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Abstract: Germline inactivating mutations in the BRCA1 gene lead to an increased lifetime risk
of ovarian and breast cancer (BC). Most BRCA1-associated BC are triple-negative tumors (TNBC),
aggressive forms of BC characterized by a lack of expression of estrogen and progesterone hormone
receptors (HR) and HER2. How BRCA1 inactivation may favor the development of such a specific
BC phenotype remains to be elucidated. To address this question, we focused on the role of miRNAs
and their networks in mediating BRCA1 functions. miRNA, mRNA, and methylation data were
retrieved from the BRCA cohort of the TCGA project. The cohort was divided into a discovery set
(Hi-TCGA) and a validation set (GA-TCGA) based on the platform used for miRNA analyses. The
METABRIC, GSE81002, and GSE59248 studies were used as additional validation data sets. BCs were
differentiated into BRCA1-like and non-BRCA1-like based on an established signature of BRCA1
pathway inactivation. Differential expression of miRNAs, gene enrichment analysis, functional
annotation, and methylation correlation analyses were performed. The miRNAs downregulated in
BRCA1-associated BC were identified by comparing the miRNome of BRCA1-like with non-BRCA1-
like tumors from the Hi-TCGA discovery cohort. miRNAs:gene-target anticorrelation analyses were
then performed. The target genes of miRNAs downregulated in the Hi-TCGA series were enriched
in the BRCA1-like tumors from the GA-TCGA and METABRIC validation data sets. Functional
annotation of these genes revealed an over-representation of several biological processes ascribable
to BRCA1 activity. The enrichment of genes related to DNA methylation was particularly intriguing,
as this is an aspect of BRCA1 functions that has been poorly explored. We then focused on the miR-
29:DNA methyltransferase network and showed that the miR-29 family, which was downregulated
in BRCA1-like tumors, was associated with poor prognosis in these BCs and inversely correlated
with the expression of the DNA methyltransferases DNMT3A and DNMT3B. This, in turn, correlated
with the methylation extent of the promoter of HR genes. These results suggest that BRCA1 may
control the expression of HR via a miR-29:DNMT3:HR axis and that disruption of this network may
contribute to the receptor negative phenotype of tumors with dysfunctional BRCA1.

Keywords: breast cancer; BRCA1; microRNA; miR-29c; miR-29b; DNMT3A; DNMT3B; DNA
methylation; estrogen receptor; progesterone receptor

1. Introduction

Patients carrying inactivating BRCA1 germline mutations have an increased lifetime
risk of developing breast and ovarian cancer [1]. Specifically, BRCA1 germline mutations
predispose to the occurrence of triple-negative breast cancer (TNBC), an aggressive subtype
of breast cancer (BC) that is negative for the expression of the hormone receptors (HR), ERα
and PR, and HER2 [2,3].

In addition to germline mutations, which account for approximately 5–10% of all BCs,
a subset of sporadic cancers, most of the TNBC subtype, have features of dysfunctional
BRCA1 [4–6]. Approximately 10% exhibit aberrant methylation of the BRCA1 promoter, a
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feature closely associated with the downregulation of BRCA1 gene transcripts and loss of
heterozygosity at the BRCA1 locus [7–9]. This fraction of tumors shows hallmarks of dys-
functional BRCA1 characteristics of hereditary BRCA1 tumors, such as the absence of HR,
amplification of MYC, and an unchanged ERBB2 gene (encoding the HER2 receptor) [10,11].
Finally, patterns of genomic alterations typical of familial BRCA1 tumors are detected in
an additional fraction of sporadic BCs devoid of evident BRCA1 gene or expression alter-
ations [11,12]. Thus, in addition to hereditary BRCA1 tumors, a substantial proportion
of sporadic BCs may be considered BRCA1-associated since they rely on dysfunctional
BRCA1 as a driving force. To better identify these tumors, Chen and coworkers developed
a specific signature that they used to define a group of BRCA1-like tumors [5].

The large nuclear BRCA1 protein acts as a guardian of chromosome integrity through
various functions that ensure the assembly and activity of macromolecular complexes
involved in DNA double-strand break repair [13] and mitotic and replication control [14].
Tumors with deleterious mutations in the BRCA1 gene and hence impaired DNA repair
capacity are highly sensitive to inter-strand crosslinking agents (platinum or alkylating
agents), topoisomerase II inhibitors (anthracyclines), and PARP inhibitors [15–17].

Increasing evidence indicates that BRCA1 also plays a central role in regulating the
transcription and processing of RNA [18,19], including non-coding microRNAs (miR-
NAs) [20]. miRNAs are important regulators of gene expression by inhibiting the trans-
lation of target mRNAs, mostly by binding to their 3′UTR region [21,22]. BRCA1 is in-
volved in both the induction and repression of miRNA transcription and maturation
through the binding to DROSHA [20,23–25]. Indeed, several miRNAs have been identi-
fied as deregulated in BRCA1/2-associated BCs [26,27], but how the interplay between
BRCA1 and miRNAs may promote the development of the BRCA1-like/TNBC subtype
remains unclear.

