Neutralizing Antibodies in COVID-19 Serum from Tatarstan, Russia
Abstract
:1. Introduction
2. Results
2.1. Clinical Characteristics of COVID-19 Patients
2.2. Neutralizing Antibodies to Omicron and Wuhan in Serum of COVID-19 Patients
2.3. Cytokine Activation in Mild, Moderate, and Severe COVID-19 Patients Compared to Controls
2.4. Comparison Analysis of Cytokine Activation between Mild, Moderate, and Severe COVID-19 Patients
3. Discussion
4. Materials and Methods
4.1. Human Subjects
4.2. COVID-19 Treatment
4.3. Criteria for the Mild, Moderate, and Severe Forms of COVID-19
4.4. Ethics Statement
4.5. Anti-SARS-CoV-2 Antibody Enzyme-Linked Immunosorbent Assay (ELISA)
4.6. Neutralizing Assay
4.7. Multiplex Analysis
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- OWD. Daily New Confirmed COVID-19 Deaths Per Million People; World Italy: England, UK, 2022. [Google Scholar]
- da Rosa Mesquita, R.; Francelino Silva Junior, L.C.; Santos Santana, F.M.; Farias de Oliveira, T.; Campos Alcântara, R.; Monteiro Arnozo, G.; Rodrigues da Silva Filho, E.; Galdino dos Santos, A.G.; Oliveira da Cunha, E.J.; Salgueiro de Aquino, S.H. Clinical manifestations of COVID-19 in the general population: Systematic review. Wien. Klin. Wochenschr. 2021, 133, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Guidelines, C.-T. Clinical Spectrum of SARS-CoV-2 Infection. Available online: https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum/ (accessed on 6 March 2023).
- Kaeuffer, C.; Le Hyaric, C.; Fabacher, T.; Mootien, J.; Dervieux, B.; Ruch, Y. Clinical characteristics and risk factors associated with severe COVID-19: Prospective analysis of 1045 hospitalised cases in North-Eastern France, March 2020. Eurosurveillance 2020, 25, 2000895. [Google Scholar] [CrossRef] [PubMed]
- Riley, R.D.; Ensor, J.; Snell, K.I.; Harrell, F.E.; Martin, G.P.; Reitsma, J.B.; Moons, K.G.; Collins, G.; Van Smeden, M. Calculating the sample size required for developing a clinical prediction model. BMJ 2020, 368, m441. [Google Scholar] [CrossRef] [PubMed]
- Dispinseri, S.; Secchi, M.; Pirillo, M.F.; Tolazzi, M.; Borghi, M.; Brigatti, C.; De Angelis, M.L.; Baratella, M.; Bazzigaluppi, E.; Venturi, G. Neutralizing antibody responses to SARS-CoV-2 in symptomatic COVID-19 is persistent and critical for survival. Nat. Commun. 2021, 12, 2670. [Google Scholar] [CrossRef]
- Garcia-Beltran, W.F.; Lam, E.C.; Astudillo, M.G.; Yang, D.; Miller, T.E.; Feldman, J.; Hauser, B.M.; Caradonna, T.M.; Clayton, K.L.; Nitido, A.D. COVID-19-neutralizing antibodies predict disease severity and survival. Cell 2021, 184, 476–488.e411. [Google Scholar] [CrossRef]
- Assadiasl, S.; Fatahi, Y.; Zavvar, M.; Nicknam, M.H. COVID-19: Significance of antibodies. Hum. Antib. 2020, 28, 287–297. [Google Scholar] [CrossRef]
- Seow, J.; Graham, C.; Merrick, B.; Acors, S.; Pickering, S.; Steel, K.J.; Hemmings, O.; O’Byrne, A.; Kouphou, N.; Galao, R.P. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat. Microbiol. 2020, 5, 1598–1607. [Google Scholar] [CrossRef]
- Tang, J.; Ravichandran, S.; Lee, Y.; Grubbs, G.; Coyle, E.M.; Klenow, L.; Genser, H.; Golding, H.; Khurana, S. Antibody affinity maturation and plasma IgA associate with clinical outcome in hospitalized COVID-19 patients. Nat. Commun. 2021, 12, 1221. [Google Scholar] [CrossRef]
- CDC. SARS-CoV-2 Variant Classifications and Definitions; CDC: Atlanta, GA, USA, 2021.
