchard, L. DNA Methylation at the DMPK Gene Locus Is Associated with Cognitive Functions in Myotonic Dystrophy Type 1. Epigenomics 2020, 12, 2051–2064. [Google Scholar] [CrossRef] [PubMed]
- Botta, A.; Rossi, G.; Marcaurelio, M.; Fontana, L.; D’Apice, M.R.; Brancati, F.; Massa, R.; Monckton, D.G.; Sangiuolo, F.; Novelli, G. Identification and Characterization of 5′ CCG Interruptions in Complex DMPK Expanded Alleles. Eur. J. Hum. Genet. 2017, 25, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Pešović, J.; Perić, S.; Brkušanin, M.; Brajušković, G.; Rakočević-Stojanović, V.; Savić-Pavićević, D. Molecular Genetic and Clinical Characterization of Myotonic Dystrophy Type 1 Patients Carrying Variant Repeats within DMPK Expansions. Neurogenetics 2017, 18, 207–218. [Google Scholar] [CrossRef]
- Nobile, V.; Pucci, C.; Chiurazzi, P.; Neri, G.; Tabolacci, E. DNA Methylation, Mechanisms of FMR1 Inactivation and Therapeutic Perspectives for Fragile X Syndrome. Biomolecules 2021, 11, 296. [Google Scholar] [CrossRef]
- Barbé, L.; Lanni, S.; López-Castel, A.; Franck, S.; Spits, C.; Keymolen, K.; Seneca, S.; Tomé, S.; Miron, I.; Letourneau, J.; et al. CpG Methylation, a Parent-of-Origin Effect for Maternal-Biased Transmission of Congenital Myotonic Dystrophy. Am. J. Hum. Genet. 2017, 100, 488–505. [Google Scholar] [CrossRef] [Green Version]
- Alfano, M.; de Antoni, L.; Centofanti, F.; Visconti, V.V.; Maestri, S.; Esposti, C.D.; Massa, R.; D’apice, M.R.; Novelli, G.; Delledonne, M.; et al. Characterization of Full-Length CNBP Expanded Alleles in Myotonic Dystrophy Type 2 Patients by Cas9-Mediated Enrichment and Nanopore Sequencing. eLife 2022, 11, e80229. [Google Scholar] [CrossRef]
- Fukuda, H.; Yamaguchi, D.; Nyquist, K.; Yabuki, Y.; Miyatake, S.; Uchiyama, Y.; Hamanaka, K.; Saida, K.; Koshimizu, E.; Tsuchida, N.; et al. Father-to-Offspring Transmission of Extremely Long NOTCH2NLC Repeat Expansions with Contractions: Genetic and Epigenetic Profiling with Long-Read Sequencing. Clin. Epigenet. 2021, 13, 204. [Google Scholar] [CrossRef]
- Ballester-Lopez, A.; Koehorst, E.; Almendrote, M.; Martínez-Piñeiro, A.; Lucente, G.; Linares-Pardo, I.; Núñez-Manchón, J.; Guanyabens, N.; Cano, A.; Lucia, A.; et al. A DM1 Family with Interruptions Associated with Atypical Symptoms and Late Onset but Not with a Milder Phenotype. Hum. Mutat. 2020, 41, 420–431. [Google Scholar] [CrossRef]
- Santoro, M.; Masciullo, M.; Silvestri, G.; Novelli, G.; Botta, A. Myotonic Dystrophy Type 1: Role of CCG, CTC and CGG Interruptions within DMPK Alleles in the Pathogenesis and Molecular Diagnosis. Clin. Genet. 2017, 92, 355–364. [Google Scholar] [CrossRef]
- Kamsteeg, E.J.; Kress, W.; Catalli, C.; Hertz, J.M.; Witsch-Baumgartner, M.; Buckley, M.F.; Van Engelen, B.G.M.; Schwartz, M.; Scheffer, H. Best Practice Guidelines and Recommendations on the Molecular Diagnosis of Myotonic Dystrophy Types 1 and 2. Eur. J. Hum. Genet. 2012, 20, 1203–1208. [Google Scholar] [CrossRef] [Green Version]