To identify miRNA:mRNA circuits involved in the induction of a BRCA1-like phe-
notype, we interrogated publicly available transcriptional profiling data. This approach
allowed us to unveil a particular interplay between the miR-29 family of miRNAs, DNA
methyltransferases, and HR.

2. Results
2.1. Downregulated miRNAs in BRCA1-like Tumors

To address the hypothesis of a role for BRCA1:miRNA networks in the development of
the BRCA1-like/TNBC subtype, microRNA expression data were retrieved from the TCGA-
BRCA project (https://www.cancer.gov/tcga) [28]. To capture all cases with a putative
dysfunctional BRCA1, we used the classification into BRCA1-like and non-BRCA1-like
cases proposed by Chen and coworkers [5]. We used the TCGA BC miRNA isoform data
generated by Hiseq Illumina technology (Hi-TCGA data set) as the discovery data set. This
consists of 554 patients, 161 BRCA1-like, and 393 non-BRCA1-like. Differential expression
analysis showed that 57 miRNAs were downregulated and 105 were upregulated in BRCA1-
like compared with non-BRCA1-like samples (log2FC > |0.4|, padj < 0.00001; Figure 1A
and Supplemental Table S1).

To uncover genes whose overexpression, as a consequence of the alleviation from
miRNAs-mediated inhibition, may promote tumorigenic properties, we focused on down-
regulated miRNAs and queried the miRDIP platform (version 5.0.2.3, https://ophid.
utoronto.ca/mirDIP/; accessed on 20 April 2022). This is a large database for predict-
ing miRNA:gene target pairs based on 3′UTR pairing [29]. The 57 downregulated miRNAs
were predicted to target 4236 genes with high confidence (very high score). We assumed
that if a miRNA acts as a negative regulator of a given mRNA, its expression levels should
be somehow anticorrelated. Therefore, we retrieved the RNAseq data for the same cases of
the Hi-TCGA BC series and performed anticorrelation analyses with miRNA expression.
Using a correlation threshold R < −0.35 as a cutoff, 2215 interactions were observed be-
tween 41 of the 57 miRNAs used as input and 504 genes (Supplemental Table S2). Some
genes were targeted by nearly 30 miRNAs (Figure 1B).

https://www.cancer.gov/tcga
https://ophid.utoronto.ca/mirDIP/
https://ophid.utoronto.ca/mirDIP/
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Figure 1. Targets and pathways affected by miRNAs differentially expressed in BRCA1-like and non-
BRCA1-like cancers. (A) Volcano plot showing upregulated (Up, orange dots) and downregulated
(Down, blue dots) miRNAs resulting from differential expression analysis of miRNA isoforms in the
Hi-TCGA data set. The comparison was made between BRCA1-like and non-BRCA1-like cancers.
The horizontal dashed line corresponds to the p-value cut-off (p-value < 0.0001, −Log(p-value) > 4).
Vertical dashed lines indicate fold change cut-off values (log2FC > |0.4|). Gray dots (NonDE)
represent non-differentially expressed miRNAs (R package EnhancedVolcano). (B) The 35 most
targeted genes ranked by the number of interactions with distinct miRNAs. Interactions refer
to significant anti-correlation (r < −0.35) between downregulated miRNAs and putative targets.
(C,D) GSEA plots showing the enrichment of 504 miRNA targets in BRCA1-like compared with
non-BRCA1-like in the GA-TCGA (C) and METABRIC (D) validation series. Normalized enrichment
score (NES), nominal p-value (NOM p-value), false discovery rate (FDR), and familywise-error rate
(FWER p-value) are reported. (E) Results of gene ontology analysis for the most significantly enriched
biological processes associated with the 504 targets of downregulated miRNAs (full data are provided
in Supplemental Table S3).
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After having identified these anticorrelated miRNA:gene pairs using the Hi-TCGA
discovery cohort, we sought to verify whether the genes potentially targeted by the miRNAs
downregulated in BRCA1-like cases were enriched in BRCA1-like BC. We then performed
gene set enrichment analysis (GSEA) on the mRNA data obtained from two independent
data sets: the first, consisting of 76 BRCA1-like and 149 non-BRCA1-like BCs, was generated
by the TCGA consortium using a genome analyzer sequencing platform to produce miRNA
data (GA-TCGA); the second data set was obtained from the METABRIC project and
included 215 BRCA1-like and 1068 non-BRCA1-like BCs [30]. The GSEA revealed that
the 504 genes potentially targeted by downregulated miRNAs were indeed significantly
enriched in BRCA1-like samples of both validation series (Figure 1C,D), supporting the
hypothesis of a BRCA1-mediated control over these genes via miRNAs.