- Davies, N.G.; Abbott, S.; Barnard, R.C.; Jarvis, C.I.; Kucharski, A.J.; Munday, J.D.; Pearson, C.A.; Russell, T.W.; Tully, D.C.; Washburne, A.D. Estimated transmissibility and impact of SARS-CoV-2 lineage B. 1.1. 7 in England. Science 2021, 372, eabg3055. [Google Scholar]
- Lyngse, F.P.; Mølbak, K.; Skov, R.L.; Christiansen, L.E.; Mortensen, L.H.; Albertsen, M.; Møller, C.H.; Krause, T.G.; Rasmussen, M.; Michaelsen, T.Y. Increased transmissibility of SARS-CoV-2 lineage B. 1.1. 7 by age and viral load. Nat. Commun. 2021, 12, 7251. [Google Scholar]
- Twohig, K.A.; Nyberg, T.; Zaidi, A.; Thelwall, S.; Sinnathamby, M.A.; Aliabadi, S.; Seaman, S.R.; Harris, R.J.; Hope, R.; Lopez-Bernal, J. Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B. 1.617. 2) compared with alpha (B. 1.1. 7) variants of concern: A cohort study. Lancet Infect. Dis. 2022, 22, 35–42. [Google Scholar] [CrossRef]
- Lin, L.; Liu, Y.; Tang, X.; He, D. The disease severity and clinical outcomes of the SARS-CoV-2 variants of concern. Front. Public Health 2021, 9, 775224. [Google Scholar] [CrossRef] [PubMed]
- Moyo-Gwete, T.; Madzivhandila, M.; Makhado, Z.; Ayres, F.; Mhlanga, D.; Oosthuysen, B.; Lambson, B.E.; Kgagudi, P.; Tegally, H.; Iranzadeh, A. Cross-reactive neutralizing antibody responses elicited by SARS-CoV-2 501Y. V2 (B. 1.351). N. Engl. J. Med. 2021, 384, 2161–2163. [Google Scholar] [CrossRef] [PubMed]
- Reincke, S.M.; Yuan, M.; Kornau, H.-C.; Corman, V.M.; van Hoof, S.; Sánchez-Sendin, E.; Ramberger, M.; Yu, W.; Hua, Y.; Tien, H. SARS-CoV-2 Beta variant infection elicits potent lineage-specific and cross-reactive antibodies. Science 2022, 375, 782–787. [Google Scholar] [CrossRef]
- Corbett, K.S.; Edwards, D.K.; Leist, S.R.; Abiona, O.M.; Boyoglu-Barnum, S.; Gillespie, R.A.; Himansu, S.; Schäfer, A.; Ziwawo, C.T.; DiPiazza, A.T. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 2020, 586, 567–571. [Google Scholar] [CrossRef] [PubMed]
- Ikegame, S.; Siddiquey, M.N.; Hung, C.-T.; Haas, G.; Brambilla, L.; Oguntuyo, K.Y.; Kowdle, S.; Chiu, H.-P.; Stevens, C.S.; Vilardo, A.E. Neutralizing activity of Sputnik V vaccine sera against SARS-CoV-2 variants. Nat. Commun. 2021, 12, 4598. [Google Scholar] [CrossRef]
- Sanders, R.W.; de Jong, M.D. Pandemic moves and countermoves: Vaccines and viral variants. Lancet 2021, 397, 1326–1327. [Google Scholar] [CrossRef]
- Komissarov, A.B.; Safina, K.R.; Garushyants, S.K.; Fadeev, A.V.; Sergeeva, M.V.; Ivanova, A.A.; Danilenko, D.M.; Lioznov, D.; Shneider, O.V.; Shvyrev, N. Genomic epidemiology of the early stages of the SARS-CoV-2 outbreak in Russia. Nat. Commun. 2021, 12, 649. [Google Scholar] [CrossRef]
- Klink, G.V.; Safina, K.R.; Nabieva, E.; Shvyrev, N.; Garushyants, S.; Alekseeva, E.; Komissarov, A.B.; Danilenko, D.M.; Pochtovyi, A.A.; Divisenko, E.V. The rise and spread of the SARS-CoV-2 AY. 122 lineage in Russia. Virus Evol. 2022, 8, veac017. [Google Scholar] [CrossRef]
- State of Health. Share of SARS-CoV-2 Sequences That Are the Omicron Variant in the Past Two Weeks in Russia from November 22, 2021 to February 27. 2023. Available online: https://www.statista.com/statistics/1286435/sars-cov-2-omicron-variant-share-russia (accessed on 2 December 2022).