- Monckton, D.G.; Wong, L.J.C.; Ashizawa, T.; Caskey, C.T. Somatic Mosaicism, Germline Expansions, Germline Reversions and Intergenerational Reductions in Myotonic Dystrophy Males: Small Pool PCR Analyses. Hum. Mol. Genet. 1995, 4, 1–8. [Google Scholar] [CrossRef]
Code | Gender | Parental Origin of Mutation | Expanded Allele Length | Family Relationship |
---|---|---|---|---|
Pt 1 | M | NA | 190 | NA |
Pt 2 | F | Paternal | 95–150 | Mother of Pt 3 |
Pt 3 | F | Maternal | 80–140 | Daughter of Pt 2 |
Pt 4 | F | Maternal | 230 | NA |
Pt 5 | F | Maternal | 94 | NA |
Pt 6 | M | Paternal | 175 | NA |
Pt 7 | F | Maternal | 186–373 | NA |
Pt 8 | M | Maternal | 469–990 | Brother of Pt 9, Father of Pt 10 |
Pt 9 | M | Maternal | 438–900 | Brother of Pt 8, Father of Pt 11 |
Pt 10 | F | Paternal | 242–355 | Daughter of Pt 8 |
Pt 11 | F | Paternal | 248 | Daughter of Pt 9 |
Pt 12 | F | Paternal | 740–930 | Mother of Pt 13 |
Pt 13 | F | Maternal | 416 | Daughter of Pt 12 |
Pt 14 | M | Paternal | 595 | Father of Pt 15 |
Pt 15 | F | Paternal | 259–632 | Daughter of Pt 14 |
Pt 16 | F | Paternal | 600–700 | NA |
Pt 17 | M | NA | 214–255 | NA |
Pt 18 | F | Paternal | 145–221 | NA |
Pt 19 | M | NA | 270–745 | NA |
Pt 20 | M | Paternal | 400–580 | NA |
Code | Interrupted End | Sequence | Source |
---|---|---|---|
Pt 1 | 5’ | CTG[63]CCG[51]CTG[221] | LR-PCR |
Pt 2 | 5’ | CTG[6]CTC[3]CTG[38] | TP-PCR |
Pt 3 | 5’ | CTG[17]CTC[3]CTG[152] | LR-PCR |
Pt 4 | 5’ | CTG[30]CCG[2]CTG[2]CCG[1]CTG[105] | LR-PCR |
Pt 5 | 5’ | CTG[17]CGG[1]CTG[5]CCG[2]CTG[2]CCG[1]CTG[90] | LR-PCR |
Pt 6 | 5’ | CTG[8]CCG[1]CTG[5]CCG[2]CTG[1]CCG[4]CTG[2]CCG[4]CTG[1]CCG[2]CTG[2]CCG[1]CTG[9] | TP-PCR |
Pt 7 | 5’ | CTG[14]CCG[1]CTG[4]CCG[1]CTG[2]CCG[1]CTG[248] | LR-PCR |
Pt 8 | 3’ | CTG[250]CCG[1]CTG[2]CCGCTG[2]CTG[5]CCG[2]CTG[6] | TP-PCR |
Pt 9 | 3’ | CTG[83]CTC[4]CTG[60]CTC[1]CTG[31]CCG[1]CTG[7]CCG[1]CTC[5]CTG[2] | TP-PCR |
Pt 10 | 3’ | CTG[173]CCG[1]CTG[2]CCG[1]CTG[2]CCG[1]CTG[1]CCG[1]CTG[2]CCG[1]CTG[4]CCG[1]CTG[7]CCG[1]CTG[7]CCG[1]CTG[7]CCG[1]CTG[13] | LR-PCR |
Pt 11 | 3’ | CTG[191]CCGCTGCTG[2]CCG[1]CTG[4]CCGCTGCTG[2]CCG[1]CTG[1]CCG[1]CTG[2]CCG[1]CTG[1]CCGCTGCTG[2]CCG[1]CTG[4]CCG[1]CTG[2]CCG[1]CTG[13] | LR-PCR |
Pt 12 | 3’ | CTG[82]CCGCTG[2]CTG[5]CCGCTG[2]CTG[1]CCGCTG[4]CCG[2]CTG[4] | TP-PCR |
Pt 13 | 3’ | CTG[16]CCG[1]CTG[2]CCGCTG[4]CTG[1]CCGCTG[4]CCG[1]CCGCTG[4]CCG[1]CCGCTG[5]CTG[22] | TP-PCR |
Pt 14 | 3’ | CTG[2]CCG[1]CTG[112]TTG[1]CTG[4] | TP-PCR |
Pt 15 | 3’ | CTG[158]CCG[3] | TP-PCR |
Pt 16 | 3’ | CTG[68]CCG[9]CTG[9] | TP-PCR |
Pt 17 | 3’ | CTG[108]CCGCTG[100]CTG[8] | LR-PCR |
Pt 18 | 3’ | CTG[221]CCG[1]CTG[5]CCG[2]CTG[1]CCG[2]CTG[1]CCG[2]CTG[2]CCG[1]CTG[1]CCG[2]CTG[1]CCG[2]CTG[5]CCG[1]CTG[2]CCG[1]CTG[5]CCG[1]CTG[4] | LR-PCR |
Pt 19 | 3’ | CTG[238]CTC[1]CCG[1]CTC[1]CTG[1]CCG[1]CTG[3]CTC[1]CTGCTC[2]CTG[3]CTC[1]CTG[1]CTC[3]CTG[1]CCG[2]CTG[4]CCG[5]CTG[6]CCG[1]CTG[13] | LR-PCR |