Functional annotation by overrepresentation analysis (ORA) of the genes targeted
by the downregulated miRNAs revealed that many of the over-represented biological
processes of gene ontology (GO) were known to be controlled by BRCA1, such as cell
cycle and cell division and DNA metabolic processes. Among the genes belonging to
these processes, we noticed the involvement of the DNA methyltransferases, including
DNMT3A and DNMT3B (Figure 1E, Supplemental Table S3; Supplemental Figure S1). The
two DNA methyltransferases catalyze the methylation of genomic DNA to establish new
DNA methylation patterns during embryogenesis [31] and in cancer [32,33].

2.2. miR-29s:DNMT3A-DNMT3B Network Is Involved in BRCA1-like Tumors

Correlation analysis revealed an inverse relationship between DNMT3A and DNMT3B
and a limited number of miRNAs downregulated in BRCA1-like tumors. The miR-29 family
was strongly represented (Figure 2A; Supplemental Table S2) and capable of affecting both
DNMT3A and DNMT3B. Indeed, the anti-correlation between miR-29b-2-5p, miR-29c-3p,
and miR-29c-5p transcripts and DNMT3A and DNMT3B levels was demonstrated not
only in the Hi-TCGA discovery series but also in the GA-TCGA validation data set and
in two other cohorts containing data for both miRNAs and coding mRNA, GSE59248
(39 patients, [34]) and GSE81002 (377 patients, [35]), (Figure 2B). DNMT3A did not result in
being anticorrelated with the three miRNAs in the METABRIC series; nevertheless, a high
anti-correlation between miR-29s and DNMT3B was confirmed in this cohort (Figure 2B).

Therefore, we investigated the role of miR-29s in BC and performed a more detailed
analysis of the miR-29s:DNMT3A-DNMT3B network. First, we confirmed the downregula-
tion of miR-29b-2-5p, miR-29c-3p, and miR-29c-5p in BRCA1-like BCs in both GA-TCGA
and METABRIC validation sets (Figure 3A,B).

We then examined the prognostic role of miR-29 members in both TCGA and
METABRIC cohorts. Due to the limited number of BRCA1-like samples with high miR-29s
levels, we pooled Hi-TCGA and GA-TCGA data after having calculated miR-29s z-scores.
Intriguingly, the BRCA1-like group with low levels of the three miR-29s demonstrated a
trend toward the worst disease-free survival (DFS) probability in both the TCGA (Figure 3C)
and METABRIC (Figure 3D) data sets. The differences between groups reached statistical
significance in the case of miR-29c-3p, the most highly expressed of the three miRNAs. The
clinical relevance of miR-29s may involve DNMT3A and DNMT3B, which were indeed
upregulated in both the Hi-TCGA discovery group and the GA-TCGA validation cohort
(Figure 4A,B). Consistent with the correlation data, in the METABRIC series, only DNMT3B
was significantly increased in BRCA1-like cancers compared with non-BRCA1-like samples
(Figure 4C).
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Figure 2. miR-29 family members target the DNMT3A and DNMT3B. (A) Network of miRNAs (blue
rectangles) targeting DNA methyltransferases DNMT3A and DNMT3B (yellow ellipses). miR-29
family members are evidenced in light blue. (B) Forest plots show the correlation between miR-29b-
2-5p, miR-29c-3p, miR-29c-5p, and either DNMT3A (left panels) or DNMT3B (right panels) in the
five cohorts described in the text. The dots indicate the Spearman coefficient and the error bars the
95% confidence intervals of each study. The dashed line represents the Spearman coefficient equal to 0.

Interestingly, DNMT3s expression is associated with typical features of BRCA1-like
samples, such as negativity for HR. Indeed, DNMT3B transcripts were significantly and
markedly higher in samples classified as negative for either estrogen receptor-α (ERα)
or progesterone receptor (PR) in both the Hi-TCGA discovery cohort and the GA-TCGA
and METABRIC validation series (Figure 5A,F, lower panels). DNMT3A transcripts were
significantly higher in hormone receptor-negative samples from both Hi-TCGA and GA-
TCGA (Figure 5A,B,D,E, upper panels), but not in the METABRIC series (Figure 5C,F),
consistent with the lack of correlation with miR-29 family members and the absence of
upregulation in BRCA1-like tumors in this cohort. We further examined the GSE81002
and GSE59248 series: DNMT3A and DNMT3B levels were higher in ERα-negative than
in positive cases in both series (Supplemental Figures S1 and S2A) and in PR-negative
samples in GSE59248 (Supplemental Figure S1B; the GSE81002 project did not provide
PR status).
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Figure 3. Role of miR-29 family members in BRCA1-like BCs. (A) Boxplots show the levels of
miR-29 family members (log2 reads-per-million-miRNA-mapped), from the GA-TCGA series, in the
BRCA1-like (76) and non-BRCA1-like (149) cases. (B) miR-29s levels (log2 normalized value) from
METABRIC series according to BRCA1 status: 215 cases were BRCA1-like, 1068 were non-BRCA1-like.
Boxplots show median values and first and third quartiles; whisker lengths correspond to 1.5 times
the interquartile range. Statistical differences were determined with the Welch two-sample t-test.
(C,D) Kaplan–Meier survival curves representing disease-free probability according to the levels of
miR-29 family members and BRCA1 status: (C) TCGA cohort consisting of Hi-TCGA and GA-TCGA
data; (D) METABRIC data. Samples were divided into “high” (solid lines) and “low” (dashed lines)
miRNA-expressing samples according to the best cutpoint (as described in Materials and Methods).
Samples were further split into BRCA1-like (orange lines) and non-BRCA1-like (blue lines) samples. A
log-rank test was used to determine the differences between curves. The numbers under the graphs
represent patients at risk at a specific time point (months). Survival curves are truncated at 100 months.
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Figure 4. Different levels of DNMT3A/DNMT3B transcripts according to BRCA1 status.
(A,B) DNMT3A (upper panels) and DNMT3B (lower panels) levels, expressed as log2 RSEM-
normalized value, in the BRCA1-like and non-BRCA1-like BC samples of the Hi-TCGA series ((A) 161
and 393 patients, respectively) and GA-TCGA ((B) 76 and 149 patients, respectively). (C) DNMT3A
(upper panels) and DNMT3B (lower panels) levels, expressed as log2-normalized value, in the BRCA1-
like (215) and non-BRCA1-like (1068) BC samples from the METABRIC cohort. Boxplots show median
values and first and third quartiles; whisker lengths correspond to 1.5 times the interquartile range.
Statistical differences were determined with the Welch two-sample t-test.