- Garanina, E.; Hamza, S.; Stott-Marshall, R.J.; Martynova, E.; Markelova, M.; Davidyuk, Y.; Shakirova, V.; Kaushal, N.; Baranwal, M.; Khaertynova, I.M. Antibody and T Cell Immune Responses to SARS-CoV-2 Peptides in COVID-19 Convalescent Patients. Front. Microbiol. 2022, 13, 842232. [Google Scholar] [CrossRef]
- Martynova, E.; Hamza, S.; Markelova, M.; Garanina, E.; Davidyuk, Y.; Shakirova, V.; Kaushal, N.; Baranwal, M.; Stott-Marshall, R.J.; Foster, T.L. Immunogenic SARS-CoV-2 S and N Protein Peptide and Cytokine Combinations as Biomarkers for Early Prediction of Fatal COVID-19. Front. Immunol. 2022, 13, 830715. [Google Scholar] [CrossRef] [PubMed]
- Barnes, C.O.; Jette, C.A.; Abernathy, M.E.; Dam, K.M.A.; Esswein, S.R.; Gristick, H.B.; Malyutin, A.G.; Sharaf, N.G.; Huey-Tubman, K.E.; Lee, Y.E.; et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 2020, 588, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Liu, M.; Wang, A.; Lu, L.; Wang, Q.; Gu, C.; Chen, J.; Wu, Y.; Xia, S.; Ling, Y. Evaluating the association of clinical characteristics with neutralizing antibody levels in patients who have recovered from mild COVID-19 in Shanghai, China. JAMA Intern. Med. 2020, 180, 1356–1362. [Google Scholar] [CrossRef] [PubMed]
- Kravchenko, N.; Ivanova, A. Spread of the COVID-19 In Russia: Regional Peculiarities. Reg. Res. Russ. 2021, 11, 428–434. [Google Scholar] [CrossRef]
- Onishchenko, G.; Sizikova, T.; Lebedev, V.; Borisevich, S. The Omicron Variant of the Sars-Cov-2 Virus As the Dominant Agent of a New Risk of Disease amid the COVID-19 Pandemic. Her. Russ. Acad. Sci. 2022, 92, 381–391. [Google Scholar] [CrossRef]
- Krieger, E.; Kudryavtsev, A.; Sharashova, E.; Postoev, V.; Belova, N.; Shagrov, L.; Zvedina, J.; Drapkina, O.; Kontsevaya, A.; Shalnova, S. Seroprevalence of SARS-Cov-2 Antibodies in Adults, Arkhangelsk, Russia. Emerg. Infect. Dis. 2022, 28, 463. [Google Scholar] [CrossRef]
- Gorchakov, A.A.; Kulemzin, S.V.; Guselnikov, S.V.; Baranov, K.O.; Belovezhets, T.N.; Mechetina, L.V.; Volkova, O.Y.; Najakshin, A.M.; Chikaev, N.A.; Chikaev, A.N. Isolation of a panel of ultra-potent human antibodies neutralizing SARS-CoV-2 and viral variants of concern. Cell Discov. 2021, 7, 96. [Google Scholar] [CrossRef]
- Chernyaeva, E.N.; Ayginin, A.A.; Bulusheva, I.A.; Vinogradov, K.S.; Stetsenko, I.F.; Romanova, S.V.; Tsypkina, A.V.; Matsvay, A.D.; Savochkina, Y.A.; Shipulin, G.A. Genomic Variability of SARS-CoV-2 Omicron Variant Circulating in the Russian Federation during Early December 2021 and Late January 2022. Pathogens 2022, 11, 1461. [Google Scholar] [CrossRef]
- Mukhamadieva, V.; Lapshina, S.; Shamsutdinova, N.; Sagitova, A.; Zakirova, A.; Krasnova, L.; Abdrakipov, R.; Abdulganieva, D. AB0858 Clinical Characteristics of Patients with Spondyloarthritis with COVID-19 in Anamnesis in the Republic of Tatarstan; BMJ Publishing Group Ltd.: London, UK, 2022. [Google Scholar]