Pt 20 | 3’ | CTG[8]CCGCTG[17]CTG[2]CCG[1]CTG[25] | TP-PCR |
5′ End CpG Island | 3′ End CpG Island | ||||
---|---|---|---|---|---|
ID | Mean CpG Sites Meth% | Mean Global Meth% | Mean CpG Sites Meth% | Mean Global Meth% | Parental Origin of Mutation |
Pt 1 | 11.8 | 5.6 ± 2.8 | 9.3 | 7.9 ± 1.3 | NA |
Pt 2 | 4.1 | 9.5 | Paternal | ||
Pt 3 | 5.3 | 7.2 | Maternal | ||
Pt 4 | 3.7 | 8.2 | Maternal | ||
Pt 5 | 4.5 | 7.7 | Maternal | ||
Pt 6 | 5.2 | 5.7 | Paternal | ||
Pt 7 | 4.7 | 7.5 | Maternal | ||
Pt 8 | 4.1 | 5.2 ± 1.5 | 26.7 | 13.9 ± 11.2 | Maternal |
Pt 9 | 5.9 | 42.5 | Maternal | ||
Pt 10 | 6.1 | 17.0 | Paternal | ||
Pt 11 | 4.5 | 8.0 | Paternal | ||
Pt 12 | 7.3 | 11.7 | Paternal | ||
Pt 13 | 5.3 | 25.2 | Maternal | ||
Pt 14 | 7.9 | 9.2 | Paternal | ||
Pt 15 | 6.9 | 8.0 | Paternal | ||
Pt 16 | 3.4 | 7.3 | Paternal | ||
Pt 17 | 5.6 | 4.8 | NA | ||
Pt 18 | 4.2 | 6.8 | Paternal | ||
Pt 19 | 2.9 | 5.5 | NA | ||
Pt 20 | 4.1 | 7.7 | Paternal |
Primer Name | Sequence (5’—> 3’) | Recognized Motif | |
---|---|---|---|
DMPK | P1_Rev | FAM-AGCCTGGCCGAAAGAAAGAAAT | - |
P2_Fw | FAM-GAACGGGGCTCGAAGGGTCCTTGTAGCCG | - | |
P3 | TACGCATCCCAGTTTGAGACG | - | |
P4 CAG_5’ | tacgcatcccagtttgagacgCAGCAGCAGCAGCAGCA | (CTG)5 | |
P4 CTG_3’ | tacgcatcccagtttgagacgTGCTGCTGCTGCTGCT | (CTG)5 | |
P4 esa_5’ | tacgcatcccagtttgagacgCAGCGGCAGCGG | (CTGCCG)2 | |
P4 (CGG)_3’ | tacgcatcccagtttgagacgCGGCGGCGGCGGCGG | (CGG)5 | |
P4 (CTC)_5’ | tacgcatcccagtttgagacgCAGCAGCAGCAGGAG | (CTC) | |
P4 esa_3’ | tacgcatcccagtttgagacgCCGCTGCCGCTGCCGCTGCCGCTGCCGCTG | (CTGCCG)5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visconti, V.V.; Macrì, E.; D’Apice, M.R.; Centofanti, F.; Massa, R.; Novelli, G.; Botta, A. In Cis Effect of DMPK Expanded Alleles in Myotonic Dystrophy Type 1 Patients Carrying Variant Repeats at 5′ and 3′ Ends of the CTG Array. Int. J. Mol. Sci. 2023, 24, 10129. https://doi.org/10.3390/ijms241210129
Visconti VV, Macrì E, D’Apice MR, Centofanti F, Massa R, Novelli G, Botta A. In Cis Effect of DMPK Expanded Alleles in Myotonic Dystrophy Type 1 Patients Carrying Variant Repeats at 5′ and 3′ Ends of the CTG Array. International Journal of Molecular Sciences. 2023; 24(12):10129. https://doi.org/10.3390/ijms241210129
Chicago/Turabian StyleVisconti, Virginia Veronica, Elisa Macrì, Maria Rosaria D’Apice, Federica Centofanti, Roberto Massa, Giuseppe Novelli, and Annalisa Botta. 2023. "In Cis Effect of DMPK Expanded Alleles in Myotonic Dystrophy Type 1 Patients Carrying Variant Repeats at 5′ and 3′ Ends of the CTG Array" International Journal of Molecular Sciences 24, no. 12: 10129. https://doi.org/10.3390/ijms241210129
APA StyleVisconti, V. V., Macrì, E., D’Apice, M. R., Centofanti, F., Massa, R., Novelli, G., & Botta, A. (2023). In Cis Effect of DMPK Expanded Alleles in Myotonic Dystrophy Type 1 Patients Carrying Variant Repeats at 5′ and 3′ Ends of the CTG Array. International Journal of Molecular Sciences, 24(12), 10129. https://doi.org/10.3390/ijms241210129