2.3. DNA Methyltransferases Affect ESR1 and PGR DNA Methylation in BRCA1-like Samples

The data reported so far suggest a potential form of control over DNMT3s by BRCA1 via
miR-29 family members and the association of DNMT3s expression with the absence of HR.

Interestingly, genes encoding ERα (ESR1 gene) and PR (PGR gene), which are weakly
expressed in BRCA1-associated tumors [36], have been reported to be downregulated by
methylation of promoter CpGs [37–40]. Therefore, we sought to determine whether the
upregulation of DNA methyltransferases was associated with promoter methylation of
ESR1 and PGR genes. To investigate this hypothesis, we obtained from the TCGA-BRCA
project the methylation data of the genomic regions where ESR1 and PGR were mapped
(Figure 6A,B). The ESR1 gene spans more than 400 Kbp, includes 8 coding exons and,
through the use of alternative promoters and splicing, forms dozens of transcript variants
(RefSeq: NCBI Reference Sequence Database), which in turn are translated into at least
4 isoforms [41]. The PGR gene encodes two major isoforms, isoform A (PRA) and B (PRB),
which are derived from two alternative promoters and two different transcription start
sites (TSS) [42].

The TCGA methylation data consisted of β-values, the estimates of methylation levels,
for 63 probes along the ESR1 gene and 17 probes for the PGR gene.

To determine which methylated CpGs might be relevant to control ESR1 and PGR
transcript levels, we used data from Hi-TCGA patients (433 samples) and categorized
hormone-positive and -negative samples based on the pit of the bimodal distribution of
ESR1 and PGR log2RSEM-normalized counts (Supplemental Figure S3). A significant fold
change >1.5 of CpG β-values in HR negative over positive samples was used to select CpGs
whose methylation inhibits ESR1 and PGR expression. A limited number of CpG probes
(Supplemental Table S4) met these criteria for the ESR1 gene: seven CpG probes (CpGs_A;
Figure 6A) located near the transcription start sites (TSSs) of RefSeq NM_001122740 and
NM_001385570 (variants 4 and 10, respectively) located far upstream of the canonical
NM_000125 variant 1; a CpG (CpG_B) in the region of promoter B [38] near the TSSs of
NM_001122740 and NM_001385569 (variants 2 and 9, respectively) and a CpG (CpG_C)
close to TSS of NM_001328100 (variant 7). The available data for the CpG island were very
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limited and included only 5 of the 105 CpGs reported in the CpG islands track of the UCSC
genome browser (https://genome.ucsc.edu/; accessed on 1 December 2022). These CpGs
were only weakly methylated and appeared to scarcely affect ESR1 expression in the BC
series of TCGA.
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Figure 5. Differential distribution of DNMT3A/DNMT3B levels according to hormone receptor
status. (A–C) DNMT3A (upper panels) and DNMT3B (lower panels) levels according to ERα receptor
sample status from Hi-TCGA ((A) 112 negative and 406 positive cases), GA-TCGA ((B) 46 negatives
and 177 positives), and METABRIC ((C) 300 positives and 983 negatives). (D–F) as in (A–C), DNMT3s
levels according to PR status: (D) Hi-TCGA series (149 negative and 368 positive samples); (E) GA-
TCGA series (77 negatives and 146 positives); (F) METABRIC series (608 negatives and 675 positives).
Boxplots show median values and first and third quartiles; whisker lengths correspond to 1.5 times
the interquartile range. Statistical differences were determined with the Welch two-sample t-test.
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Figure 6. Methylation of ESR1 and PGR genes. (A) Map of a portion of the genomic region of ESR1
(GRCh38/hg38, chr6:151,690,000–151,810,000) showing distinct transcription start sites (TSS), the exons
mapping in the reported DNA segment; the CpGs evaluated with the Illumina Infinium Human DNA
Methylation 450 platform. The CpGs not associated with ESR1 expression are depicted in gray, those
significantly associated with ESR1 gene expression are shown as empty circles and are highlighted by
filled red rectangles (CpGs_A, CpG_B, and CpG_C regions). The CpG island region (CpGs_isl) is shown
as an empty red rectangle. (B) Map of the PGR genomic region shown as the reverse complement
sequence (GRCh38/hg38, chr11: 101,129,813–101,029,624). Two TSSs are shown, NM_000926 and
NM_001202474, encoding isoform B and isoform A, respectively. The CpGs Inversely associated with
PGR gene expression are shown as empty circles and highlighted by the filled red rectangles of CpG_B
and CpG_A and the two CpG islands (CpGis32 and CpGis170). The other CpGs in the Illumina Infinium
Human DNA Methylation 450 platform are drawn as gray circles. Genomic coordinates of the CpGs
mapping on the ESR1 and PGR genes are reported in Supplemental Tables S4 and S5.