- Margiotti, K.; Fabiani, M.; Mesoraca, A.; Giorlandino, C. Natural immune response and protection from SARS-CoV-2 reinfection. Acta Virol. 2021, 65, 333–338. [Google Scholar] [CrossRef]
- Rybkina, K.; Davis-Porada, J.; Farber, D.L. Tissue immunity to SARS-CoV-2: Role in protection and immunopathology. Immunol. Rev. 2022, 309, 25–39. [Google Scholar] [CrossRef]
- Tan, L.Y.; Komarasamy, T.V.; Rmt Balasubramaniam, V. Hyperinflammatory immune response and COVID-19: A double edged sword. Front. Immunol. 2021, 12, 742941. [Google Scholar] [CrossRef]
- Shah, V.K.; Firmal, P.; Alam, A.; Ganguly, D.; Chattopadhyay, S. Overview of immune response during SARS-CoV-2 infection: Lessons from the past. Front. Immunol. 2020, 11, 1949. [Google Scholar] [CrossRef] [PubMed]
- Jeewandara, C.; Jayathilaka, D.; Gomes, L.; Wijewickrama, A.; Narangoda, E.; Idampitiya, D.; Guruge, D.; Wijayamuni, R.; Manilgama, S.; Ogg, G.S. SARS-CoV-2 neutralizing antibodies in patients with varying severity of acute COVID-19 illness. Sci. Rep. 2021, 11, 2062. [Google Scholar] [CrossRef] [PubMed]
- Maciola, A.K.; La Raja, M.; Pacenti, M.; Salata, C.; De Silvestro, G.; Rosato, A.; Pasqual, G. Neutralizing antibody responses to SARS-CoV-2 in recovered COVID-19 patients are variable and correlate with disease severity and receptor-binding domain recognition. Front. Immunol. 2022, 13, 95. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.; Klein, J.; Sundaram, M.E.; Liu, F.; Wong, P.; Silva, J.; Mao, T.; Oh, J.E.; Mohanty, S.; Huang, J. Delayed production of neutralizing antibodies correlates with fatal COVID-19. Nat. Med. 2021, 27, 1178–1186. [Google Scholar] [CrossRef] [PubMed]
- Pappas, A.G.; Chaliasou, A.-L.; Panagopoulos, A.; Dede, K.; Daskalopoulou, S.; Moniem, E.; Polydora, E.; Grigoriou, E.; Psarra, K.; Tsirogianni, A. Kinetics of Immune Subsets in COVID-19 Patients Treated with Corticosteroids. Viruses 2022, 15, 51. [Google Scholar] [CrossRef]
- Jacobson, N.G.; Szabo, S.J.; Weber-Nordt, R.M.; Zhong, Z.; Schreiber, R.D.; Darnell, J.E., Jr.; Murphy, K.M. Interleukin 12 signaling in T helper type 1 (Th1) cells involves tyrosine phosphorylation of signal transducer and activator of transcription (Stat) 3 and Stat4. J. Exp. Med. 1995, 181, 1755–1762. [Google Scholar] [CrossRef]
- Manetti, R.; Parronchi, P.; Giudizi, M.G.; Piccinni, M.; Maggi, E.; Trinchieri, G.; Romagnani, S. Natural Killer Cell Stimulatory Factory (Interleucin 12 [IL-12]) Induces Responses and Inhibits the Dedevelopment of IL-4-producing Th Cells. J. Exp. Med. 1993, 177, 1199–1204. [Google Scholar] [CrossRef]
- Bradley, L.M.; Dalton, D.K.; Croft, M. A direct role for IFN-gamma in regulation of Th1 cell development. J. Immunol. 1996, 157, 1350–1358. [Google Scholar] [CrossRef]
- Okamura, H.; Tsutsui, H.; Komatsu, T.; Yutsudo, M.; Hakura, A.; Tanimoto, T.; Torigoe, K.; Okura, T.; Nukada, Y.; Hattori, K. Cloning of a new cytokine that induces IFN-γ production by T cells. Nature 1995, 378, 88–91. [Google Scholar] [CrossRef]
- Nakanishi, K. Unique action of interleukin-18 on T cells and other immune cells. Front. Immunol. 2018, 9, 763. [Google Scholar] [CrossRef] [PubMed]
- Nakahira, M.; Nakanishi, K. Requirement of GATA-binding protein 3 for Il13 gene expression in IL-18-stimulated Th1 cells. Intern. Immunol. 2011, 23, 761–772. [Google Scholar] [CrossRef] [PubMed]
- Gil-Etayo, F.J.; Garcinuño, S.; Utrero-Rico, A.; Cabrera-Marante, O.; Arroyo-Sanchez, D.; Mancebo, E.; Pleguezuelo, D.E.; Rodríguez-Frías, E.; Allende, L.M.; Morales-Pérez, P. An early Th1 response is a key factor for a favorable COVID-19 evolution. Biomedicines 2022, 10, 296. [Google Scholar] [CrossRef]
- Pavel, A.B.; Glickman, J.W.; Michels, J.R.; Kim-Schulze, S.; Miller, R.L.; Guttman-Yassky, E. Th2/Th1 cytokine imbalance is associated with higher COVID-19 risk mortality. Front. Genet. 2021, 12, 706902. [Google Scholar] [CrossRef]
- Chan, A.H.; Schroder, K. Inflammasome signaling and regulation of interleukin-1 family cytokines. J. Exp. Med. 2019, 217, e20190314. [Google Scholar] [CrossRef] [PubMed]
- Boraschi, D. What is IL-1 for? The functions of interleukin-1 across evolution. Front. Immunol. 2022, 13, 872155. [Google Scholar] [CrossRef]
- Nambu, A.; Nakae, S.; Iwakura, Y. IL-1β, but not IL-1α, is required for antigen-specific T cell activation and the induction of local inflammation in the delayed-type hypersensitivity responses. Intern. Immunol. 2006, 18, 701–712. [Google Scholar] [CrossRef]
- Sutton, C.; Brereton, C.; Keogh, B.; Mills, K.H.; Lavelle, E.C. A crucial role for interleukin (IL)-1 in the induction of IL-17–producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med. 2006, 203, 1685–1691. [Google Scholar] [CrossRef]
- Feriotti, C.; de Araújo, E.F.; Loures, F.V.; da Costa, T.A.; Galdino, N.A.d.L.; Zamboni, D.S.; Calich, V.L.G. NOD-like receptor P3 inflammasome controls protective Th1/Th17 immunity against pulmonary paracoccidioidomycosis. Front. Immunol. 2017, 8, 786. [Google Scholar] [CrossRef]
- Chamoun, M.N.; Blumenthal, A.; Sullivan, M.J.; Schembri, M.A.; Ulett, G.C. Bacterial pathogenesis and interleukin-17: Interconnecting mechanisms of immune regulation, host genetics, and microbial virulence that influence severity of infection. Crit. Rev. Microbiol. 2018, 44, 465–486. [Google Scholar] [CrossRef]
- Noack, M.; Beringer, A.; Miossec, P. Additive or synergistic interactions between IL-17A or IL-17F and TNF or IL-1β depend on the cell type. Front. Immunol. 2019, 10, 1726. [Google Scholar] [CrossRef] [PubMed]