In the case of the PGR gene, two CpGs tested by TCGA probes (Supplemental Table
S5), CpG_A and CpG_B, showed β-values FC > 1.5 and were selected for subsequent
analyses (Figure 6B). In addition, the methylation of CpG islands seems to control PGR
expression, even though the number of probes was limited (3 of 32 for CpGs-island 32 and
4 of 170 for CpGs-island170).

Next, we wanted to test whether DNMT3A and DNMT3B might have a role in the
methylation of the selected CpGs in the ESR1 and PGR regions. To this end, we examined
the correlation between the average β-values of the 7 CpGs in CpGs_A, the single CpG_B,
and CpG_C β-values of ESR1 and the expression levels of DNMT3A and DNMT3B. Only
CpG_C significantly correlated with DNMT3A in both the Hi-TCGA (Figure 7A) and
GA-TCGA (90 samples; Figure 7B) series. The low levels of CpG methylation of the CpG
island did not correlate with DNMT3s expression in both Hi-TCGA and GA-TCGA cohorts
(Supplemental Figure S4).
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Figure 7. Correlation between DNMT3A and DNMT3B expression and methylation of ESR1 and PGR
genes. (A,B) Correlation between either DNMT3A (light blue dots and line) or DNMT3B (orange
dots and line) levels (log2RSEM-normalized values) and the average β-values of CpGs_A, CpG_B,
and CpG_C in the ESR1 gene in the Hi-TCGA (A) and GA-TCGA (B) series. (C,D) Correlation plots
between either DNMT3A (light blue dots and line) or DNMT3B (orange dots and line) and the β-values
of CpGis32, CpGis170, CpG_A, and CpG_B in the PGR gene. Spearman correlation coefficients R and
p-value are indicated in the same color as the corresponding DNMT3 gene. Genomic coordinates of the
CpGs mapping on the ESR1 and PGR genes are reported in Supplemental Tables S4 and S5.
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Interestingly, both CpG_A and CpG_B of the PGR gene correlated markedly and
significantly with both DNMT3A and DNMT3B in the Hi-TCGA and GA-TCGA cohorts
(Figure 7C,D). The levels of DNMT3A and DNMT3B transcripts were not associated with
the methylation of CpG islands, which were barely methylated in either gene (Figure 7C,D).

Thus, DNMT3A and DNMT3B were associated with the methylation of a number of
CpGs that control the expression of HR genes, particularly of PGR.

Finally, to come full circle, we showed that the methylation levels of CpGs_C in the
ESR1 gene and CpG_A and CpG_B in the PGR gene were indeed higher in BRCA1-like com-
pared with BRCA1-non-like tumors in both Hi-TCGA and GA-TCGA series (Figure 8A,B).

Int. J. Mol. Sci. 2023, 23, x FOR PEER REVIEW  12  of  19 
 

 

Interestingly, both CpG_A and CpG_B of the PGR gene correlated markedly and sig-

nificantly with both DNMT3A and DNMT3B in the Hi-TCGA and GA-TCGA cohorts (Fig-

ure 7C,D). The levels of DNMT3A and DNMT3B transcripts were not associated with the 

methylation of CpG islands, which were barely methylated in either gene (Figure 7C,D). 

Thus, DNMT3A and DNMT3B were associated with the methylation of a number of 

CpGs that control the expression of HR genes, particularly of PGR. 

Finally, to come full circle, we showed that the methylation levels of CpGs_C in the 

ESR1 gene and CpG_A and CpG_B in the PGR gene were indeed higher in BRCA1-like 

compared with BRCA1-non-like tumors in both Hi-TCGA and GA-TCGA series (Figure 

8A,B). 