- Maione, F.; Casillo, G.M.; Raucci, F.; Salvatore, C.; Ambrosini, G.; Costa, L.; Scarpa, R.; Caso, F.; Bucci, M. Interleukin-17A (IL-17A): A silent amplifier of COVID-19. Biomed. Pharmacother. 2021, 142, 111980. [Google Scholar] [CrossRef]
- Ren, L.; Zhang, L.; Chang, D.; Wang, J.; Hu, Y.; Chen, H.; Guo, L.; Wu, C.; Wang, C.; Wang, Y. The kinetics of humoral response and its relationship with the disease severity in COVID-19. Commun. Biol. 2020, 3, 780. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yue, D.; Wang, Y.; Wang, F.; Wu, S.; Hou, H. The dynamics of immune response in COVID-19 patients with different illness severity. J. Med. Virol. 2021, 93, 1070–1077. [Google Scholar] [CrossRef] [PubMed]
- Orth-Höller, D.; Eigentler, A.; Weseslindtner, L.; Möst, J. Antibody kinetics in primary-and secondary-care physicians with mild to moderate SARS-CoV-2 infection. Emerg. Microbes Infect. 2020, 9, 1692–1694. [Google Scholar] [CrossRef] [PubMed]
- Chemaitelly, H.; Ayoub, H.H.; Tang, P.; Hasan, M.R.; Coyle, P.; Yassine, H.M.; Al-Khatib, H.A.; Smatti, M.K.; Al-Kanaani, Z.; Al-Kuwari, E. Immune imprinting and protection against repeat reinfection with SARS-CoV-2. N. Engl. J. Med. 2022, 387, 1716–1718. [Google Scholar] [CrossRef]
- Laurie, M.T.; Liu, J.; Sunshine, S.; Peng, J.; Black, D.; Mitchell, A.M.; Mann, S.A.; Pilarowski, G.; Zorn, K.C.; Rubio, L. SARS-CoV-2 variant exposures elicit antibody responses with differential cross-neutralization of established and emerging strains including Delta and Omicron. J. Infect. Dis. 2022, 225, 1909–1914. [Google Scholar] [CrossRef]
- Park, Y.-J.; Pinto, D.; Walls, A.C.; Liu, Z.; De Marco, A.; Benigni, F.; Zatta, F.; Silacci-Fregni, C.; Bassi, J.; Sprouse, K.R. Imprinted antibody responses against SARS-CoV-2 Omicron sublineages. Science 2022, 378, 619–627. [Google Scholar] [CrossRef]
- da Silva, E.S.; Kohnen, M.; Gilson, G.; Staub, T.; Arendt, V.; Hilger, C.; Servais, J.-Y.; Charpentier, E.; Domingues, O.; Snoeck, C.J. Pre-Omicron Vaccine Breakthrough Infection Induces Superior Cross-Neutralization against SARS-CoV-2 Omicron BA. 1 Compared to Infection Alone. Int. J. Mol. Sci. 2022, 23, 7675. [Google Scholar] [CrossRef]
- Smolen, J.S.; Feist, E.; Fatenejad, S.; Grishin, S.A.; Korneva, E.V.; Nasonov, E.L.; Samsonov, M.Y.; Fleischmann, R.M. Olokizumab versus placebo or adalimumab in rheumatoid arthritis. N. Engl. J. Med. 2022, 387, 715–726. [Google Scholar] [CrossRef]
- Ministry of Health of the Russian Federation. Interim Guidelines “Prevention, Diagnosis and Treatment of a New Coronavirus Infection (COVID-19)” Version 7 of 03.06. 2020. Available online: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/http://static.edu.rosminzdrav.ru/fc0001/fdpo/decanat/NMO_MZ/TEOC/u14/2022/infografika_VMR_COVID-19_V17.pdf (accessed on 3 June 2020).
- GenScript. SARS-CoV-2 Surrogate Virus Neutralization Test Kit. Available online: https://www.genscript.com/product/documents?cat_no=L00847-A&catalogtype=Document-PROTOCOL (accessed on 20 June 2021).
Control (n = 26) | COVID-19 | p Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mild (n = 24) | Moderate (n = 30) | Severe (n = 27) | 1 | 2 | 3 | 4 | 5 | 6 | ||
Sex (m/f) | 11/15 | 7/17 | 15/15 | 10/17 | 0.39 § | 0.60 § | 0.78 § | 0.17 § | 0.77 § | 0.42 § |
Age | 62.8 ± 13.6 | 64.3 ± 17.3 | 65.7 ± 14.0 | 70.8 ± 12.4 | 0.40 | 0.60 | 0.14 | 0.81 | 0.43 | 0.43 |
Leu, 109 | 5.3 ± 1.2 | 5.2 ± 2.4 | 6.2 ± 2.9 | 7.9 ± 4.5 | 0.46 | 0.42 | 0.11 | 0.19 | 0.03 | 0.33 |
Monocyte, % | 3.5 ± 0.8 | 10.2 ± 4.6 | 8.8 ± 3.5 | 5.6 ± 2.5 | <0.01 | <0.01 | 0.02 | 0.37 | <0.01 | <0.01 |
Monocyte, 109 | 0.19 ± 0.06 | 0.48 ± 0.21 | 0.48 ± 0.19 | 0.41 ± 0.28 | <0.01 | <0.01 | <0.01 | 0.87 | 0.15 | 0.11 |
Lyphocyte, % | 26.5 ± 4.1 | 31.0 ± 13.7 | 27.3 ± 15.8 | 15.0 ± 11.0 | 0.45 | 0.96 | <0.01 | 0.51 | <0.01 | <0.01 |
Lyphocyte, 109 | 1.42 ± 0.47 | 1.46 ± 0.72 | 1.43 ± 0.76 | 0.89 ± 0.60 | 0.70 | 0.58 | <0.01 | 0.78 | <0.01 | <0.01 |
Platelets, 109 | 210.1 ± 10.0 | 201.3 ± 73.6 | 212.9 ± 81.3 | 218.4 ± 86.8 | 0.46 | 0.93 | 0.69 | 0.49 | 0.58 | 0.96 |
Hb, g/L | 134.8 ± 12.6 | 131.7 ± 15.8 | 129.1 ± 20.5 | 129.7 ± 16.7 | 0.78 | 1.00 | 1.00 | 1.00 | 0.96 | 0.91 |
CRP, mg/L | 1.2 ± 0.5 | 21.4 ± 34.9 | 56.1 ± 79.4 | 99.4 ± 68.4 | <0.01 | <0.01 | <0.01 | 0.04 | <0.01 | 0.049 |
ALT | 22.2 ± 4.1 | 26.3 ± 17.4 | 31.3 ± 20.4 | 36.1 ± 22.0 | 0.96 | 0.45 | 0.22 | 0.58 | 0.42 | 0.53 |
AST | 29.3 ± 3.7 | 35.6 ± 25.5 | 37.3 ± 22.4 | 51.4 ± 34.4 | 0.89 | 0.46 | 0.01 | 0.48 | 0.02 | 0.09 |
TT, sec | 13.9 ± 1.5 | 14.7 ± 9.0 | 17.4 ± 5.1 | 19.2 ± 11.9 | 0.04 | <0.01 | <0.01 | 0.17 | 0.08 | 0.56 |
Fbrinogen, mg/L | 1.5 ± 0.2 | 21.8 ± 77.3 | 4.4 ± 1.3 | 5.3 ± 2.3 | <0.01 | <0.01 | <0.01 | 0.92 | 0.50 | 0.50 |
CT, % lung damage | - | 4.4 ± 6.9 | 20.0 ± 13.4 | 47.7 ± 25.9 | - | - | - | <0.01 | <0.01 | <0.01 |