 

Figure 8. Methylation of specific CpGs in ESR1 and PGR genes according to BRCA1 status. Com-

parison of β-values of ESR1 CpG_C (A) and PGR CpG_A and CpGs_B (B) in BRCA1-like compared 

with non-BRCA1-like BCs. Upper panels show data from the Hi-TCGA series (121 BRCA1-like and 

312 non-BRCA1-like cases); lower panels report data from the GA-TCGA cohort (27 BRCA1-like and 

63  non-BRCA1-like  cases). Boxplots  show median  values  and first  and  third  quartiles; whisker 

lengths correspond to 1.5 times the interquartile range. Statistical differences were determined with 

the Welch two-sample t-test. 

3. Discussion 

Inheritance of a germline mutation of the BRCA1 gene predisposes with high pene-

trance to breast, ovarian, and other forms of epithelial carcinoma [43]. Interestingly, the 

vast majority of breast cancers that occur in BRCA1 mutation carriers have a TNBC phe-

notype that prevents patients from being treated with therapies targeting hormone recep-

tor pathways [3]. Despite much progress in elucidating how dysfunctional BRCA1 causes 

the occurrence of such specific BCs, we still do not have a complete picture. It is known 

that BRCA1 can both inhibit ERα signaling and induce ESR1 gene expression by binding 

coactivators  such as BRD7 and OCT1 or  resolving R-loops  in  the enhancer  region up-

stream of the ESR1 gene, allowing ESR1 transcription [44–48]. In addition, it can regulate 

the PR pathway indirectly via ESR1, which  induces transcription of the PGR gene, and 

also interact directly with PRA and PRB [42,49,50]. 

Figure 8. Methylation of specific CpGs in ESR1 and PGR genes according to BRCA1 status. Com-
parison of β-values of ESR1 CpG_C (A) and PGR CpG_A and CpGs_B (B) in BRCA1-like compared
with non-BRCA1-like BCs. Upper panels show data from the Hi-TCGA series (121 BRCA1-like and
312 non-BRCA1-like cases); lower panels report data from the GA-TCGA cohort (27 BRCA1-like
and 63 non-BRCA1-like cases). Boxplots show median values and first and third quartiles; whisker
lengths correspond to 1.5 times the interquartile range. Statistical differences were determined with
the Welch two-sample t-test.

3. Discussion

Inheritance of a germline mutation of the BRCA1 gene predisposes with high pene-
trance to breast, ovarian, and other forms of epithelial carcinoma [43]. Interestingly, the
vast majority of breast cancers that occur in BRCA1 mutation carriers have a TNBC pheno-
type that prevents patients from being treated with therapies targeting hormone receptor
pathways [3]. Despite much progress in elucidating how dysfunctional BRCA1 causes
the occurrence of such specific BCs, we still do not have a complete picture. It is known
that BRCA1 can both inhibit ERα signaling and induce ESR1 gene expression by binding
coactivators such as BRD7 and OCT1 or resolving R-loops in the enhancer region upstream
of the ESR1 gene, allowing ESR1 transcription [44–48]. In addition, it can regulate the
PR pathway indirectly via ESR1, which induces transcription of the PGR gene, and also
interact directly with PRA and PRB [42,49,50].

Here, we propose that the downregulation of specific miRNAs, such as miR-29 family
members, contributes to the lack of HR expression in BRCA1-like tumors.
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There is increasing evidence that BRCA1 controls the expression of miRNAs through
various mechanisms: transcriptional repression, activation, or by controlling miRNA
biogenesis via the DROSHA microprocessor complex [20,23,25]. Either way, in the present
analyses, we observed several miRNAs deregulated in BRCA1-like tumors. The targets of
these miRNAs were involved in pathways known to be influenced by BRCA1 mutations,
namely cell cycle, cell division, and DNA replication. Of note, the DNA methyltransferases
DNMT3A and DNMT3B emerged among the genes involved in these pathways. They
anticorrelated with miR-29 family members and were upregulated in BRCA1-like cancers.
In vitro inhibition of these methyltransferases by miR-29 family members has already been
demonstrated for several pathologies [51,52].

Although we could not demonstrate in these in silico analyses whether and how
BRCA1 directly regulates miR-29 expression, a recent paper reported that BRCA1 binds
cis-regulatory elements in the promoter region of miR-29b-1 (in a cluster with miR-29a on
chromosome 7) and induces its expression [53]. We did not verify whether this form of
control also applies to the other miR-29s, but it is worth noting that the genes encoding
the most downregulated miR-29c -3p and -5p, and miR-29b-2-5p are clustered together
on chromosome 1, suggesting a common regulation for these miRNAs. In this scenario,
BRCA1 dysfunction could be the cause of low levels of these miR-29 family members.
Interestingly, several lines of evidence suggest that miR-29s are downregulated in cancer
and that their reduction is associated with a poor prognosis [54–56]. Here, we showed that
the prognostic role of miR-29s was mainly associated with BRCA1-like samples. Indeed,
low levels of these miRNAs, especially miR-29c-3p, in the BRCA1-like samples showed the
worst prognosis and were associated with the short-term relapse that is typical of TNBC.