Omicron neutralizing antibodies | 0.0 ± 0.0 | 19.5 ± 34.9 | 43.6 ± 38.0 | 12.1 ± 27.4 | 0.06 | <0.01 | 0.19 | 0.02 | 0.48 | <0.01 |
Wuhan neutralizing antibodies | 0.0 ± 0.0 | 48.7 ± 43.7 | 46.2 ± 40.9 | 26.6 ± 42.8 | <0.01 | <0.01 | 0.15 | 0.76 | 0.27 | 0.22 |
Anti-SARS-CoV-2 antibody | 0.051 ± 0.069 | 0.959 ± 1.433 | 1.794 ± 1.519 | 0.802 ± 1.254 | 0.01 | <0.01 | 0.01 | 0.03 | 0.65 | 0.01 |
Positive | Negative | p Value | |
---|---|---|---|
Mild COVID-19 | 6 (25%) | 18 (75%) | Mild vs. Moderate: 0.02 |
Moderate COVID-19 | 18 (60%) | 12 (40%) | Mild vs. Severe: 0.74 |
Severe COVID-19 | 5 (18.5%) | 22 (81.5%) | Moderate vs. Severe: 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamza, S.; Martynova, E.; Garanina, E.; Shakirova, V.; Bilalova, A.; Moiseeva, S.; Khaertynova, I.; Ohlopkova, O.; Blatt, N.; Markelova, M.; et al. Neutralizing Antibodies in COVID-19 Serum from Tatarstan, Russia. Int. J. Mol. Sci. 2023, 24, 10181. https://doi.org/10.3390/ijms241210181
Hamza S, Martynova E, Garanina E, Shakirova V, Bilalova A, Moiseeva S, Khaertynova I, Ohlopkova O, Blatt N, Markelova M, et al. Neutralizing Antibodies in COVID-19 Serum from Tatarstan, Russia. International Journal of Molecular Sciences. 2023; 24(12):10181. https://doi.org/10.3390/ijms241210181
Chicago/Turabian StyleHamza, Shaimaa, Ekaterina Martynova, Ekaterina Garanina, Venera Shakirova, Alisa Bilalova, Svetlana Moiseeva, Ilsiyar Khaertynova, Olesia Ohlopkova, Nataliya Blatt, Maria Markelova, and et al. 2023. "Neutralizing Antibodies in COVID-19 Serum from Tatarstan, Russia" International Journal of Molecular Sciences 24, no. 12: 10181. https://doi.org/10.3390/ijms241210181
APA StyleHamza, S., Martynova, E., Garanina, E., Shakirova, V., Bilalova, A., Moiseeva, S., Khaertynova, I., Ohlopkova, O., Blatt, N., Markelova, M., & Khaiboullina, S. (2023). Neutralizing Antibodies in COVID-19 Serum from Tatarstan, Russia. International Journal of Molecular Sciences, 24(12), 10181. https://doi.org/10.3390/ijms241210181