Consistent with the role of miR-29s in cancer, their targets DNMT3A and DNMT3B
have been described as overexpressed in various neoplasms and associated with poor
prognosis in numerous tumors, including BC [32,33,51,57–60].

DNMT3A and DNMT3B are de novo methyltransferases that transfer a methyl group
to the C-5 position of the cytosine residue to establish DNA methylation [61,62]. They may
control gene expression by methylating their promoters, a mechanism that has long been
considered critical for gene silencing in cancer development.

Even the MIR29C and MIR29B2 regions were methylated but the extent of methylation
did not correlate with either miRNA expression or with DNMTs. Curiously, methylation of
CpGs 20kbp upstream of miRNAs, which Poli E et al. reported to be inversely correlated
with miR-29c and miR-29b-2 expression [63], actually partially correlated with the poorly
expressed strands (mir-29c-5p and miR-29b-2-5p). No correlation was observed between
the methylation of CpGs in the miR-29a/miR-29b-1 locus and miRNA expression. Thus,
overall, our analyses suggest that the anti-correlation between DNMT3A/3B and miR-29s
is not a consequence of DNMT3A/B controlling miR-29s expression but rather the opposite.
Nevertheless, we cannot rule out a negative feedback loop in which DNMTs might partially
control miR-29c expression by methylating its gene.

Remarkably, the data reported here showed a correlation between DNMT3A and
DNMT3B expression and negativity for ERα and PR and a direct correlation with promoter
methylation levels of HR, particularly the PGR gene, suggesting a BRCA1-mediated control
of these genes via the miR-29s/DNMT3A-DNMT3B axis.

In the ESR1 gene, the CpG most affected by the miR-29s/DNMT3A-DNMT3B circuit
is CpG_C, which maps close to the TSS of transcripts that produce the 46 and 36 kDa ERα
truncated isoforms (ERα46 and ERα36, respectively). Both isoforms have been reported to
be expressed in BC, even in TNBC, and to exert opposite functions in controlling cancer
progression: the best studied ERα36 is capable of activating multiple signaling pathways
critical for cancer aggressiveness and metastatic potential, whereas ERα46 associates with
lower grade and smaller tumors [64–67]. Further studies are needed to characterize the
isoforms affected by CpG DNA methylation and to discover the role of promoter methyla-
tion/expression of these isoforms in BC progression.



Int. J. Mol. Sci. 2023, 24, 9916 13 of 18

In the case of PGR, DNMT3A and DNMT3B are strongly associated with methylation of
the two CpGs that appear to inhibit PGR expression, even if one of them maps on an exon far
from the TSS of the PGR gene. Several lines of evidence suggest that CpG methylation plays
a role in controlling gene expression even when far from the promoter by altering chromatin
structure and binding of transcription factors [68,69]. Importantly, the two CpGs in the PGR
gene were more methylated in BRCA1-like tumors than in non-BRCA1-like tumors.

We recognize that this work has the limitations of an in silico study that showed corre-
lations and, thus, needs further in vitro validation to confirm the results. In addition, we
used the BRCA1-like and non-BRCA1-like classification as a surrogate of a categorization
that considered all types of BRCA1 inactivation (e.g., mutation, methylation, small or large
deletion). The fact that miR-155, a miRNA known to be repressed by BRCA1, emerged
among the miRNAs overexpressed in BRCA1-like supports the efficacy of this categoriza-
tion. Thus, by analyzing a series of data sets, this study identifies a potential network in
which the absence of a functional BRCA1 epigenetically suppresses HR. This network is
thus implicated in the development of the typical BRCA1-associated tumors that barely
express ERα and PR. Furthermore, this study extends the knowledge of DNA methylation
control over ESR1 gene expression in the context of BRCA1-like cancers, as reported for
a limited set of CpGs in the seminal work of Archey and coworkers [70]. Interestingly,
promoter methylation and lack of HR expression lead to poor prognosis and resistance to a
number of anti-hormonal therapies in BC [38,40,71].

Therefore, the network described here, in which dysfunctional BRCA1 leads to the
downregulation of miR-29 accompanied by an increase in DNMT3A and DNMT3B and
hormone gene methylation, paves the way for the development of novel strategies to
overcome endocrine resistance in BCs.

4. Materials and Methods
4.1. Data Sets

In selecting data sets for this study, we first chose those that contained mRNA and
miRNA data and the BRCA1 status of the same samples. Additional data sets, even
without BRCA1 status information, were selected for specific validation (see the workflow
in Supplemental Figure S5).

4.1.1. TCGA

TCGA data were downloaded from Broad GDAC Firehose (https://gdac.broadinstitute.
org/; accessed on 7 October 2020). They included: miRNA-seq data illuminahiseq_mirnaseq-
miR_isoform_expression (Hi-TCGA data set) and illuminaga_mirnaseq-miR_
isoform_expression (GA-TCGA data set); RNA-seq data (illuminahiseq_rnaseqv2-RSEM_
genes); DNA methylation data (humanmethylation450-within_bioassay_data_set_function-
Illumina Infinium Human DNA Methylation 450 platform), and clinical data for clinico-
pathological features.

For miRNA isoforms, we used both the read counts from the Hi-TCGA data set and the
normalized count in reads-per-million-miRNA-mapped from the Hi-TCGA and GA-TCGA
data sets (TCGA miRNA pipeline at https://docs.gdc.cancer.gov/Data/Bioinformatics_
Pipelines/miRNA_Pipeline/). For survival analyses, we used both the Hi-TCGA and
GA-TCGA data sets. We calculated the z-score of the log2 of the normalized count in
reads-per-million-miRNA-mapped for each cohort:

z-score = (miR-X sampleA −mean miR-X allSamples)/ds miR-X allSamples

Subsequently, the z-scores of the two platforms were merged.
Gene-level transcription estimates from the RNA-seq data were expressed as log2

RSEM-normalized counts. DNA methylation data report the methylation score for each
CpG site expressed as β-values, which ranged from zero to one, corresponding to un-
methylated and fully methylated DNA, respectively (https://docs.gdc.cancer.gov/Data/
Bioinformatics_Pipelines/). We analyzed the β-values of 63 probes in the ESR1 gene region

https://gdac.broadinstitute.org/
https://gdac.broadinstitute.org/
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/miRNA_Pipeline/
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/miRNA_Pipeline/
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/
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(chr6: 152,011,103–152421432; GRCh37/hg19) and of 17 probes in the PGR region (chr11:
100,905,070–101001533; GRCh37/hg19).

4.1.2. METABRIC

Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) data [72]
were obtained from the European Genome-Phenome Archive (EGA; https://ega-archive.
org/; accessed on 22 February 2021) and comprised EGAD00010000434 Normalised mRNA
expression data (IlluminaHT 12 array); EGAD00010000438 Normalised miRNA expression
data (Agilent ncRNA 60k); and clinicopathological features including HR status. The
log2-transformed normalized data were used for the analyses.

4.1.3. Other Validation Data Sets

Two independent data cohorts with miRNA, mRNA, and clinicopathological data were
identified in GEO data sets (https://www.ncbi.nlm.nih.gov/gds; accessed on
18 May 2022): the GSE81002 and GSE59248 series. GSE81002 included data from the
Human miRNA Microarray v14 Rev.2 and the Agilent-028004 SurePrint G3 Human GE
8 × 60K Microarray for 377 patients [35]. GSE59248 contained data from the same
platform as GSE81002 for mRNA quantification and data from Agilent-031181 Unre-
stricted_Human_miRNA_V16.0_Microarray 030, 840, for 39 samples [34]. Since these
data sets contained data for multiple probe sets, we collapsed probes into miRNA by
selecting the probe with the highest average expression [73].

4.2. Differential Expression Analysis

We performed differential expression analysis using the Hi-TCGA data set, which in-
cludes 161 BRCA1-like and 393 non-BRCA1-like samples. Read counts of miRNA isoforms
were used for the analysis, which was performed using the DESeq2 R package version
1.36.0 [74]. miRNAs with log2FC > |0.4|, BH-adjusted p values (padj) <0.00001, and base
mean >5 normalized counts were considered differentially expressed.

4.3. GSEA Analyses and Gene Ontology (GO) Enrichment Analysis

Gene set enrichment analysis (GSEA) was performed using GSEA version 4.0.3 soft-
ware downloaded from https://www.gsea-msigdb.org/gsea/index.jsp [75,76]. Weighted
and signal-to-noise parameters were chosen for the “enrichment statistics” and the “metric
for ranking genes”, respectively.

Gene ontology (GO) enrichment analysis for the GO Biological Processes was per-
formed by taking advantage of the Metascape tool (https://metascape.org; [77]). Pathway
and process enrichment was performed.

4.4. Disease-Free Survival and Statistical Analysis

Spearman rank order correlation coefficients were computed between the normalized
miRNA expression levels from the Hi-TCGA data set and the corresponding log2 RSEM-
normalized counts of the putative targets. Statistical differences between groups were
evaluated using the Welch t-test or a Mann–Whitney rank sum test, depending on the
normal distribution of the variables considered. Tests were performed with R functions
(R-3.6.2). Disease-free survival analyses were conducted considering updated clinical data
(disease-free months and events) obtained from the cBioPortal (https://www.cbioportal.
org/; accessed on 10 May 2023) for both TCGA and METABRIC cohorts. Patients were
classified according to BRCA1 status and high or low levels of miR-29s, which were in turn
determined by calculating the best cut-point based on the maximum log-rank value using
the R package Survminer [78]. Survival was estimated using the Kaplan–Meier method,
and differences between groups were evaluated with the log-rank test using the Survival
and Survminer R packages [78,79].
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